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Optimal selective floor cleaning 
using deep learning algorithms 
and reconfigurable robot hTetro
Balakrishnan Ramalingam1*, Anh Vu Le1, Zhiping Lin2, Zhenyu Weng2, 
Rajesh Elara Mohan1 & Sathian Pookkuttath1

Floor cleaning robots are widely used in public places like food courts, hospitals, and malls to perform 
frequent cleaning tasks. However, frequent cleaning tasks adversely impact the robot’s performance 
and utilize more cleaning accessories (such as brush, scrubber, and mopping pad). This work proposes 
a novel selective area cleaning/spot cleaning framework for indoor floor cleaning robots using 
RGB-D vision sensor-based Closed Circuit Television (CCTV) network, deep learning algorithms, and 
an optimal complete waypoints path planning method. In this scheme, the robot will clean only 
dirty areas instead of the whole region. The selective area cleaning/spot cleaning region is identified 
based on the combination of two strategies: tracing the human traffic patterns and detecting stains 
and trash on the floor. Here, a deep Simple Online and Real-time Tracking (SORT) human tracking 
algorithm was used to trace the high human traffic region and Single Shot Detector (SSD) MobileNet 
object detection framework for detecting the dirty region. Further, optimal shortest waypoint 
coverage path planning using evolutionary-based optimization was incorporated to traverse the robot 
efficiently to the designated selective area cleaning/spot cleaning regions. The experimental results 
show that the SSD MobileNet algorithm scored 90% accuracy for stain and trash detection on the 
floor. Further, compared to conventional methods, the evolutionary-based optimization path planning 
scheme reduces 15% percent of navigation time and 10% percent of energy consumption.

Generally, human traffic is heavy on commercial premises like shopping malls, food courts, community clubs, 
and hospitals. Therefore, the chances of accumulating trash, stains (footprint stains and other forms of stains), 
and debris are quite high, raising safety and hygiene concerns. Hence, frequent cleaning is essential in commer-
cial premises in pandemic situations like COVID-19. Due to long working hours, low wages, and unwillingness 
to work as a cleaner, workforce shortage has been a constant problem for cleaning and maintenance tasks in 
commercial premises1,2.

In recent years, mobile cleaning robots have been widely used to clean and maintain commercial premises 
and help overcome the workforce shortage. It performs the cleaning task in public premises using two cleaning 
modes: auto cleaning/scheduled cleaning mode and selective area cleaning/spot cleaning mode2–5. Here, the auto 
cleaning/scheduled cleaning mode cleans the given workspace autonomously once a day or at a scheduled time 
interval using a pre-build floor map. In selective area cleaning/spot cleaning mode, the robot will clean only dirty 
areas instead of cleaning the whole region. In contrast with auto cleaning/scheduled cleaning mode, the selective 
area cleaning/spot cleaning mode could save energy by avoiding non-dirty areas, reducing the cleaning time, 
and enhancing the lifetime of the robot6. However, the selective area cleaning/spot cleaning mode hasn’t been 
designed with autonomous operation, where the robot requires human assistance to perform the selective area 
cleaning/spot cleaning. Moreover, human-assisted selective area cleaning or spot cleaning is labor-intensive and 
time-consuming for larger workspaces. The cleaning supervisor needs to continuously monitor or inspect the 
environment to enable selective area cleaning/spot cleaning mode (according to human traffic in the environ-
ment or trash and stains detection).

Computer vision-based autonomous selective area cleaning/spot cleaning is a viable solution for overcoming 
the shortcomings mentioned above. Recently, Machine Learning (ML) and Deep Learning (DL) based computer 
vision algorithms are widely used for mobile cleaning robots for stain and trash detection and path planning 
tasks7–9. However, selective area cleaning/spot cleaning using onboard robot vision systems and generating the 
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optimal path generation has a lot of practical challenges. Searching and finding the dirty region itself increases 
the energy consumption and processing time by scanning the entire area of operation. Further, monitoring 
human traffic from a robot perspective and computing the selective area cleaning/spot cleaning region took 
more computation time and power.

Hence, there is a need for a novel and scalable approach to overcome the challenges mentioned above in the 
selective area cleaning/spot cleaning method. Therefore, this article proposes a novel selective area cleaning/
spot cleaning framework for indoor floor cleaning robots using RGB-D vision sensor based Closed Circuit Tel-
evision (CCTV) network, deep learning algorithm, and optimal complete waypoints path planning algorithm. 
Furthermore, the main contributions of this paper are divided threefold:

•	 Design and development of selective area cleaning/spot cleaning using deep learning-based computer vision 
algorithm and RGB-D vision sensor network. The deep learning algorithms find the selective area cleaning/
spot cleaning region based on detecting stains and trash on the floor and tracing the human traffic patterns 
(common space: hall, entrance, and hallway/entryway).

•	 Compute the 3D location of stain and trash in world coordinates to estimate the complete waypoint coverage 
path planning by evolutionary methods to drive the cleaning robot to a selective area cleaning/spot cleaning.

•	 Validate the efficiency of selective area cleaning/spot cleaning framework in the real workspace with in-house 
developed reconfigurable floor cleaning robot hTetro.

The manuscript is organized as follows—section “Related work” elaborates the related works, and the proposed 
system is presented in section “Overview of the proposed system”. Finally, section “Experimental results” provides 
the experimental results, followed by the conclusion and remarks of this work.

Related work
This section presents the various dirt, stain, and trash detection schemes reported in the literature with detail 
summery (Table 1) and the optimal path planning methods used for cleaning robots. In10 Andersen et al. pro-
posed a floor cleaning robot with a cleanness sensor using a computer vision algorithm and LED illumination. 
The sensor identifies dirty areas by analyzing surface images and producing pixel-by-pixel cleanness maps, apply-
ing a multivariable statistical approach. Borman et al.11,12 proposed a spectral residual filtering-based method 
for dirt detection. The dust threshold for various floor patterns is fixed based on maximal and minimal filter 
response. However, the dirt detection ratio is varied upon surface types. Mud and dirt on the floor are identified 
and classified for cleaning robots using Maximally Stable Extremal Regions (MSER) and Minimal Canny edge 
detection algorithms13. Lee and Banerjee14 suggested a solution for the overall cleaning schedule, which also 
generates an effective path for each cleaning cycle. Simulation-based Optimisation (SO) technique is applied for 
floor cleaning to avoid redundant paths and maintain tolerable dirt particle levels. In6 vision-based dirt detec-
tion was proposed for floor cleaning robot hTetro. Here, the authors use a periodic pattern detection filter to 
identify the dirt region on the floor and a tilling algorithm for generating the cleaning pattern. Grunauer et al.15 
proposed an algorithm to detect dust spots based on Gaussian Mixture Model (GMM) applied to RGB images. 
This supports distinguishing the dust spots from the floor surface. Martinez et al.16 proposed a vision-based 
dust detection technique for the planar surface. The median filter and the thresholding technique were applied 
to distinguish the dust and the floor surface. Further, RANSAC algorithm was adopted to detect plane surfaces. 
However, as mentioned above, the scheme has significant practical limitations; for instance, the heavy detection 
of dirt depends on the floor background and cannot distinguish the dirt classes like trash or stain11–13.

Deep Learning (DL) based object detection is an emerging technique. Nowadays, it has been widely utilized 
in the autonomous robot vision system, abandoned object detection in surveillance applications8,9, human and 
vehicle tracking applications17,18, to detect stains and trash in cleaning robots, classify garbage in waste manage-
ment. In19 author evaluate the efficiency of various deep learning-based object detection framework for marine 
trash detection. The authors report that the Single Shot Detector (SSD) architecture has high detection accuracy 

Table 1.   Summary of related work.

Author Algorithm Application

Bormann et al.11,12 Spectral residual filter Dirt and Mud detection on floor

Andersen et al.10 multivariable statistical approach Dirt detection

Milinda et al.13 Spectral residual filter + Maximally Stable Extremal Regions Dirt and mud detection

Martinez et al.16 median filter and the thresholding technique Dust detection

Bala et al.6 periodic pattern detection filter Dirt region mapping

Zhihong et al.,21 (RPN) and VGG-16 Trash sorting

Rad et al.20 OverFeat GoogleNet Trash detection

Gaurav et al.21 AlexNet Trash detection

Ramalingam et al.7 SSD MobileNet Debris detection and classification

Yin et al.2 16 layer CNN Food strains and trash detection

Chen et al.21 Fast RCNN Trash sorting

Proposed system Deep SORT and SSD MobileNet Selective area cleaning/spot cleaning
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than the Yolo v2 and Tiny Yolo object detection models. GoogLeNet-Overfeat object detection model was trained 
for outdoor trash detection proposed by Rad et al.20. Here, the detection framework was trained with 18000 trash 
images containing waste papers, metal/plastic cans, and leaves. The trained model obtained a maximum of 77.3 
% precision for detecting trash on the street. Ramalingam et al.7 proposed a debris detection and classification 
framework for floor cleaning robot application. The authors7 train the SSD MobileNet object detection algorithm 
with debris image dataset to detect and classify the trash and stains on the floor. Zhihong et al.,21 proposed an 
automatic trash sorting system using Region Proposal Network (RPN) and VGG-16 deep learning model. The 
authors report that the trained model had 3% miss detection and 9% false detection. Gaurav et al.21, proposed 
a smartphone app-based outdoor garbage localization technique where AlexNet CNN was trained to detect the 
outdoor garbage and detect the outdoor trash with 87% detection accuracy. Yin et al.2 proposed Human Sup-
port Robot (HSR) based on deep learning for cleaning the tables. A darknet framework-based 16-layer CNN 
framework was developed. The model achieved 95% accuracy in detecting food strains and trash on the surface 
of the table. Further, a similar autonomous robot was developed using deep learning architecture, which has the 
capability to produce two-dimension trajectories from human kinesthetic instances22,23.

Apart from dirt, stain, and trash detection, path planning is also a key function for floor cleaning robots to 
achieve efficient cleaning. In the literature, path planning for cleaning robots was widely studied. Generally, spiral 
and zigzag patterns are widely used to generate the path for cleaning robots, aiming to maximize the area’s cover-
age. However, these patterns have significant limitations in covering the constrained areas, such as narrow space, 
and are only suitable for fixed morphology platforms7. Further, computing the optimal shortest path is another 
key challenge for the selective area cleaning/spot cleaning task. Reconfigurable morphology robots can cover 
the maximum area and arbitrary workspace compared with a fixed morphology robot and are more suitable for 
selective/ spot-cleaning tasks. Self-reconfigurable robots have attracted significant attention, and the development 
of autonomy systems mostly focused on autonomous motion control and mechanism design. There are only a 
few works in path planning for self-reconfigurable robots, e.g., the work in24 proposes a complete coverage path 
planning model trained using deep reinforcement learning (RL) for the tetromino based reconfigurable robot 
platform to simultaneously generate the optimal set of shapes for any pretrained. Research on path planning so 
far focuses on fixed-morphology robots and considered robots as a single point. But, representative path plan-
ning algorithms can be broadly classified as classical graph search algorithms (Dijkstra, A*, D*, and D* Lite)25–28, 
bio-inspired search (genetic algorithm, ant colony optimization, and particle swarm optimization)29–35, geometric 
algorithms (probabilistic road map, visibility graph, rapid-exploring random tree, cell decomposition, Voronoi 
graph)36–41. However, selective area cleaning/spot cleaning path planning for re-configurable floor cleaning robots 
is a new approach. It has not been explored yet. This research describes the optimal shortest waypoint coverage 
path planning method using evolutionary-based optimization technique for re-configurable floor cleaning robot 
hTetro to execute the selective area cleaning/spot cleaning task.

Overview of the proposed system
Figure 1 shows the overview of our selective area cleaning/spot cleaning framework with a functional block dia-
gram. It is developed for floor cleaning robot indoor selective area cleaning/spot cleaning task. Generally, high 
human traffic areas are more likely to accumulate more trash and foot stains. Hence, two strategies are combined 
to efficiently find the indoor environment’s selective area cleaning/spot cleaning regions. It includes tracing the 
human traffic patterns and detection of stains, foot stains, and trash on the floor.

Figure 1.   Overview of the proposed system.
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The proposed system functional block diagram is composed of an image data collection module from the 
RGB-D vision sensor network, deep learning-based computer vision algorithms, and an optimal path planning 
module for the hTetro robot. WiFi-enabled surveillance camera setup (Realsense D345 fitted in roof corners) 
captures human movements indoors and continuously captures the floor images. The camera system is fixed in 
the corners of the roof, and the Field of View (FoV) is calibrated with the 3D map built by the hTetro robot base 
frame. The cameras are connected to an external server through a WiFi router to transfer the captured video 
stream’s. A deepSORT human tracking algorithm was used to trace the human traffic pattern. SSD Mobilenet 
object detection algorithm was trained to detect foot stains on the high human traffic region, common stains, 
and trash on the floor. The selective area cleaning/spot cleaning algorithm is run on an external server built 
with a high-performance GPU. The server collects the indoor images continuously through a WiFi router and 
performs the human traffic pattern detection analysis, stains, and trash detection task. According to the human 
traffic pattern tracing, stains, and trash detected on the floor, the framework generates the navigation strategy 
and send the way point coordinates to hTetro robot to perform the selective area cleaning/spot cleaning task. 
The robot uses waypoint information (computed through image coordinate to robot footprint coordinate) and 
odometry data to reach the selective area cleaning/spot cleaning location and perform the cleaning task. The 
details of each component and integration methods are described as follows.

Deep SORT human tracking.  The Deep SORT is an improved version of the Simple Online and Real-time 
Tracking (SORT) algorithm. Generally, deep sort is used for human tracking applications. In our work, Deep 
SORT is used to monitor the human traffic pattern tracing in indoors through RGB-D vision sensor collected 
image and map the high traffic area to identify the selective area cleaning/spot cleaning region. The Deep SORT 
tracking framework was built using the hypothesis tracking technique with the Kalman filtering algorithm and 
DL-based association metric approach. Further, the Hungarian algorithm is utilized to resolve the uncertainty 
between the estimated Kalman state and the newly received measuring value. The tracking algorithm uses the 
appearance data to improve the performance of sort42. In this work, the bounding box coordinates in image 
plane (Xmin,Ymin and X max and Y max ) of human detection are passed to Deep SORT with image frame for track-
ing the human movements. According to bounding box coordinates and object appearance, deep SORT assigns 
each human detection ID and performs the tracking. A selective area cleaning/spot cleaning algorithm used the 
tracked information to compute the cleaning spot.

Stain and trash detection framework.  A Single Shot Detector (SSD) MobileNet V2 end-to-end object detec-
tion framework is adopted to detect the stains, foot stains, and trash on the floor. The functional block diagram 
of SSD MobileNet is shown in Fig. 2. Here, feature extraction is done using the MobileNet model. Bounding 
box prediction is made using a meta-architecture SSD. While training, RMSprop algorithm43 is used for loss 
optimization. The framework was trained using a transfer learning scheme; the last layer of the detector head is 
modified to detect the stains, foot stains, and trash.

Feature extractor.  MobileNet v2 is used as the base network that performs feature extraction tasks suitable 
for mobile and edge devices. Figure 2 shows the MobileNet v2 architecture. It comprises multiple residual bot-
tleneck layers. These layers use 3× 3 in depthwise convolution layers, which are more efficient than standard 
convolution layers. They also employ 1× 1 convolutions instead. The architecture also uses ReLU6 layers, which 
are ReLU layers with an upper limit of 6. The upper limit prevents the outputs from scaling to a huge value, 
reducing the computation cost.

SSD architecture.  Single-Shot Detector (SSD) is an object detection algorithm. It outputs the object’s location 
through a bounding box in an image with the confidence of the prediction. The bounding box coordinates have 
been translated into real-world coordinates and fed to a trajectory planning algorithm to generate the selective 
area cleaning/spot cleaning path. The SSD algorithm uses the MobileNet feature map to generate the anchor 
boxes. The final few layers (feature map) from the feature extractor are used to predict trained objects’ locations. 
In the SSD architecture, the input is passed through different convolution layers of different sizes. These layers 

Figure 2.   SSD MobileNet V2.
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decrease in size progressively through the network. The purpose of these layers is to enable the network to detect 
objects of different shapes and sizes.

While training, confidence loss Lconfidence and localization loss Llocation Eq. (1) was calculated for each predic-
tion. The prediction error of class and confidence is given by confidence loss. The localization loss is a smooth 
loss between the predicted bounding box value and the ground truth value. The value α is used to reduce the 
overall loss’s influence and balance confidence and location loss.

Root Mean Squared gradient descent algorithm (RMS) is used for optimizing both the losses. The weights 
wt are computed at any time t using the gradient of loss L, gt and gradient of the gradient vt Eqs. (2)–(4). The 
hyperparameter β = 0.9, η = 0.02 are utilized for estimating the momentum and gradient values, while a small 
value near to zero ǫ is used for avoiding divide-by-zero errors.

3D location of stain and trash in world coordinates.  After finding the 2D pixel coordinates in the RGB image 
frame of stain, trash, and human traffic pattern, the system will derive the world frame’s corresponding 3D posi-
tion. Since, the perception system is a stereo camera with both an RGB image sensor and a depth image sensor, 
they are of the same resolution, and each pixel in the RGB image corresponds to the pixel in the depth image. 
This enables us to map the dirt object’s localized pixel coordinates to their depth value. When the depth images 
are subscribed, the image will be filtered via an adaptive directional filter44 to remove noise. After filtering the 
depth image, the depth value of the dirt objects, do , has been derived by Eq. (5) as follows:

(1)L = 1

N

(
Lconfidence + αLlocation

)

(2)vt =βvt−1 + (1− β)g2t

(3)�w = −η√
vt + ǫ

× gt

(4)wt+1 =wt +�w
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where, � represents the sum of pixels within a 10× 10 window, and di represents the value of the depth in the 
pixel. The dirt objects in real-world coordinates will be estimated by converting the X and Y pixel coordinate 
system to x and y world coordinate system built by the Robot Lidar sensor.

RGB-D Sensor parameters are derived through camera calibration techniques to give the camera an intrinsic 
and extrinsic matrix45. Camera calibration methods give us the focal length, fx , and fy , of the RealSense RGB-D 
sensor and the optical center, cx , and cy , of the RealSense RGB-D sensor in its respective x and y coordinate to get 
the intrinsic camera matrix, I. The RealSense RGB-D sensor in-built functions also provide us with the translation 
vector, K, and rotation vector, Q. The extrinsic matrix, S, can be derived where S = [QK] . Further, it will convert 
from the pixel coordinate system to the world coordinate system through Equation (6).

where P is the world coordinates, p is the pixel coordinates.

Overview of hTetro robot and navigation strategy.  hTetro is an in-house developed re-configurable 
floor cleaning robot (Fig. 4). This robot consists of a chain-type with four cube shape modules connected by 
three hinges at the corner of blocks, as shown in Fig. 3. In hTetro, blocks 1, 3, and 4 each hold a cleaning mod-
ule, while block 2 contains the primary electronic circuits. The robot blocks could be easy to remove and add 
a degree of freedom. The hinges permit the hTetro robot in shape-transferring and a couple of configurations. 
The shape-shifting allows the robot to cover the constrained space more efficiently than fixed-form robots. For 
instance, the robot can cover the bigger space with the default O shape and change shapes flexibly from the O to 
I shape to cover the narrow spaces. The three hinges connected between robot blocks are used for shape-shifting 
during the reconfiguration.

The locomotion modules at each block are programmed to operate synchronously with others according 
to the robot’s transformation, and each of the modules is amenable for steering and moving the hTetro. Each 

(5)do =
∑

� di

�

(6)p = I ∗ [QK] ∗ P = I ∗ S ∗ P.

Figure 3.   Seven configurations of hTetro.

Figure 4.   hTetro hardware components.
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block contains two geared DC motors with encoders for balance locomotion. The operation voltage rating of the 
DC motors is 7.4V. In hTetro, a potentiometer type absolute encoder was used in each block to sense the shape 
change action and block’s heading angle. When the hTetro is involved in the transformation actions, the servos 
located at the hinges drive the modules by rotation clockwise and anticlockwise to do the reconfiguration into 
seven distinct shapes -‘I, L, S, T, Z, J, O’, as shown in Fig. 3. The low-level controller (Arduino mega) was used 
to measure the output current from the absolute encoder through the A/D Input pin and fine-tunes the shape 
change action. This sensing data helps ensure that the units are aligned and moving in the same direction. The 
servo motors run at 14.8V, and the high torque is 77 kg. cm. The servo has enough torque to hold the hTetro 
block masses in morphologically changing and fastening the blocks in locomotion.

Hardware and software components.  hTetro hardware architecture was developed with a single-board com-
puter Intel compute stick and low-level micro-controller Arduino mega 2560 (Fig. 4). The Intel compute stick is 
powered with an Intel Core m3 processor, 4GB of memory, and 64GB of eMMC flash storage. It was used as an 
hTetro central processing unit, runs with an operating system of Ubuntu 20.04, and uses ROS Melodic46 as mid-
dleware. The hTetro navigation algorithms run alongside the ROS middleware in the compute stick and control 
all the autonomy-related operations of the hTetro. The navigation algorithm receives the waypoint information 
from the remote/local server through on board WiFi module and generates the control command to the low-
level control unit to execute the selective area cleaning/spot cleaning task.

Arduino-Mega was used as a low-level controller. It works at 5 volt supply voltage and operates at 16 Mhz 
clock frequency. The controller receives the commands from the central processing unit through ROS serial 
bridge function and generates the appropriate actions for the motor drives and other local electronic components. 
The rosserial ROS package uses Arduino’s universal asynchronous receiver/transmitter (UART) communication 
and converts the board to a ROS node that can output ROS messages and subscribe to messages as well.

Optimization of trajectory.  The 3D points at the centers of detected objects are defined as waypoints the robot 
needs to visit to do the appropriate selective area cleaning/spot cleaning region. The robot will derive the optimal 
navigation trajectories defined as Complete Waypoint Coverage Planning (CWCP) to visit all the waypoints. 
With N unsequenced waypoints detected from the perception unit, the navigation trajectory η is defined as 
follows: η = {(Ws

1,W
g
1 ), (W

s
2,W

g
2 )..., (W

s
N ,W

g
N )} The trajectory η consists of pairs of waypoints with the direc-

tions which indicate the order of navigation. The initial waypoint is labeled Ws
1 , and the final waypoint is labeled 

W
g
N . This trajectory representation visits each waypoint among N waypoints once. The cost to navigate from 

source waypoint to destination waypoint equals to summation of mass of each robot mi block multiplied with 
3D displacement to move blocks from source (xsi , y

s
i , z

s
i ) to goal (xgi , y

g
i , z

g
i ) as shown in Eq. (7). The total cost of 

the trajectory can be summarized by all the waypoint pair components as shown in Eq. (8). The Pareto trajectory 
is defined as η̂  , and the objective of the proposed CWPP problem is derived by Eq. (9).

There are many possibilities to form the trajectories and find the optimal route to minimize the fitness function; 
the classic Travelling Salesman Problem (TSP) model can be considered an NP-hard problem. Similarly, brute 
force search can be used for iterating every possible path with factorial time complexity O(n!), But performance 
gradually decreases with the large input data size. Dynamic programming through Held-Karp algorithm47 
reduces the complexity of TSP to O(n22n ) time. However, the method is still inappropriate for the presented 
scenario where multiple detected waypoints are in the working workspace. Evolutionary approach Ant Colony 
Optimization (ACO)48,49 is adopted to find the optimal trajectory connecting the waypoints, η̂ in Eq. (9) within 
a reasonable time. Optimization based on probabilistic techniques are the main idea of ACO. By tuning the ant 
colony decisions at the waypoint and the constant updates on the pheromones left along the temporary trajec-
tory, the ACO algorithm has proven to be a feasible method to derive the Pareto-optimal solution of the TSP 
while eliminating the calculation burden.

Experimental results
This section presents the experimental procedure and outcome of the selective area cleaning/spot cleaning frame-
work tested on the hTetro robot. The algorithm has two pre-processing steps: training the trash and stain detec-
tion framework using a custom dataset and mapping the indoor environment for hTetro autonomous navigation.

The dataset was prepared in-house with different image resolutions. The dataset has four classes (Stain, Foot 
stain, Trash and Human); each class has 1200 images. Most of the images are created in-house with various 
floor backgrounds, and few images are collected online through bing image search. Here, in-house collected 
images are captured in an overhead perspective with a Realsense RGBD camera with a different angle and 
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different illumination conditions. Then, the captured images are labeled for training the detection framework 
(SSD MobileNet). Further, to reduce the CNN learning rate and avoid over-fitting. The data augmentation (rota-
tion, scaling, and flipping) is applied in collected images.

The standard method of the K-fold (here K = 10) cross-validation process is used to evaluate the detection 
model. In K-fold cross-validation, the labeled images are split into ten sets, and nine sets were used to train the 
detection network, and one set is utilized for evaluation. These steps run for ten rounds to ensure all the data 
were used for both training and testing to eliminate the biasing conditions. This process is done to remove any 
bias due to the particular training and testing data set to split. The experimental results are obtained from the 
detection model with reasonable accuracy. The deep learning models were developed in Tensor-flow 1.9 Ubuntu 
18.04 version and trained using the following hardware configuration Intel core i7-8700k, 64 GB RAM, and 
Nvidia GeForce GTX 1080 Ti Graphics Cards. Standard statistical measures such as accuracy (10), precision (11), 
recall (12) and Fmeasure (13) were used to evaluate the proposed algorithm through confusion matrix elements.

Here, tp, fp, tn, fn represents the true positives, false positives, true negatives, and false negatives, respectively, 
as per the standard confusion matrix.

Validation of selective area cleaning/spot cleaning.  The selective area cleaning/spot cleaning frame-
work was validated in three different indoor environments with the sizes of 10× 10, 8× 8, 15× 8 feet. The 
overhead cameras were fixed corner of the roof in the testbed for tracing the human movements and capturing 
the floor images. The captured floor images are transferred to the external server, running a selective area clean-
ing/spot cleaning framework. The experiment was carried out with different lighting conditions, and results are 
shown in Figs. 5 and 6. In this trial, the overhead camera run at 30fps, and the image resolution was 640× 480 
pixels. The floor image was captured at 7 feet height from the ground, and the camera head is inclined at an angle 
of 45 degrees downwards.

The stain is detected by a light turquoise color bound box, foot stains were marked as white rectangle box 
and trash marked by the sky blue bounding box. Figures 5 and  6 shows the human traffic pattern detection 
results. Here, the human movements were tracked by bounding boxes, and the traffic pattern is indicated in the 
orange line. The experiment results indicate that the selective/ spot cleaning framework detects the human, stain, 
and trash with a higher confidence level of 92% , 90% , 95%, and 98% , respectively. Further, the model detection 
accuracy was estimated by statistical measures, which are given in Table 2.

The statistical measurement result shows that the framework has identified the stain with an average of 
93.44%, foot stains with 91.69%, trash with 93.0 %, and human with 97.0%, respectively. In this experiment, 
we observe that stain and foot stain detection confidence level and statistical measure values are relatively low 
compared to other classes due to less visibility of objects and complex texture shape. Further, the computation 
cost of the proposed system was estimated via inference time; in this test, the framework took 0.05 seconds to 
process the 640× 480 images. The statistical study ensures that the proposed system was stable for different 
lighting conditions and also work in realtime.

Comparison with other object detection frameworks.  The efficiency of the SSD mobilenet stain 
trash detection was evaluated with other benchmark object detection algorithms include Faster RCNN ResNet50, 
Faster RCNN Inception51, and Yolo v2 frameworks. The same dataset was used for estimating the detection and 
classification accuracy of three networks for a period at the same time. Statistical measure parameter was used 
to compare the performance model. Table 3 shows statistical measure results of each framework. In addition to 
that, timing analysis was performed to calculate the detection time taken by each network. NVIDIA Quadro 
P4000 graphic card was used for testing the proposed algorithm, as shown in Table 4.

Best detection accuracy was obtained using Faster RCNN ResNet and Faster RCNN inception compared to 
other models. Yolo v2 inference time is comparatively low but showed poor detection accuracy. SSD-MobileNet 
has obtained a better trade-off between detection accuracy and inference time. Hence, SSD- MobileNet shows 
optimum results when used in realtime applications for object detection. Optimized SSD MobileNet is highly 
suitable for low-power resource-constrained embedded systems, making it suitable for realtime applications.

Complete Waypoints Coverage Planning (CWCP) evaluation.  We validated the efficiency and per-
formance of the selective area cleaning/spot cleaning method in terms of navigation efficiency by deploying the 
cleaning robot system to clean optimally the detected tracked human traces in the selected indoor testbed sites. 
Specifically, depending on the human interaction activity in the environment, a location map is constructed 

(10)Accuracy(A) = tp+ tn

tp+ fp+ tn+ fn

(11)Precision(P) = tp

tp+ fp

(12)Recall(R) = tp

tp+ fn

(13)Fmeasure(F1) =
2× precision× recall

precision+ recall
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Figure 5.   Real-time detection of stain, foot stain, trash.

Figure 6.   Human movement tracking, (a–c) human movements and (d) tracking result.

Table 2.   Statistical measure results.

Class P R F1 A

Stain 93.07 92.0 91.15 93.44

Foot stain 92.11 90.22 90.04 91.69

Trash 94.55 93.89 93.32 93.0

Human 97.02 96.3 96.03 97.0
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on the grid cells by the proposed framework. The location map distribution result is used as input for a hTetro 
reconfigurable cleaning robot to decide navigation strategies optimally.

The Complete Waypoints Coverage Planning (CWCP) framework derives the smallest costweight and energy 
consumption for real environments testbed. The trajectories denoted as red linking arrows generated by all 
teed methods including zigzag, spiral, greedy search with 100 iterations, and ACO algorithms for all testbed 
workspace-1 with 9 detected waypoints and workspace-2 with 11 detected waypoints are shown in Figs. 7 and 
8, respectively. In the experiment, the best parameter values are found by the experimental approach by 200 tri-
als. after tunning, the ACO parameters set is evaporation probability = 0.9, and ant agents = 220. The terminal’s 
criteria are triggered when the costweight during execution is not improved for ten iterations or the execution 
loop runs over the 500 iterations.

Table 3.   Comparison with other object detection frameworks.

Class

Faster RCNN ResNet Faster RCNN Inception Yolo V2

P R F1 A P R F1 A P R F1 A

Stain 95.96 94.34 94.11 95.04 94.41 94.38 94.11 94.0 89.24 88.11 87.66 89.15

Foot stain 94.45 94.13 94.01 94.24 93.50 92.07 92.06 92.00 85.00 84.33 84.09 84.50

Trash 96.63 96.29 96.17 96.44 96.20 95.91 95.43 96.03 89.04 89.25 89.06 90.00

Human 97.35 96.92 96.74 97.00 96.87 96.43 96.14 96.54 93.01 91.25 91.03 92.00

Table 4.   Execution time comparison.

Model Inference time for 60 images (s)

Faster RCNN ResNet 122

Faster RCNN Inception 110

Yolo V2 48

SSD MobileNet 54

Figure 7.   The trajectories of the tested method for workspace-1. (a) zigzag; (b) spiral; (c) greedy search; (d) 
ACO.
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The trajectories with found costweight and the time to generate as well as the running time to complete these 
found trajectories of the tested method for the two testbed workspaces are represented in Table  5, respectively. 
Because of the straightforward approach in generating the paths, the path generation time of the zigzag and the 
spiral are smaller than Greedy Search and ACO, but the zigzag and spiral methods link the defined locations by 
position-wise orders; hence the costweight is greater than greedy search methods and significantly greater than 
ACO based Complete Waypoints Path Planning (CWPP). Noted that a greedy algorithm is an algorithm that 
follows the problem-solving heuristic of making the locally optimal choice at each stage. Since it may be stuck 
at local minimal so we run the greedy algorithm for 100 iteration with random beginning waypoint and select 
the best solution. That makes that greed search requires more path generation time.

In terms of running time when deploying the found trajectory to the real robot, the Zigzag and Spiral need 
more time to cover the defined waypoint than the greedy search. Together with the least costweight, the running 
time of ACO-based CWPP is the shortest one.

After the perception system has defined the waypoint locations in real testbed sites, the energy efficiency dur-
ing the selective area cleaning/spot cleaning process is validated by recording in realtime the energy consumption. 
The current sensors connected to the main lithium-ion battery with the specs of 14.4 V, 3000 mAh are logged 
during robot operation. These current values are integrated with the running time to find power consumption. 
In the selective area cleaning/spot cleaning mode, the hTetro is set at O shape and to clear these waypoints in 
order. The robot can change to I shape to access the narrow space area by the environment evaluation from the 
Lidar sensor. The action of shape-changing is adapted to a dynamic environment. The robot modules such as 
perception, locomotion, and shape-shifting communicate under the controls by the ROS system52. To archive 
the smooth locomotion with the different kinematic design of hTetro, the moving command generated by the 
PID controller is sent to motor drivers to issue appropriate velocity for the DC motors. Specifically, the robot 

Figure 8.   The trajectories of the tested method for workspace-2. (a) zigzag; (b) spiral; (c) greedy search; (d) 
ACO.

Table 5.   The numerical comparisons for tested CWPP methods.

Approach Cost weight (Kgcm) Consumed  energy (Wh) Path generation time (s) Running time (s)

Zigzag 1951.69 0.014344444 0.01 182.25

Spiral 1962.28 0.016172222 0.05 194.16

Greedy search 1829.63 0.010866667 5.25 135.95

ACO 1725.91 0.0098916667 0.92 125.15
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should keep the planned trajectories and overcome the disturbances while colliding with static and dynamic 
obstacles. These tasks are significant challenges since the synchronization between hTetro blocks locomotion 
must be accomplished. To fulfill the kinematic constraints, the control method is based on the Instantaneous 
Center of Rotation (ICR). The placement of ICR makes use of the desired positions and velocities information 
provided by the central computing unit based stains pattern. After that, the corresponding steering angle and 
required individual velocity are calculated based on the ICR location. A velocity regulator is then used to limit 
the velocity of each motor. Due to the placement of LIDAR on the second module’s chassis, the orientation of the 
whole robot is defined according to it. The instantaneous center of rotation’s desired location is defined based on 
the desired position, current position, and the desired velocity. It is represented in the polar coordinate using to 
avoid numerical singularity. The hTetro locates itself within the pre-built map using enhanced extended Kalman 
filter(EKF)53 for multi-sensor fusion makes sure hTetro can navigate from source and destination goad correctly 
even if sensors noise is received, or any perception sensors struggle the malfunction issues.

From Table  5, if the robot clears the found path of the method with a smaller costweight value, the less energy 
spent is observed. Specifically, since producing the longest costweight, the zigzag draws the highest energy, then 
the spiral follows the following position with a slight amount lower. The best CWCP method in both energy 
and time saving is ACO. It yields about 10% and 15% lower than the greedy search in energy and time spent, 
respectively. The results ensure that the proposed CWCP with ACO is possible for selective area cleaning/spot 
cleaning by hTetro.

Conclusions
This work proposed a selective area cleaning/spot cleaning technique for reconfigurable floor cleaning robot 
hTetro using deep learning-based computer vision algorithms and an optimal complete waypoints path planning 
method. SSD MobileNet object detection algorithm and Deep SORT real-time human tracking algorithm were 
used to find the human traffic patterns and detect the stains, foot stains, and trash on the floor. The proposed 
scheme was tested with two different testbeds with hTetro reconfigurable floor cleaning robot and evolutionary 
optimization based optimal trajectory generation algorithm. The experimental results showed that the trained 
SSD model detects the stains, foot stains, and trash on the floor with a high confidence score, and its result is 
used to find the selective area cleaning/spot cleaning region. Further, the SSD MobileNet framework’s stain and 
trash detection efficiency was evaluated with other CNN-based object detection algorithms and observed that 
SSD MobileNet obtained a better trade-off between detection accuracy and low inference time for detection of 
stains and trash. The overall experimental results show that the proposed framework is more suitable for enabling 
the autonomous selective area cleaning/spot cleaning function for the reconfigurable floor cleaning robot hTetro.

Data availability
‘The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.’ Correspondence and requests for materials should be addressed to B.R.
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