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Abstract: Drug design is a process driven by innovation and technological breakthroughs 
involving a combination of advanced experimental and computational methods. A broad 
variety of medicinal chemistry approaches can be used for the identification of hits, 
generation of leads, as well as to accelerate the optimization of leads into drug candidates. 
The quantitative structure–activity relationship (QSAR) formalisms are among the most 
important strategies that can be applied for the successful design new molecules. This 
review provides a comprehensive review on the evolution and current status of 4D-QSAR, 
highlighting present challenges and new opportunities in drug design. 
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1. Introduction  

The identification of promising hits and the generation of high quality leads are crucial steps in the 
early stages of drug discovery process [1–3]. Advances in medicinal chemistry at the interface of 
chemistry and biology have created an important foundation in the search for new drug candidates 
possessing a combination of optimized pharmacodynamic and pharmacokinetic properties [4,5]. Drug 
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discovery is currently driven by innovation and knowledge employing a combination of experimental 
and computational methods [6]. An understanding of the structure and function of the target, as well as 
the mechanism by which it interacts with potential drugs is crucial to this approach. 

Quantitative structure-activity relationships (QSAR) play a vital role in modern drug design, since 
they represent a much cheaper and rapid alternative to the medium throughput in vitro and low 
throughput in vivo assays which are generally restricted to later in the discovery cascade. One would 
say that nowadays no drug is developed without previous QSAR analyses [7]. Figure 1 shows a 
flowchart of the process from hit identification to lead optimization, highlighting the important role of 
QSAR in drug design. 

Figure 1. Schematic representation of the processes included in a lead optimization from 
the hit identification. QSAR methods are essential to reach this goal. 

 

Origination of the modern QSAR formalism is attributed to the works of Hansch and Fujita [8] and 
Free and Wilson [9] in 1964. The QSAR methodology is based on the concept that the differences 
observed in the biological activity of a series of compounds can be quantitatively correlated with 
differences in their molecular structure [10]. Therefore, biological activity of congeneric molecular 
structures are related to specific molecular features (descriptors) by using regression techniques to 
estimate the relative importance of those features contributing to the biological effect.  

The classical QSAR methods [8,10] use as descriptors experimentally-derived molecular 
parameters (e.g., physicochemical data) and those calculated from the molecular connection table (2D 
structure). It is straightforward that experimental properties are a consequence of the entire three-
dimensional structure (3D). However, they cannot be measured for non-synthesized compounds. On 
the other hand, the 2D descriptors, which can be calculated for idealized compounds, do not capture all 
of the information in the 3D structure [11,12]. Thus, when the study of the 3D molecular structure 
became practical routine with the parallel development of several computational molecular modeling 
techniques in the 1980s, the new era of the drug design process, named Computer-Aided/Assisted 
Drug Design (CADD) or Computer-Aided/Assisted Molecular Design (CAMD) [13] came into being 
and QSAR methodology has became in a broad subfield of CADD. Since then, several QSAR 
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methodologies have been proposed. Each of them can be characterized by having particular 
approaches for calculating and selecting the molecular descriptors, and specific statistical algorithms 
for constructing the resulting models [11,12,14,15]. 

In analogy to the “direct” (i.e., receptor-based, or structure-based) and “indirect” (i.e., ligand-based) 
[16] approaches currently used in the CADD process, QSAR studies can be grouped in two major 
groups: receptor-independent (RI) and receptor dependent (RD) QSAR analyses [14]. In the first group 
either the geometry of the receptor is not available, or it is neglected in the QSAR analysis because of 
uncertainty in the receptor geometry and/or ligand binding mode. This group included the “classical” 
(zero-dimensional), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D), and four-
dimensional QSAR approaches [12]. The calculated descriptors are recognizable molecular features, 
such as atom and molecular counts, molecular weight, sum of atomic properties (0D-QSAR); fragment 
counts (1D-QSAR); topological descriptors (2D-QSAR); geometrical, atomic coordinates, or energy 
grid descriptors (3D-QSAR); and the combination of atomic coordinates and sampling of 
conformations (RI-4D-QSAR) [12]. In the RD-QSAR analysis, models are derived from the 3D 
structure of the multiple ligand-receptor complex conformations. This approach provides an explicit 
simulation of the induced-fit process, using the structure of the ligand-receptor complex, where both 
ligand and receptor are allowed to be completely flexible by the use of molecular dynamics (MD) 
simulation. RD-QSAR is used to gather binding interaction energies, as descriptors, from the 
interaction between the analog molecules and the receptor [7]. 

This review is intended to provide the reader with a brief overview of the current role of 4D-QSAR 
in drug design, highlighting the advances, challenges and future directions. 

2. 4D-QSAR 

As an evolution of Molecular Shape Analysis (MSA) [17,18], Hopfinger and co-workers proposed 
the 4D-QSAR formalism [19], which includes the conformational flexibility and the freedom of 
alignment by ensemble averaging in the conventional three dimensional descriptors found in 
traditional 3D-QSAR methods. Thus, the “fourth dimension” of the method is ensemble sampling the 
spatial features of the members of a training set.  

Figure 2 shows a scheme of the steps for the generation of 4D-QSAR models. In this approach, the 
descriptors are the occupancy frequencies of the different atom types in the cubic grid cells during the 
molecular dynamics simulation (MDS) time, according to each trial alignment, corresponding to an 
ensemble averaging of conformational behavior [20,21].  

The grid cell occupancy descriptors, GCODs, are generated for a number of different atom types, 
called interaction pharmacophore elements, IPEs. These IPEs (i.e., atom types), defined as “any type” 
(A or Any), “nonpolar” (NP), “polar-positive charge” (P+), “polar-negative charge” (P-), “hydrogen 
bond acceptor” (HA), “hydrogen bond donor” (HB), and “aromatic” (Ar), correspond to the 
interactions that may occur in the active site, and are related to the pharmacophore groups [19,22]. 
Thus, the IPEs are related to the descriptors’ nature in 4D-QSAR analysis, while the GCODs are 
related to the coordinates of IPE mapped in a common grid. The sampling process, in turn, allows the 
construction of optimized dynamic spatial QSAR models in the form of 3D pharmacophores, which 
are dependent on conformation, alignment, and pharmacophore grouping.  
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Figure 2. Schematic representation of the 4D-QSAR steps for the generation of models. 

 
 
The use of IPEs allows each of the compounds in a training set to be partitioned into sets of 

structure types and/or classes with respect to possible interactions with a common receptor. Sets of 
GCODs, defined by the IPEs, are simultaneously mapped into a common grid cell space. In the 4D-
QSAR methodology a conformational ensemble profile of each compound is used to generate the 
independent variables (GCODs) instead of just one starting conformation. The variable selection is 
made using a genetic algorithm (GFA) [23]. 
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One factor driving the development of 4D-QSAR analysis is the need to take into account multiple 
a) conformations, b) alignments, and c) substructure groups in constructing QSAR models. These 
“QSAR degrees of freedom” are normally held fixed in other 3D-QSAR analysis.  

In the CoMFA (Comparative Molecular Fields Analysis) [24] and GRID [25,26] formalisms the 
descriptors are calculated as grid point interactions between a probe atom and the target molecules and 
only one conformation of each compound is considered, not a conformational ensemble profile (as in 
4D-QSAR method). They use different force fields, different types of probe atoms and the energy 
interactions are calculated differently. Interactions accounted for in the GRID force fields are steric 
(Lennard-Jones), electrostatic and hydrogen bonding interactions, and the total energy is the sum of all 
interactions. In contrast to CoMFA where the interaction energies (Lennard-Jones and electrostatic 
potentials) are considered separately, the sum of all the different interaction energies is calculated in 
each grid point with GRID [15,24,25]. The variable selection is made by the GOLPE (generating 
optimal linear PLS estimations) program [27], which is used also to perform the multivariate  
statistical analysis. 

The CoMSIA (Comparative Molecular Similarity Indices Analysis) approach uses similarity 
measures between a probe atom (placed at each lattice position) and the molecules rather than CoMFA 
fields. Steric, electrostatic, and hydrophobic similarities are calculated using the SEAL program [28] 
to molecular superposition (similarity index). 

Insofar as 4D-QSAR analysis can meaningfully predict “active” conformations and the preferred 
alignment for a training set, it may actually serve as a “preprocessor” for a subsequent CoMFA  
and/or CoMSIA.  

Furthermore, the 4D-QSAR method has been proven both useful and reliable for the construction of 
quantitative 3D pharmacophore models for ligand-receptor data sets [29–33]. 

3. Successful Applications of 4D-QSAR 

The 4D-QSAR paradigm has been successfully applied in the construction of RI and RD-4D-QSAR 
models for a variety of enzyme inhibitors of different drug targets, such as HIV-1 protease [34,35], 
HIV-1 integrase [35], p38-mitogen-activated protein kinase (p38-MAPK) [36], 14-α-lanosterol 
demethylase (CYP51) [32], enoyl-ACP reductase from M. tuberculosis (InhA) [37], among others 
examples [30,31,33,34,38].  

As a case study example, RI-4D-QSAR models were constructed for a set of thirty-four 5’-aryl-
thiourea thymidine analogs, synthesized by Van Daele and co-workers [39], showing inhibitory 
activity against thymidine monophosphate kinase from M. tuberculsosis (TMPKmt). Details of the 
methodology used have been described elsewhere [29], as shown in Figure 2, but in short, the models 
were developed using 30 compounds (training set), and externally validated using four compounds 
(test set). The crystallized structure of deoxythymidine monophosphate (dTMP) co-crystallized with 
TMPKmt was retrieved from the Protein Data Bank (PDB entry code 1g3u) [40] and used for 
modeling all compounds. The 3D model for each structure was subsequently energy minimized, and 
submitted to AM1 semi-empirical calculation in order to obtain the partial atomic charges. 

As noted above, the 4D-QSAR methodology can be used in a receptor-dependent, RD, mode when 
the geometry of the receptor is available as is the case here.  However, RD-4D-QSAR analysis requires 
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a relatively large and chemically diverse training set, and also definitive information on binding 
alignment(s), in order to achieve a non-ambiguous QSAR model. Unfortunately, these requirements 
were not met for this study and receptor independent, RI, 4D-QSAR analysis was carried out to 
maximize the extraction of structure-activity information. The benefits of doing the RI-4D-QSAR 
analysis performed as part of this study include; 

a) providing a reliable and predictive 3D-pharmacophore model for the limited range of substituent 
sites and substituent chemistry; 

b) developing a rational basis of where substituent can, and cannot, be placed on the scaffold 
structures of the analogs; 

c) the use of the 3D-pharmacophore model as a docking alignment for general ligand-receptor 
modeling including future RD-4D-QSAR studies; and 

d) employing the 4D-QSAR model as an initial virtual screening for future studies that can be 
structure-based. 

The RI-4D-QSAR analysis [19,29] was carried out and the best 4D-QSAR model was graphically 
represented by plotting the significant grid cells in space along with their descriptor attributes (IPEs). 
The postulated “bioactive” conformation of the most potent inhibitor, according to the best 4D-QSAR 
model, was docked in the active site of the TMPKmt crystallographic structure (PDB entry code 1g3u) 
(Figure 3). There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR 
models and interactions with binding site residues. Moreover, the model identifies new regions of the 
inhibitors that contain pharmacophore sites, such as the sugar-pyrimidine ring structure and the region 
of the 5′-arylthiourea moiety (Figure 3), that could be exploited to design new and more potent 
inhibitors of TMPKmt. 

One of the two principal benefits of having done a 4D-QSAR analysis on this data set is in being 
able to identify and rank the relative importance of pharmacophore sites on the inhibitors that most 
influence the observed variance in inhibition potency. The other major benefit of this study is in being 
able to define a receptor alignment, using the 3D-pharmacophore sites of the 4D-QSAR equations, 
which provide a rational basis for ligand-receptor docking studies to be performed.     

The drawbacks to doing this 4D-QSAR analysis are largely a consequence of the relatively limited 
size and structural diversity of the data set used in the study. 4D-QSAR studies require greater size and 
diversity in training sets than other QSAR methods, especially 2D-QSAR approaches. This is because 
so many 4D-QSAR descriptors are created, the grid cell occupancy descriptors, all of which need to be 
reasonably sampled to build up reliable conformational occupancy profiles.  The lack of analogs that 
sample all of the spaces around the scaffold structure[s], also limits the generality of a 4D-QSAR 
model. The model can only make structure-activity inferences for those spaces sampled by, in this 
case, the limited number of substituents at a limited number of the possible substitution sites on  
the scaffolds.  

One example of a successful application of the RD-4D-QSAR approach, was to a set of 48 4-
hydroxy-5,6-dihydropyrone inhibitors of HIV-1 protease [41]. The receptor model used in this QSAR 
analysis was derived from the HIV-1 protease (PDB entry code 1d4s) crystal structure. The bound 
ligand in the active site of the enzyme, also a 4-hydroxy-5,6-dihydropyrone analogue, was used as the 
reference ligand for docking the data set compounds. 
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Figure 3. (A) Representation of the RI-4D-QSAR postulated “bioactive” conformation of 
the most potent inhibitor (ATT14) of the training set docked at the TMPKmt active site. 
Only the main interacting residues in the pocket of the binding site are shown in stick 
model representations (carbon atoms in gray). The inhibitor ATT14 is presented as stick 
models (carbon atoms in magenta). The GCODs of the best 4D-QSAR model are also 
shown in the active site of the crystal structure of TMPKmt, represented as spheres of 1 Å 
radius. Inhibition-enhancing and inhibition diminishing GCODs are shown, respectively, 
as yellow and red spheres. The IPEs atom types are as follows: A = any; NP = nonpolar;  
HA = hydrogen bond acceptor. (B) Chemical structure of ATT14, showing the main 
regions that contain pharmacophore sites, such as the sugar-pyrimidine ring structure and 
the 5′-arylthiourea moiety, which further can be explored to identify better inhibitors of 
TMPKmt. 

 
 

The RD-4D-QSAR analysis consists of 12 steps, which can be summarized as shown in Figure 4. A 
detailed description of the method is given in reference [42]. The main feature of a RD-4D-QSAR 
analysis is that the resultant pharmacophore sites of the QSAR models generated in the analysis are 
explicitly dependent upon the combined geometries of the (bound) ligand and the receptor. Moreover, 
the use of the 3D structure of the enzyme in constructing the 4D-QSAR models considerably improves 
the overall quality of the models. 

The proposed “bioactive” conformations of the docked analogues into the active site of the HIV-1 
protease were similar with those suggested from crystal structures. Moreover, the RD-4D-QSAR 
models also qualitatively “captured” the existence of specific induced-fit interactions between the 
enzyme active site and each specific inhibitor. Hydrophobic interactions, steric shape requirements, 
and hydrogen bonding of the 4-hydroxy-5,6-dihydropyrone analogues with the HIV-1 protease binding 
site model dominate the RD-4D-QSAR models in a manner, again, consistent with experimental 
conclusions. From the constructed models, it is possible to infer hypotheses for the development of 
new lead HIV-1 protease inhibitors [41]. The RD-4D-QSAR analysis of HIV-1 protease inhibitor 
SARs seems to provide a range of specific ligand-receptor binding information and, consequently, 
makes a considerable improvement over the previous corresponding RI-4D-QSAR analysis. First, the 
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explicit use of the molecular geometry of the enzyme leads to very significant QSAR equations, as 
given by their r2 and q2 measures, and the corresponding test set predictions are remarkably good. 
There is also a propensity to be able to generate better models with fewer descriptor terms than those 
found for the corresponding RI-4D-QSAR models [41]. 

Figure 4. Operational steps in performing a RD-4D-QSAR analysis. 
 

 

Although the 4D-QSAR method has traditionally been used to develop models with internal and 
external consistency, as well as predictive power, the same approach can be applied to estimate the 
activities of compound libraries, i.e. virtual screening (VS), for the identification of new hits [43]. The 
increasing demand for the analysis of large data sets such as those generated by combinatorial 
chemistry and high-throughput screening (HTS) techniques has demonstrated once again the versatility 
and range of applications of 4D-QSAR. Therefore, the 4D-QSAR models can be employed as a virtual 
high throughput screen, VHTS, in the analysis and design of virtual libraries [43,44]. The GCODS 
offer unique information to a VHTS, as they permit an assessment of how individual regions of space 
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about a ligand contribute to the activity of the ligand in a screening assay. The activity (dependent 
variable) of each compound in the library can be estimated as a function of the number of GCODs in 
the 4D-QSAR model representing the VHTS. That is, multiple optimized 4D-QSAR models of 
increasing size [number of GCODs] can be used to carry out the virtual screening of a test compound.  
When increasing the size of the 4D-QSAR model yields no discernible change in the predicted 
activity, when compared to the prediction from the nearest smaller 4D-QSAR model, then one can 
conclude that the smaller 4D-QSAR model captures all of the pharmacophore sites for the test 
compound. The capacity to make this type of self-consistent estimate of activity in a VHTS is, we 
believe, unique to the 4D-QSAR methodology [44]. 

4. 4D-QSAR: Pharmacokinetic Studies and ADMET Prediction  

In addition to unproved efficacy and toxicity, inadequate pharmacokinetic properties result in the 
withdrawal of a large proportion of drug leads from further development. Hence, key properties such 
as absorption, distribution, metabolism, excretion and toxicity (ADMET) have been recently 
considered in early phases of the drug discovery process [45,46]. This new paradigm has driven the 
need for large scale screening methods. In vitro and in vivo ADMET assays are lengthy, complex, and 
relatively expensive in terms of resources, reagents, and detection techniques. Recently, there has been 
a surge in computational efforts to estimate ADMET properties of drug-like compounds and a variety 
of useful in silico models has been developed with different levels of complexity, creating tools that 
are faster, simpler, and more cost-effective than traditional experimental procedures [45]. 

Blood-brain barrier (BBB) penetration is one of the most critical pharmacokinetic issues in the 
design of central nervous system (CNS) active drugs and a toxicity concern in the development of 
other classes of drugs and modeling BBB penetration is one major ADMET endpoint focus [47–50]. 
Efforts have particularly been made to construct a general BBB QSAR model from a large and 
structurally diverse training set [49,50]. 

The 4D-QSAR paradigm has been used to develop a formalism to estimate molecular similarity 
(MS) measures as a function of conformation, alignment, and atom type [49]. Molecular similarity can 
be measured in terms of the types of atoms composing each molecule leading to multiple measures of 
molecular similarity. This new method, using a combination of 4D-MS measures and cluster analysis 
to construct optimum QSAR models, was applied to a data set of 150 chemically diverse compounds to 
build optimum BBB penetration models [49]. The complete data set was divided into subsets based on 
4D molecular similarity measures using cluster analysis. The compounds in each cluster subset were 
further divided into a training set and a test set. Predictive QSAR models were constructed for each 
cluster subset using the corresponding training sets. These QSAR models best predict test set 
compounds which were assigned to the same cluster subset, based on the 4D-molecular similarity 
measures, from which the models were derived. The results suggest that the specific properties 
governing BBB permeability may vary across chemically diverse compounds. Partitioning compounds 
into chemically similar classes is essential to constructing predictive BBB penetration models 
embedding the corresponding key physicochemical properties of a given chemical class. 
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5. 4D-Formalism: ‘Practical’ Application in Drug Design 

The discovery of novel drug targets has increased exponentially in recent years due to advances in 
genomic and molecular biology techniques. Experimental and computational methods are effectively 
applied to accelerate the process of lead identification and optimization. HTS identifies lead molecules 
by performing individual biochemical assays with over millions of compounds, but it is huge cost and 
time consuming. These disadvantages have been overcome by the integration of cheaper and effective 
computational methodology as VHTS, which is widely applied to screen in silico collection of 
compound libraries to check the binding affinity of the target receptor with the library compounds. 
Accordingly the availability of structural data, VHTS is carried out using receptor-based or ligand-
based screening methods. In both methods, the compounds are ranked using an appropriate scoring 
function regarding either complementarity or similarity and the top ranking compounds are taken to 
the next step of experimental assays [51]. Nowadays, the need for accurate and high-resolution virtual 
screening of the resulting hits is quite important and the development and use of VHTS with greater 
fidelity is becoming a goal in library design and evaluation. 

Pharmacophore fingerprints are often used in the design and evaluation of compound libraries. A 
pharmacophore is generally a pattern of chemical groups in space that defines how ligands bind to a 
common receptor and also responsible for the biological response from the ligands. Additionally, the 
availability of the ligand at the site of action is related to its transport and metabolic behavior in the 
body environmental. Then, QSAR methods try to capture, or to extract, information about both the 
pharmacophore and availability components from a training set of compounds. The extent of 
pharmacophore and availability information that can be built into a QSAR model depends not only 
upon the training set, but also upon the descriptors used to represent them [52].  

The 4D-fingerprints are descriptors derived from the 4D-MS methodology [53], which permits the 
generation of sets of molecular fingerprints that retain the conformational information of a compound 
as well as capture its size and chemical structure. Therefore, each molecular “finger” of the molecular 
fingerprint is specific to a particular atom/pharmacophore type present in a compound.  

A unique set of molecular fingerprints can be constructed for each specific alignment assigned to 
the compounds of a training set or library. So, alignment dependent molecular fingerprints permit 
molecular similarity measures to be developed as a function of the binding mode to a receptor site, for 
example. Otherwise, another unique set of molecular fingerprints in this class can be developed for any 
compound which are independent of alignment but do encompass the ensemble conformational states 
available. Methods that provide this kind of data are attractive for chemoinformatics, chemometrics, 
and molecular modeling applications. The respective 4D-fingerprints can be considered universal 
descriptors because they contain all the salient information about a compound [34]. One paper [34] 
reports the derivation and validation of a potential set of universal descriptors for generating 
descriptive QSAR models for five independent training sets. The models generated using the 4D-
fingerprints were comparable in quality, based upon statistical measures of fit and test set prediction, 
to the previously reported models obtained using other QSAR methods. 
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6. Conclusions 

Computational methods play a crucial role in modern medicinal chemistry, presenting a unique 
potential for transforming the early phases of drug research, particularly in terms of time and cost 
savings. Most of the techniques used in structure-based drug design have experienced significant 
improvements in the past few years, resulting in a remarkable enhancement of the speed and the 
efficacy of this approach. The successful application of 4D-QSAR models to generate 3D-
pharmacophores of ligand-receptor data sets, to analyze and design of virtual libraries in a VHTS 
procedure and to predict ADMET properties has been described, showing that it can be a powerful tool 
in the early stages of drug discovery process.  

4D-QSAR analysis can also be applied to non-medicinal chemistry and biological problems. One 
such example in materials science is to predict how chelators will bind metal ions both in solution and 
on surfaces [44,54]. The practical applications are to design chelators that selectively remove specific 
ions from solutions and surfaces.  Real world examples are keeping the walls of the tanks of hot water 
heater clean, swimming pool liners clean and making 'hard' water 'softer' by removing divalent ions 
like Ca++.  
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