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Introduction: The aim of this study was to predict and evaluate three antimicrobials
for treatment of adult bloodstream infections (BSI) with carbapenem-resistant
Enterobacterales (CRE) in China, so as to optimize the clinical dosing regimen further.

Methods: Antimicrobial susceptibility data of blood isolates were obtained from
the Blood Bacterial Resistance Investigation Collaborative Systems in China. Monte
Carlo simulation was conducted to estimate the probability target attainment
(PTA) and cumulative fraction of response (CFR) of tigecycline, polymyxin B, and
ceftazidime/avibactam against CRE.

Results: For the results of PTAs, tigecycline following administration of 50 mg every
12 h, 75 mg every 12 h, and 100 mg every 12 h achieved > 90% PTAs when minimum
inhibitory concentration (MIC) was 0.25, 0.5, and 0.5 µg/mL, respectively; polymyxin
B following administration of all tested regimens achieved > 90% PTAs when MIC
was 1 µg/mL with CRE; ceftazidime/avibactam following administration of 1.25 g every
8 h, 2.5 g every 8 h achieved > 90% PTAs when MIC was 4 µg/mL, 8 µg/mL with
CRE, respectively. As for CFR values of three antimicrobials, ceftazidime/avibactam
achieved the lowest CFR values. The highest CFR value of ceftazidime/avibactam
was 77.42%. For tigecycline and ceftazidime/avibactam, with simulated regimens daily
dosing increase, the CFR values were both increased; the highest CFR of tigecycline
values was 91.88%. For polymyxin B, the most aggressive dosage of 1.5 mg/kg every
12 h could provide the highest CFR values (82.69%) against CRE.
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Conclusion: This study suggested that measurement of MICs and individualized
therapy should be considered together to achieve the optimal drug exposure.
In particular, pharmacokinetic and pharmacodynamic modeling based on local
antimicrobial resistance data can provide valuable guidance for clinicians for the
administration of empirical antibiotic treatments for BSIs.

Keywords: bloodstream infections, carbapenem-resistant Enterobacteriaceae, polymyxin B,
ceftazidime/avibactam, tigecycline, Monte Carlo simulation

INTRODUCTION

Bacterial drug resistance is becoming more and more serious.
The monitoring of drug-resistant bacteria and the management
of antimicrobials have valued more attention from all over the
world. Carbapenems are the most potent β-lactam family of
antibiotics for the treatment of bacterial infections, especially
Enterobacteriaceae infections (Rahal, 2008), and are regarded
as the “last resort” in the treatment of Gram-negative bacterial
infections (El-Gamal et al., 2017). Once strains are resistant to
carbapenem, the treatment will face great difficulties.

However, in the past few decades, the isolation of carbapenem-
resistant Enterobacterales (CRE) strains has greatly increased,
which bring great difficulties and challenges in clinical treatment.
In many countries in the world, such as Europe, Asia, South
America, and North America, outbreaks caused by CRE have
been reported. CRE has become a global public health threat
now (Sievert et al., 2013). The US Centers for Disease Control
and Prevention (CDC) also lists CRE as a threat to public health
in 2015 (Centers for Disease Control and Prevention, 2013).
According to the US CDC, the incidence of CRE increased from
1.2% in 2001 to 4.2% in 2011 (Little et al., 2012). Chen et al.
(2021) reported that in a population-based study in seven states
in the United States, CRE incidence was up to 2.93 per 100,000
persons. The complex resistance mechanisms have also brought
more troubles to treatment, especially bloodstream infections
(BSIs) with CRE, which have been rapidly spreading worldwide
with a high mortality and pose a challenge to therapeutic
decision-making (Tumbarello et al., 2012; Laupland and Church,
2014; Wu et al., 2020). As the most serious type of infections
caused by CRE, BSI usually leads to a worse prognosis, longer
hospital stay, and higher mortality (Neuwirth et al., 1995;
Hussein et al., 2013). The fatality rate of patients with CRE
infections was significantly different in different studies; the
fatality rate of BSIs is 40–50% (Patel et al., 2008). According
to the reports reported in the United States, Italy, Greece,
and Spain, the mortality of CRE BSIs was 40–60% (Meatherall
et al., 2009), and the fatality rate of BSIs in the population
of neutropenia and hematological malignancies was as high
as 69% (Satlin et al., 2013). Falagas et al. (2014) reported
that their pooled analysis of the nine studies (985 patients)
showed that the death rate was higher among CRE-infected
than carbapenem-susceptible Enterobacterales (CSE)–infected
patients. CRE-infected patients had an unadjusted number
of deaths twofold higher than that for CSE-infected patients
(Falagas et al., 2014). Compared with CSE, effective anti-infective
treatment is often delayed because of the limited treatment of

infections caused by CRE (Little et al., 2012), so the mortality of
patients whose infections are caused by CRE is higher (Satlin
et al., 2016; Averbuch et al., 2017).

The treatment of CRE infections is difficult, and the
prognosis is poor; it brings great challenges to clinical treatment
and nosocomial infection control. Previous study has been
demonstrated that insufficient empirical antimicrobial therapy
is independently associated with higher mortality in CRE BSIs
(Tumbarello et al., 2012), especially in patients with inadequate
initial dosing (Zarkotou et al., 2011). Thus, early administration
of appropriate empirical antimicrobial therapy for BSIs with CRE
is particularly important. Inappropriate antimicrobial therapy
of CRE sensitive drugs may increase the selective pressure
of antibacterial and increase the waste of medical resources
(Dautzenberg et al., 2015; Lee and Lee, 2016). For critically
ill patients, combining local pathogenic characteristics, drug
sensitivity, and pharmacokinetic (PK) and pharmacodynamic
(PD) characteristics of antimicrobial can improve the success
rate of treatment.

To choose an optimal antibiotic or dosing regimen,
susceptibility results, PK/PD factors, infection site, and patient
factors (allergies or intolerances) should be considered to make
an individualized treatment (Vasoo et al., 2015; Zhu et al.,
2020). The combined use of the distributions of location-
specific minimum inhibitory concentrations (MICs), different
antibiotic regimens, and PK parameters derived from human
studies via the application of PK/PD models with Monte
Carlo simulation is a useful approach for predicting treatment
outcomes (Bradley et al., 2003).

We examined the MIC distributions of CRE isolated from
blood cultures of adults with BSIs from the Blood Bacterial
Resistance Investigation Collaborative Systems (BRICS) in
China, 2018–2019, as a basis for PK/PD modeling. We predicted
and evaluated three antimicrobials (tigecycline, polymyxin B, and
ceftazidime/avibactam) used to treat CRE-infected BSIs so as to
identify the most appropriate antibiotics and dosage regimens for
the empirical treatment of CRE-infected BSIs and to optimize the
clinical dosing regimen further.

MATERIALS AND METHODS

Antimicrobials
Three antimicrobials and eight dosage regimens were selected for
modeling, based on their common use for the treatment of CRE-
infected BSIs in China (Table 1).
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TABLE 1 | Antibiotic regimens used in the Monte Carlo simulations.

Antibiotic Dose

Tigecycline 50 mg every 12 h

75 mg every 12 h

100 mg every 12 h

Polymyxin B 1.25 mg/kg every 12 h

1.5 mg/kg every 12 h

2.5 mg/kg per day continuous infusion

Ceftazidime/avibactam 1.25 g every 8 h

2.5 g every 8 h

TABLE 2 | Pharmacokinetic parameters (means ± SDs) used in the Monte
Carlo simulations.

Antibiotic ClT (L/h) Fu (%) Vd (L) References

Tigecycline 19.2 ± 7.76 — — Rubino et al., 2010

Polymyxin B 2.5 ± 0.4 — — Thamlikitkul et al., 2016

Ceftazidime/avibactam 7.53 ± 1.28 90 18.8 ± 6.54 Bensman et al., 2017

ClT , total body clearance; fu, fraction unbound; SDs, standard deviations; Vd,
volume of distribution.

Bacterial Isolates
The data in the present study were from the National
Bloodstream Infection BRICS platform in China (50 hospitals)
for 2018 and 2019. Most of the hospitals included were the largest

hospitals in each province. Six hundred fifty-three non-duplicate
CRE species were isolated from blood cultures. Each laboratory of
the 50 hospitals identified the species using standard biochemical
methodology with an automated system (Vitec 2, bioMérieux,
France; MicroScan walkAway-96, Siemens, United States; or
Phoenix-100, BD, United States).

Minimum Inhibitory Concentration
Determination
The MICs of tigecycline, polymyxin B, and
ceftazidime/avibactam were determined by broth microdilution
method or one of the three automated systems in accordance
with the Clinical Laboratory Standards Institute (CLSI,
2019) guidelines.

PK/PD Model
All the PK data were obtained from previously published studies
of infected and/or critically ill patients who had adequate renal
function, shown in Table 2.

PD exposures were simulated as free drug (f) for
ceftazidime/avibactam and as total drug for tigecycline
and polymyxin B.

For the tigecycline and polymyxin B, PK exposures were
measured by 24-h area under the curve (AUC24)/MIC > 6.96
and AUC/MIC ≥ 50, respectively, to be predictive of the clinical

TABLE 3 | MIC distributions for antimicrobials against all CRE isolated from blood specimens in China during 2018–2019.

MIC (mg/L) No.a Percentages of isolates by MIC MIC50 MIC90 MIC range

Antibiotic 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32 64

CRE (n = 653)

Tigecycline 646 1.39 1.86 10.22 39.16 20.12 21.83 4.49 0.62 0.31 0 0 0 0.25 1 0.03–8

Polymyxin B 650 0 0 0 4.77 54.31 22.92 12.15 2.15 1.08 1.38 1.23 0 0.5 2 0.25–32

Ceftazidime/avibactam 445 0 0.22 0.22 0.67 2.02 4.72 9.66 26.74 30.79 1.8 22.02 1.12 8 16 0.06–32

MIC, minimum inhibitory concentration; CRE, carbapenem-resistant Enterobacterales; MIC50, 50% minimum inhibitory concentration; MIC90, 90% minimum inhibitory
concentration. aNo., number of isolates in which antibiotic sensitivity was tested.

TABLE 4 | MIC distributions for antimicrobials against all CRE isolated from blood specimens in China during 2018–2019.

MIC (mg/L) No.a Percentages of isolates by MIC MIC50 MIC90 MIC range

Antibiotic 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32 64

CRKP (n = 511)

Tigecycline 511 0.98 1.57 9.59 33.86 22.31 25.64 4.89 0.78 0.39 0 0 0 0.5 1 0.03–8

Polymyxin B 511 0 0 0 4.11 57.73 20.94 11.35 2.15 0.98 1.76 0.98 0 0.5 – 0.25–32

Ceftazidime/avibactam 325 0 0.31 0.31 0 1.85 5.23 12.62 34.15 37.23 0.92 7.38 0 4 16 0.06–32

CREC (n = 83)

Tigecycline 83 4.82 4.82 15.66 61.45 4.82 6.02 2.41 0 0 0 0 0 0.25 0.5 0.03–2.41

Polymyxin B 83 0 0 0 7.23 53.01 21.69 15.66 2.41 0 0 0 0 0.5 2 0.25–4

Ceftazidime/avibactam 61 0 0 0 0 3.28 3.28 1.64 6.56 24.59 6.56 54.1 0 32 32 0.5–54.1

CRE species except CRKP
and CREC (n = 59).

Tigecycline 52 0 0 8.93 55.36 23.21 8.93 3.57 0 0 0 0 0 0.25 1 0.125–2

Polymyxin B 56 0 0 0 6.67 28.33 41.67 13.33 1.67 3.33 0 5 0 1 2 0.25–32

Ceftazidime/avibactam 59 0 0 0 5.08 1.69 3.39 1.69 6.78 1.69 1.69 69.49 8.47 32 32 0.25–64

MIC, minimum inhibitory concentration; CRE, carbapenem-resistant Enterobacterales; MIC50, 50% minimum inhibitory concentration; MIC90, 90% minimum inhibitory
concentration; aNo., number of isolates in which antibiotic sensitivity was tested; CRKP, carbapenem-resistant Klebsiella pneumoniae; CREC, carbapenem-resistant
Escherichia coli.
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and microbiologic efficacy (Miglis et al., 2018; Wang et al., 2020).
The steady-state AUC from 0 to 24 h (AUC0−24 h) was calculated
according to the following equation: AUC0−24 = dose/ClT.

For ceftazidime/avibactam, PK exposures was measured by
50% fT > MIC (Wang et al., 2020), which was calculated using
the following one-compartment intravenous infusion equation
(Drusano et al., 2001). fu is the fraction of unbound drug, Vd
is the volume of distribution in liters at steady state, MIC is the
MIC, ClT is total body clearance, and DI is dosing interval.

%fT > MIC = ln(
Dose × fu
Vd × MIC

) ×
Vd
CLt
×

100
DI

Monte Carlo Simulations
A 10,000-subject Monte Carlo simulation (Oracle Crystal Ball;
version 11.1.2.4.400) was conducted for each antimicrobial

regimen. PK data in the “PK/PD Model” section were used to
determine the percentages of PK/PD target attainment (PTA) for
a range of MICs from 0.03 to 64 mg/L. The probability of PTA,
which represented the likelihood that an antimicrobial regimen
will meet or exceed the target at a specific MIC, was assessed for
each regimen. The cumulative fraction of response (CFR), which
represented the expected population PTA for a specific drug dose
and a specific population of microorganisms, was calculated for
MIC distributions using weighted summation and calculated as
follows (Drusano et al., 2001). A regimen that achieved more
than 90% CFR against a population of organisms was considered
optimal (Mouton et al., 2005).

CFR =
n∑

i = 0

PT Ai × Fi

FIGURE 1 | PTA against CRE at MICs from 0.03 to 8 mg/L for tigecycline. PTA, probability target attainment; MIC, minimum inhibitory concentration; CRE,
carbapenem-resistant Enterobacterales; CRKP, carbapenem-resistant Klebsiella pneumoniae; CREC, carbapenem-resistant Escherichia coli.
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RESULTS

The Results of Susceptibility Testing
There were 653 non-duplicate CRE species isolated from blood
cultures enrolled in our study during 2018 and 2019, including
carbapenem-resistant Klebsiella pneumoniae (CRKP) (n = 511),
carbapenem-resistant Escherichia coli (CREC) (n = 83), and other
CRE species except CRKP and CREC (n = 59).

We analyzed the MIC data for all CRE and established
discrete MIC distributions for each population based on MIC
frequencies. Tables 3, 4 show the 50% MIC (MIC50) and
90% MIC (MIC90) percentage of isolates by MIC for each
antimicrobial agent.

For tigecycline, the MIC50 and MIC90 against CRKP, which
was the strain with the highest detection rate among all CREs,
were 0.5 and 1 mg/L, whereas the value of MIC50 and MIC90
were 0.5 and 2 mg/L for polymyxin B, and 4 and 16 mg/L for
ceftazidime/avibactam.

Probability Target Attainment
Targets of AUC24/MIC > 6.96 are shown in Figure 1. Tigecycline
following administration of 50 mg every 12 h, 75 mg every 12 h,

and 100 mg every 12 h achieved > 90% PTAs when MIC was from
0.03 to 8 µg/mL.

The PTAs for polymyxin B regimens at specific MICs with
targets of AUC/MIC ≥ 50 are shown in Figure 2. Polymyxin B
following administration of 1.25 mg/kg every 12 h, 1.5 mg/kg
every 12 h, and 2.5 mg/kg per day continuous infusion
achieved > 90% PTAs when MIC was 1 µg/mL with CRE. No
regimen achieved a 90% PTA with an MIC of 2 µg/mL.

The PTAs for ceftazidime/avibactam regimens at specific
MICs with targets of 50% fT > MIC are shown in Figure 3.
Ceftazidime/avibactam following administration of 1.25 g every
8 h, 2.5 g every 8 h achieved > 90% PTAs when MIC was 4 µg/mL,
8 µg/mL with CRE. No regimen of ceftazidime/avibactam
achieved a 90% PTA with an MIC of 16 µg/mL with CRE.

Cumulative Fraction of Response
Tables 5, 6 show the CFR values for each antibiotic regimen
based on the Monte Carlo simulations against CRE. As for CFR
values of three antimicrobials, ceftazidime/avibactam achieved
the lowest CFR values; the highest CFR value was 77.42%. For
tigecycline and ceftazidime/avibactam, with simulated regimen
improvement, the CFR values were both increased; the lowest

FIGURE 2 | PTA against CRE at MICs from 0.25 to 32 mg/L for polymyxin B. PTA, probability target attainment; MIC, minimum inhibitory concentration; CRE,
carbapenem-resistant Enterobacterales; CRKP, carbapenem-resistant Klebsiella pneumoniae; CREC, carbapenem-resistant Escherichia coli.
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FIGURE 3 | PTA against CRE at MICs from 0.06 to 64 mg/L for ceftazidime/avibactam. PTA, probability target attainment; MIC, minimum inhibitory concentration;
CRE, carbapenem-resistant Enterobacterales; CRKP, carbapenem-resistant Klebsiella pneumoniae; CREC, carbapenem-resistant Escherichia coli.

CFR of tigecycline values was 73.42%. It is worth noting that
the CFR values of polymyxin B were neither very low nor very
high; the lowest CFR value of polymyxin B was 80.89%; the most
aggressive dosage of 1.5 mg/kg every 12 h provided CFR value of
82.69% against CRE.

DISCUSSION

Ceftazidime/avibactam is a novel β-lactam/β-lactamase inhibitor
combination against CRE that inactivates Ambler class A,
class C, and some class D β-lactamase–producing pathogens,
including those producing Klebsiella pneumoniae carbapenemase
and OXA-48 carbapenemases, but not metallo-β-lactamases

(Li et al., 2019), and it has improved survival in multidrug-
resistant Gram-negative bacilli infections (Shields et al., 2016,
2017; Temkin et al., 2017; Tumbarello et al., 2019; Clerici
et al., 2021). For treatment of all CRE, tigecycline, which is
a novel antimicrobial agent with in vitro activity against most
Gram-positive and Gram-negative pathogens, is mainly used for
treatment of complicated skin, soft tissue, and intra-abdominal
infections in adults (Babinchak et al., 2005; Ellis-Grosse et al.,
2005; Pankey, 2005; Bhavnani et al., 2012; Bodmann et al.,
2012). Polymyxin B is considered as the last line of defense
against drug-resistant bacteria (Li et al., 2006; Zavascki et al.,
2007; Landman et al., 2008; Yu et al., 2017; Nang et al., 2021).
Our study analyzed the CRE data of the BRICS to evaluate the
effectiveness of the three most commonly used antibacterial for
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TABLE 5 | CFR values for three antibiotics against CRE.

Antimicrobials Dosing regimens CFR (%)

Tigecycline 50 mg every 12 h 73.42

75 mg every 12 h 85.32

100 mg every 12 h 91.88

Polymyxin B 1.25 mg/kg every 12 h 81.14

1.5 mg/kg every 12 h 82.69

2.5 mg/kg per day continuous infusion 80.89

Ceftazidime/avibactam 1.25 g every 8 h 66.59

2.5 g every 8 h 77.42

CFR, cumulative fraction of response; CRE, carbapenem-resistant
Enterobacterales.

BSIs with CRE in different dosing regimens using Monte Carlo
simulations to model in vivo antibiotic pharmacodynamics, in the
hope that empirical administration will help improve the survival
rate of patients.

Ceftazidime/avibactam clinical breakpoints of susceptible
MIC ≤ 8 mg/L have been assigned to CRE by CLSI, and the
breakpoints of susceptible MIC ≤ 2 mg/L for tigecycline and
polymyxin B were assigned to CRE by the US Food and Drug
Administration and European Committee on Antimicrobial
Susceptibility Testing.

From Tables 3, 4, it could be known that 334 strains were
sensitive to ceftazidime/avibactam in CRE, with a susceptibility
rate of 75.06% (334/445), which was in line with the
literature that the susceptibility rate of ceftazidime/avibactam
was 75.0% (Zou et al., 2020), but it was higher than the
results reported in 2020 [published by the China Antimicrobial
Surveillance Network (CHINET) Study Group, the susceptibility
of ceftazidime/avibactam against CRE was 61.4%] (Han et al.,
2020); it could be attributed to the strict control of the application
of antibacterial recent years. However, our research also revealed
that the current MIC50 and MIC90 of ceftazidime/avibactam
against CRE are significantly different with the literature reported
(8 vs. 2 mg/L, 16 vs. 32 mg/L) (Han et al., 2020). This
phenomenon needs further research. We also found that the MIC
of CRE to ceftazidime/avibactam is up to 64 µg/mL, and high
MIC of CRE accounts for a high proportion; for example, the
percentage of MIC such as 32 µg/mL in other CRE species except
CRKP and CREC is as high as 69.49%. This also explains why
the CFR of ceftazidime/avibactam is low, which suggests that we
empirically apply ceftazidime/avibactam to treat BSIs caused by
other CREs and should be used cautiously.

Ceftazidime/avibactam PTA at MIC ≤ 8 and 16 mg/L ranged
from 96.01 to 100% and 79.6–79.33% with the dosage of 2.5 g
every 8 h, respectively; a similar finding has been observed in
adults with complicated intra-abdominal infections, complicated
urinary tract infections, and nosocomial pneumonia (Das et al.,
2019). PTA was lower with the dosage of 1.25 g every 8 h, but still
with high target attainment (>95%) against MICs ≤ 4 mg/ L. It
was a limitation that the study lacked the enzymes of CRE, which
reminded us that we should detect the enzymes produced by
CRE of ceftazidime/avibactam-resistant in future work, so as to
provide more targeted recommendations for clinical medication.

TABLE 6 | CFR values for three antibiotics against CRE.

Antimicrobials CRE Dosing regimens CFR (%)

Tigecycline CRKP 50 mg every 12 h 69.22

75 mg every 12 h 83.12

100 mg every 12 h 91.15

CREC 50 mg every 12 h 91.45

75 mg every 12 h 95.53

100 mg every 12 h 96.77

CRE species
except CRKP and

CREC

50 mg every 12 h 85.14

75 mg every 12 h 92.53

100 mg every 12 h 95.62

Polymyxin B CRKP 1.25 mg/kg every 12 h 82.84

1.5 mg/kg every 12 h 86

2.5 mg/kg per day
continuous infusion

82.79

CREC 1.25 mg/kg every 12 h 82.6

1.5 mg/kg every 12 h 86.05

2.5 mg/kg per day
continuous infusion

82.3

CRE species
except CRKP and

CREC

1.25 mg/kg every 12 h 77.05

1.5 mg/kg every 12 h 79.99

2.5 mg/kg per day
continuous infusion

76.31

Ceftazidime/avibactam CRKP 1.25 g every 8 h 82.48

2.5 g every 8 h 91.78

CREC 1.25 g every 8 h 67.79

2.5 g every 8 h 86.33

CRE species
except CRKP and

CREC

1.25 g every 8 h 19.63

2.5 g every 8 h 29.12

CFR, cumulative fraction of response; CRE, carbapenem-resistant
Enterobacterales; CRKP, carbapenem-resistant Klebsiella pneumoniae; CREC,
carbapenem-resistant Escherichia coli.

We also investigated that polymyxin B and tigecycline showed
excellent antibacterial activity against CRE strains; 612 strains
were sensitive to polymyxin B, with a susceptibility rate of
94.15% (612 /650); 640 strains were sensitive to tigecycline,
with a susceptibility rate of 99.07% (640/646). The findings
were consistent with the literature published by the CHINET
Study Group (the susceptibility rates were 95.8 and 98.4% for
polymyxin B and tigecycline, respectively) (Han et al., 2020). The
data in the study were from the BRICS, covering most provinces
in China, and the resistance of CRE was basically consistent with
the relevant literature about the resistance of bacteria in China. It
truly reflected the resistance of CRE in China, and it has a very
high reference value.

For treatment of all CRE, tigecycline achieved the optimal
CFRs (>90%) when tigecycline was given 100 mg every 12 h;
particularly, it can achieve the satisfactory CFR values for CREC
given any dosage regimen, which were in line with the literature
that in their response to the high-dose tigecycline (200 mg
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followed by 100 mg every 12 h), E. coli and K. pneumoniae
showed CFRs greater than 90% (Wang et al., 2020). Our study
is consistent with literature reports, when MIC was 1 µg/mL;
the PTAs of standard dosing for CRKP, CREC, and other CRE
species were 29.84, 29.86, and 28.39%, whereas the other regimen
(100 mg every 12 h) PTA was ≥ 88%.

It is worth noting that MIC has a tendency to increase, and
the highest MIC of CPKP to tigecycline had reached 8 µg/mL;
strains with MIC as high as 2 µg/mL were also found in CREC
and other CRE species. Studies have shown that when the MIC
is 1 µg/mL, the conventional dosage of tigecycline is worthy of
questions (Silvestri and van Saene, 2010), because peak serum
levels of tigecycline are low (0.63–1.4 mg/mL) after standard
dosing (100 mg followed by 50 mg every 12 h) due to its rapid
movement from the bloodstream into tissues after administration
(Yamashita et al., 2014), and another study showed that a high-
dose tigecycline regimen (200 mg followed by 100 mg every 12 h)
was a reasonable strategy for BSIs and other severe infections by
CRE (Tumbarello et al., 2018). In general, the CFRs of tigecycline
were higher, but because of a lack of exact PK/PD target in BSIs,
we still have a suspicion about the efficacy of high-dose tigecycline
regimen for use in BSIs with CRE; more prospective studies are
needed to determine the clinical benefits of high-dose tigecycline
for BSIs with CRE.

Polymyxin B PTA at MIC ≤ 1 mg/L showed excellent target
attainment (>98%) at any dosage, whereas PTAs ranged from
3.78 to 25.97% at MIC 2 mg/L. For CRKP and CREC, the
CFRs of all administration regimens of polymyxin B could reach
80% or more, and our research showed that polymyxin B could
achieve moderate results under majority of conventional dosing
regimens, whereas dosing regimens with a CFR between 80
and 90% were regarded as providing moderate probabilities of
treatment success (Bradley et al., 2003). For other CRE species,
the CFRs ranged from 76.31 to 79.99%, with no administration
regimen achieving 90%. However, it is important to note that
polymyxin poses a risk of nephrotoxicity (Vattimo M de et al.,
2016; Liu et al., 2021; Zeng et al., 2021), especially when
administered in large dosage. Data indicated that the tolerated
maximum dosage of polymyxin B is 3 mg/kg per day (Liu et al.,
2021), although the maximum dosage of polymyxin B is the most
effective of all regimens according to simulation; attention should
be paid to monitoring renal function when applied.

Monte Carlo simulation was applied in this study to predict
the efficacy of three different drug administration regimens in the
CRE BSI, without combining the host status, such as combination
medication, whether there was hypoproteinemia, and so on,
which will lead to different clinical results. In the future, more
prospective studies are still needed to evaluate the therapeutic
effects of the aforementioned dosing regimens.

CONCLUSION

Our study indicates that tigecycline and polymyxin B
regimens have high CFR value of BSIs caused by CRE;
ceftazidime/avibactam achieved the lowest CFR values
among three antimicrobials. Tigecycline regimens were
more effective against CRE than the other two antibiotics. For

tigecycline and ceftazidime/avibactam, with simulated regimen
improvement, the CFR values were both increased. We suggest
that measurement of MICs and individualized therapy should
be considered together to achieve the optimal drug exposure. In
particular, PK and PD modeling based on local antimicrobial
resistance data can provide valuable guidance for clinicians for
the administration of empirical antibiotic treatments for BSIs.
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