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In the 1934 Dixon lectures, Sir Henry Dale articulated 
that the chemical nature of each neuron is fixed and 
unchangeable (Dale, 1935). John Eccles elevated these 
observations to a principle in 1954 when he and col-
leagues postulated that “the same chemical transmitting 
substance is used at all junctions operated by a particu-
lar cell” (Eccles et al., 1954). Dale’s Principle had thus 
been interpreted to mean that each neuron used a sin-
gle neurotransmitter, although Eccles later suggested 
that multiple substances may be released (Eccles, 1976). 
The pioneering work of Dale’s gave way to current mod-
els of multi-neurotransmitter modulation and co-release 
of neurotransmitters. Specifically in the striatum, Kocsis 
and Kitai (1977) demonstrated that stimulation of mid-
brain neurons produce a dual excitatory EPSP com-
prised of a fast and slow component, suggesting the 
involvement of glutamate and dopamine in this system. 
A recent study provided evidence of cholinergic and 
glutamatergic co-transmission from medial habenula 
(Ren et al., 2011). The medial habenula projects to the 
interpeduncular nucleus and is involved in aversive 
states such as pain or nicotine withdrawal (Salas et al., 
2009). Photostimulation of habenular neurons express-
ing channelrhodopsin under control of the ChAT pro-
moter produced both slow nicotinic currents and rapid 
glutamatergic currents (Ren et al., 2011). Other recent 
studies demonstrated glutamatergic co-release from do-
paminergic and serotonergic cells (Chuhma et al., 
2004; Varga et al., 2009; Hnasko et al., 2010), suggesting 
that co-release may be a general mechanism used in 
modulatory neurons to increase their repertoire of neu-
rotransmitter actions.

The principal projection neuron in both the ventral 
and dorsal striatum is the GABAergic medium spiny 
neuron, the postsynaptic target of convergent input 
from distal glutamatergic and midbrain dopaminergic 
neurons. Midbrain dopamine neurons very densely inner-
vate the striatum where the released dopamine, among 
other things, modulates excitatory glutamatergic trans-
mission in this region. In this Journal Club article, I re-
view the contribution of Stuber et al. (2010) to striatal 
circuitry. Here, they reported that midbrain dopami-
nergic neurons that project to the nucleus accumbens 
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(NAc) shell co-release glutamate, but those that project 
to the dorsal striatum only release dopamine. I discuss 
how this may contribute to physiological and functional 
differences in these two regions. I propose that models 
of medium spiny neuron function must now consider 
how neuronal co-release of dopamine and glutamate 
influences synaptic transmission and plasticity in the 
NAc, and how this may influence behavior.

Key results: Conditional gene deletion and optogenetic 
control over neuromodulatory neurons
Accumulating evidence over the last 13 years indicates 
that dopaminergic neurons may also release glutamate. 
In single-cell cultures, dopaminergic neurons were 
shown to release glutamate (Sulzer et al., 1998), and in 
brain slices, stimulation of mesolimbic dopamine neu-
rons elicited an excitatory postsynaptic potential in stri-
atal neurons (Chuhma et al., 2004). Light and electron 
microscope studies provided evidence that the vesicular 
glutamate transporter VGLUT2, a regulator of extracel-
lular glutamate levels and definitive marker of glutama-
tergic neurons, is expressed in the shell of the NAc (Hur 
et al., 2009). Using conditional genetic approaches to 
knock out VGLUT2 specifically in dopamine neurons, 
Hnasko et al. (2010) demonstrated that dopamine neu-
rons could directly excite striatal neurons through gluta-
mate release. Further, they demonstrated in human 
embryonic kidney cells that entry of glutamate via 
VGLUT2 acidifies vesicles and could in this non-neuronal 
system promote loading of dopamine into the same 
vesicles. Fig. 1 A represents the model of dopamine/
glutamate co-transmission released from the same indi-
vidual vesicles of ventral tegmental area (VTA) neurons.
 The work of Hnasko et al. (2010) was open to interpre-
tation because they used electrical stimulation in the 
midbrain to elevate dopamine levels in the striatum. 
Because a population of VTA neurons expresses VGLUT2 
but does not express tyrosine hydroxylase (TH), the 
rate-limiting enzyme that produces dopamine (Dobi  
et al., 2010), nonspecific excitation of all midbrain 
neurons by electrical stimulation precluded parsimoni-
ous interpretation.
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by dopamine transporter elements and either one or two 
conditional VGLUT2 alleles. An adenovirus containing 
mcherry channelrhodopsin 2 (ChR2) was then injected 
into the VTA of these mice. Confocal microscopy con-
firmed that nearly all VTA neurons expressing mcherry 
(and therefore ChR2) also expressed TH. Coronal slices 
from the striatum were cut from control VGLUT2+/ mice 
or experimental VGLUT2/ mice. Whole cell voltage-
clamp recordings were then made from medium spiny 
neurons in either the NAc shell or dorsal striatum. A laser 
was placed 200 µm from the recording site to specifically 
stimulate terminals from mesolimbic dopaminergic neu-
rons, and the extracellular postsynaptic currents were 
measured using whole cell voltage-clamped recordings. 
Optical stimulation of VGLUT2+/, but not VGLUT2/, 
expressing dopamine terminals produced brief excitatory 
currents in medial spiny neurons that are blocked by glu-
tamate receptor antagonists, unequivocally demonstrat-
ing that midbrain dopamine neurons projecting to the 
NAc shell can functionally co-release glutamate.

Two articles from the summer of 2010 used optoge-
netics to specifically stimulate TH+ neurons, both pro-
ducing glutamatergic postsynaptic responses that were 
restricted to the NAc. The first was by Tecuapetla et al. 
(2010), where they used an adeno-associated viral vec-
tor to deliver floxed channelrhodopsin DNA to allow 
for specific expression in neurons that have both TH+ 
and Cre. They used a fiber optic to stimulate the infected 
sliced tissue with light and recorded fast glutamatergic 
responses from medium spiny neurons. Further, they 
determined that burst activation at biologically relevant 
times produced temporal summation of NMDA cur-
rents in the NAc (Tecuapetla et al., 2010). The second 
was an elegant and key study that adds the final direct 
evidence that dopamine and glutamate are coming 
from the same VTA neurons. Stuber et al. (2010) used 
conditional gene disruption of VGLUT2 to determine 
whether glutamate is co-released from midbrain dopa-
mine neurons of adult mice. To perform these experi-
ments, mice carried one copy of cre recombinase driven 

Figure 1.  Two models of dopamine/glutamate co-transmission. Glutamate is green, dopamine is blue, and VGLUT2 in A10 neurons is 
labeled red. Bursting activity of mesolimbic dopaminergic neurons has been shown to activate AMPA and NMDA receptors on medium 
spiny neurons (as shown in Tecuapetla et al., 2010), possibly promoting the insertion of AMPA receptors, whereas activation of D1-like 
receptors promotes intracellular postsynaptic changes through G-coupled activation of adenylyl cyclase (AC). (A) Co-transmission from 
the same presynaptic terminal. Evidence from Hnasko et al. (2010) indicates that VGLUT2 may promote loading of dopamine into vesicles. 
This is evidence that glutamate and dopamine are packaged and released from the same vesicle at all structures. (B) Co-transmission by 
the same neuron at separate structures. Although medial mesolimbic neurons express both TH and VGLUT2 mRNA, NAc sections show 
VGLUT2+ staining sequestered in varicosities sprouting from the axons of TH+ neurons (Kawano et al., 2006; Yamaguchi et al., 2011). 
This suggests that the same neuron releases different neurotransmitters at different structures. Either model may explain the physiologi-
cal results now presented by three studies (Hnasko et al., 2010; Stuber et al., 2010; Tecuapetla et al., 2010).
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frequency stimulation potentiates hippocampal inputs  
to the NAc while simultaneously depressing PFC synapses 
(Goto and Grace, 2005). The converse was also shown  
to be true; stimulation at PFC potentiates PFC–NAc syn-
apses but depresses hippocampal–NAc synapses. In light 
of the new functional evidence of midbrain dopamine/
glutamate co-transmission (references above), new experi-
ments of NAc function will have to test whether mid-
brain glutamatergic inputs bias or filter either limbic or 
cortical inputs to guide goal-directed behavior.

Glutamate co-release from mesolimbic dopamine neu-
rons may also influence these same neurons through 
presynaptic AMPA and NMDA receptors. Glutamate re-
leased may spill out from the synaptic cleft and bind to 
these receptors on dopamine neurons, modulating plas-
ticity of dopaminergic terminals projecting to the NAc. 
Although the importance of glutamatergic receptors to 
physiological properties of the VTA is well documented 
(Zweifel et al., 2008), the specific influence of presynap-
tic glutamatergic neurotransmission on the axonal ar-
bors of VTA neurons is relatively unknown, yet may be a 
fruitful line of inquiry for future studies.

Another key question that needs to be explored is 
how specific synapses in the NAc are modulated by burst 
firing of action potentials from mesolimbic dopamine 
neurons. Upon the presentation of unexpected rewards, 
midbrain dopaminergic neurons transition from slow 
tonic firing to burst firing (Schultz, 1998). Burst firing 
of midbrain dopaminergic neurons elevate striatal 
dopamine levels, and this is exploited by addictive drugs 
such as nicotine (Zhang et al., 2009). The burst firing of 
mesolimbic dopamine neurons may serve to potentiate 
the NAc medium spiny neurons through the ionotropic 
release of glutamate, whereas dopamine-triggered  
intracellular cascades could influence long-term plastic-
ity. Tecuapetla et al. (2010) applied light pulses to 
channelrhodopsin-bearing TH+ neurons at burst fre-
quencies and found that glutamatergic currents onto 
medium spiny neurons were depressed at the end of the 
burst, but that NMDA currents exhibited temporal sum-
mation. This NMDA current may potentiate plastic 
changes in the striatum. Using the conditional gene 
disruption and channelrhodopsin techniques high-
lighted in Stuber et al. (2010), one can specifically test 
how burst firing of midbrain dopamine neurons with or 
without VGLUT2 modifies striatal plasticity by measur-
ing relative changes in the AMPA and NMDA currents 
using a tonic stimulation after a burst.

Concluding remarks
The neurophysiological evidence of co-transmission of 
glutamate and dopamine at the NAc is significant because 
glutamatergic currents may transmit transient reward- 
related activity and, coincident with increases in extracel-
lular dopamine, may potentiate this circuit. Further, these 
results imply that Eccles’s version of Dale’s Principle of 

Stuber et al. (2010) further demonstrated that opto-
genetic stimulation elicited a strong dopamine signal in 
the dorsal striatum without a corresponding glutama-
tergic signal. This is consistent with the anatomical data 
from Kawano et al. (2006), showing only rare coexpres-
sion of VGLUT2 with TH+ neurons from the substantia 
nigra, the dopamine neurons that project to the dorsal 
striatum. Although this contradicts the physiological 
evidence from Kocsis and Kitai (1977), suggesting that 
glutamatergic and dopaminergic co-release in the dor-
sal striatum, the electrical stimulation in this early study 
may have directly or indirectly recruited a separate pop-
ulation of glutamatergic neurons.

The physiological evidence of glutamate/dopamine 
co-release in the NAc is seemingly contradicted by ultra-
structural evidence derived from electron microscope 
studies that have shown that VGLUT2 is highly coex-
pressed in juvenile mesencephalic TH+ neurons project-
ing to the NAc (Dal Bo et al., 2008), yet expression 
regresses in the mature rat brain (Bérubé-Carrière et al., 
2009). Further, Moss et al. (2011) demonstrated essen-
tially no evidence of coexpression of VGLUT2 and TH  
in the adult NAc. However, the Yamaguchi et al. (2011) 
showed that four populations of mature mesencephalic 
neurons project to the dorsal striatum and the NAc: TH+ 
only, VGLUT2+ only, TH+/VGLUT2+ neurons, and a 
small subset of TH/VGLUT2 neurons. Specifically, 
both the Hisano (Kawano et al., 2006) and Morales labo-
ratories (Yamaguchi et al., 2011) have demonstrated that 
populations of neurons in the medial intrafascicular  
nucleus project to the NAc and either express TH only or 
TH/VGLUT2. The Hisano laboratory has also shown 
that VGLUT2 seems to be localized in varicosities along 
TH-stained axons, but very few release sites coexpress TH 
and VGLUT2 (Kawano et al., 2006). This evidence may 
explain why neurons with mRNA for VGLUT2 and TH 
fail to show ultrastructural evidence of coexpression at 
the synapse; VGLUT2/TH-expressing neurons may form 
separate asymmetric dopaminergic and symmetric gluta-
matergic processes, as has been demonstrated in cell cul-
ture (Sulzer et al., 1998). The model of neuronal, but not 
structure-specific, co-transmission in Fig. 1 B may recon-
cile the physiological results from optogenetic studies 
with the anatomical results, but in this model, one can-
not assume that the biochemical content at any one axo-
nal structure will be found at other structures.

Interpretation: How glutamate co-release might influence 
synaptic plasticity in the striatum
Coincident and convergent input often induces plasticity 
on a postsynaptic neuron. The NAc integrates processed 
information about the environment from basolateral 
amygdala, hippocampus, and prefrontal cortex (PFC), 
as well as projections from midbrain dopamine neurons. 
Previous studies have demonstrated how dopamine  
modulates this integrative process. For example, high  
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one neurotransmitter used by each neuron still holds  
true in some, but not all, neuromodulatory projections. 
Several exceptions to Eccles’s version of Dale’s Principle 
are currently known; it is currently no longer controversial 
to consider this formulation obsolete (Nicoll and Malenka, 
1998). However, the recent anatomical evidence indicat-
ing that VGLUT2 (and therefore glutamate) is found on 
separate structures sprouting from DA neurons (Kawano 
et al., 2006; Yamaguchi et al., 2011) suggests a break from 
the original formulation of Dale’s Principle. That is, know-
ing the biochemical contents of any single axonal struc-
ture is not an absolute indicator for all structures in that 
axon. As more precise neurotransmitter markers (such as 
VGLUT2) and more sophisticated genetic approaches be-
come more available, Dale’s Principle will likely yield to a 
more diverse and heterogeneous taxonomy of neuro
transmitter release.

Please participate in a discussion of this Journal Club 
article on the JGP Facebook page (www.facebook.com/
JGenPhysiol).
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