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ABSTRACT The present study proposes a Gaussian
process regression (GPR) approach to develop a model to
predict true metabolizable energy corrected for nitrogen
(TMEn) content of corn samples (as model output) for
poultry given levels of feed chemical compositions of
crude protein, ether extract, crude fiber, and ash (as
model inputs). A 30 corn samples obtained from 5 origins
[Brazil (n = 9), China (n = 5), Iran (n = 7), and Ukraine
(n = 9)] were assayed to determine chemical composition
and TMEn content using chemical analyses and bioassay
technique. In addition to GPR model, data were also
analyzed by multiple linear regression (MLR) model.
Results revealed that corn samples of different origins

differ in their gross energy and chemical composition of
crude protein, crude fiber, and ash, but no differences
were observed for their ether extract and TMEn con-
tents. Based on model evaluation criteria of R* and root
mean square error (RMSE), the GPR model showed
satisfactory ~ performance (R* = 092 and
RMSE = 33.68 kcal/kg DM) in predicting TMEn and
produced relatively better prediction values than those
produce by MLR (R* = 0.23 and RMSE = 104.85 kcal/
kg DM). The GPR model may be capable of improving
our aptitude and capacity to precisely predict energy
contents of feed ingredients to formulate optimal diets
for poultry.
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INTRODUCTION

Nowadays, several high performance corn varieties
with wide range of grain characteristics and composition
have been developed through genetic improvements
(Collins et al., 2001). In common practice in North
America and West Asia, corn is utilized as the key en-
ergy source for poultry, comprising 40 to 60% of the
poultry diet (Klopfenstein et al., 2013). An important
criteria for describing quality of a feed ingredient is its
true metabolizable energy corrected for nitrogen
(TMEn) value (Latshaw and Freeland, 2008; Dudley-
Cash, 2009). The biological procedure used to determine
the TMEn value of grain sample is time consuming and
relatively expensive. An accurate and precise procedure
for estimating TMEn value given feed chemical composi-
tion would be helpful; therefore, the nutritionists are
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usually interested in applying an easy to use prediction
model that may predict the TMEn values. Predictive
models are widely accepted as informational tools to sup-
port rapid and cost effective assessment of feed. Using
the adult rooster as a test birds, many researchers have
shown that the energy content of corn was related with
its chemical composition (Sibbald, 1976; Ertl and Dale,
1997; Latshaw and Freeland, 2008). Variations in pro-
tein content, fat, fiber, ash, and starch are observed in
analysis of corn samples (Ertl and Dale, 1997; Collins
et al., 2001). Traditionally, multiple linear regression
(MLR) method are applied as a basic model for feedstuff
evaluations. It has also been reported that the method of
artificial neural network (ANN) and support vector ma-
chine models are useful to estimate TMEn contents of
feedstuffs when enough data are available (Ahmadi
et al., 2008; Ahmadi and Rodehutscord, 2017).

In recent years, Gaussian process (GP) based method
such as GP regression (GPR) model has attracted much
scientific attention in the area of computational data
modeling (Swain et al., 2016; Schulz et al., 2018). Both
the ANN and GPR methods have been reported as effi-
cient tools in developing forecasting models and esti-
mating predictions. The GPR model is used to solve
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regression problems with GP and requires fewer data
samples for modeling than those data needed for ANN
model fitting (Richardson et al., 2017; Schulz et al.,
2018; Huttunen et al., 2019; Li et al., 2019). The GPR
processing also uses as a flexible model that may describe
nonlinear relationship between inputs and the response
variables as well as uncertainties in the data (Roberts
et al., 2013; Swain et al., 2016; Tonner et al., 2017).
Owing to methodological advantages, GPR model has
been commonly used in many fields such as energy, elec-
tric power, meteorology, and medicine (Roberts et al.,
2013; Swain et al., 2016; Richardson et al., 2017;
Tonner et al., 2017). Because the GP models showed
both suitable practical performance and appropriate
analytical properties motivates the current work. To
the best of our knowledge, GPR application in animal
nutrition and feed evaluation fields was not reported yet.

The objective of this study was to 1) estimate the
chemical composition and TMEn content of corn sam-
ples of different origins and test their variation and 2)
to assess the ability of GPR model to predict TMEn con-
tents of corn samples (as model output) given their
chemical compositions (as model inputs). The perfor-
mance of GPR model was compared with that of com-
mon regression model.

MATERIALS AND METHODS

Animal Ethics Statement

The research proposal and used procedures including
working with birds were reviewed and approved by
“Tarbiat Modares University Committee on Animal
and Avian Care and Use” before starting the bio-assay
experiments (Code B1398/3007). The agreement was
in accordance with the general Guidelines for Experi-
mental Animals developed by the Ministry of Science,
Research, and Technology (Tehran, Iran). All efforts
were made to minimize the suffering of the experimental

birds.

Bioassays and Data Collections

Thirty samples of corn grains submitted from the
Brazil (n = 9), China (n = 5), Iran (n = 7), and Ukraine
(n = 9) were assayed for their proximate composition
based on standard methods for moisture (AOAC, 2000;
method 930.15), CP (method 990.03), EE (method
960.39), CF (method 978.10), and ash (method
942.05). All corn samples were analyzed for gross energy
(GE) with an automatic adiabatic oxygen bomb calorim-
eter (Parr Instrument Co., Moline, IL).

A bioassay according to precision-fed method for cock-
erel (Sibbald, 1976; Dudley-Cash, 2009) was used for
determining the TMEn of the 30 corn samples. In total,
130 healthy Hy-Line roosters (BW = 2.3 = 0.11 kg,
30 wk of age) were obtained from a local commercial
farm. All birds were housed in individual wire cages
(45 X 60 X 35 cm) for an acclimation and precondition-
ing period for 3 wk. A basal diet was fed during
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acclimation phase (Table 1). Birds were maintained on
a 16-h light schedule and allowed ad libitum access to
water. The trays placed under each cage were used for
collection of total excreta. Following a period of 24 h
without feed, 25 g of the different ground corn samples
were fed by intubation to 120 birds (4 per each corn sam-
ple). Remaining 10 roosters were fasted to estimate
endogenous losses. Total excreta voided over the
following 48-h period were collected, dried, and ground
for subsequent analyses to estimate their GE contents.

A four-replication assessment was considered for both
chemical and bioassay estimations for each corn sample,
so a total of 120 chemical composition and TMEn deter-
minations were obtained (30 samples X 4
replications = 120 data lines). All values of chemical
and TMEn contents of corn samples were standardized
based on respective dry matter (DM) and presented as
DM basis.

Statistical Analysis

Data were analyzed statistically by ANOV A using the
general linear model option developed in Minitab soft-
ware, version 17.0 (Minitab, 2014). Differences were
considered significant at P < 0.05, and significant differ-
ences between means were separated by Tukey’s test.

Building Prediction Model Using MLR

A MLR model was defined as the following general
equation,

v, =B+ > B Xite, i=1,2, ..n 1]
i=1

where: Y; is the TMEn in the i sample, X; is the value
related to input compositions (CP, EE, CF, and ash

Table 1. Basal diet used during a 3-wk acclimation phase for
experimental roosters before starting the TMEn assay.

Ingredient %

Corn 60.80
Soybean meal 33.70
Soybean oil 1.70
Dicalcium phosphate 2.16
Limestone 0.79
Sodium chloride 0.40
Vitamin-trace mineral premix' 0.30
HCI Lysine 0.08
DL Methionine 0.07

Calculated analysis

AME, keal /kg 2,900.00
CP, % 19.00
Ca, % 0.90
Available P, % 0.45
Lysine, % 1.1

Abbreviation: TMEn, true metabolizable energy corrected for nitrogen.

'Provided per kilogram of diet: Co, 0.3 mg; Cu, 5 mg; Fe, 25 mg; I, 1 mg;
Mn, 125 mg; Zn, 60 mg; choline chloride, 638 mg; trans-retinol, 3.33 mg;
cholecalciferol, 60 pg; dl-a-tocopheryl acetate, 60 mg; menadione, 4 mg;
thiamine, 3.0 mg; riboflavin, 12 mg; niacin, 35 mg; calcium pantothenate,
12.8 mg; pyridoxine, 10 mg; cyanocobalalamin, 0.017 mg; folic acid 5.2 mg;
biotin, 0.2 mg; antioxidant, 100 mg; molybdenum, 0.5 mg; selenium,
200 pg.
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concentration) in the " sample (assumed to be a known
constant measured without error), (8, is the overall inter-
cept, (; is the linear coefficient for input variables, and e,
is the residual error assumed to be normal (N ~ (0, 02)).
Probability was considered significant when P < 0.05,
and tendencies were mentioned if P < 0.10. Data were
fitted to the equation 1 using the REG procedure of SAS
software (Freud and Littell, 2000).

Building Prediction Model Using GPR

The GPR model was developed to build the predic-
tion model using the “fitgpr” function of Matlab
version R2019b (Mathworks, 2019). A detailed
description of GPR method terminology, develop-
ment, and application is outside the scope of this
article. Suggested references for comprehensive de-
scriptions of the method are Rasmussen and
Williams (2006), Schulz et al. (2018), and chapter 6
of MathWorks (2019).

Briefly, a GP is a nonparametric method given a sto-
chastic process considering f (z) (z e R?), where f (), f
(22),..., f(x,) is a multivariate Gaussian random variable
for all combinations of input variables (z1, 2,...,2,). In
this way, the GPR model can be defined by introducing
a mean function of the form u (z) = E (f(z))and a covari-
ance function of the form k (z,2') = cov (f (z)), f (x0)).
Considering our case in which the inputs zare a vector
of CP, EE, CF, and ash contents (all inputs values as
%) of corn samples, whereas yis the response variable
(TMEn content of corn samples). Hence, the response
variable can be modeled as

y(z) = h(z)"B+f(x)+e 2]

where h (z)is a vector of (deterministic) basis functions, fis
a vector of basis function coefficients, f(z)is a GP with zero
mean and covariance function & (z,2"), and ¢ is an Gaussian
noise. The first term of equation 2 denotes mean behavior of
the GP model. The GP term builds a nonlinear relationship
between input and the response variable as well as elated
uncertainties in the data.

Training data comprises of input-output pairs such as
{(zi, y;);i = 1, 2,...,N}. Supposing ys are output of the
considered model (i.e. y; = y(z;)), and X = (z4,22,...,2,)
are inputs for which the predictions are calculated.
Accordingly, Y = (y1,40,...,yx) and Y = |y
(21),y(z2),...,y(x,)]are both Gaussian. The conditional
distribution of Y'based on Ymay be defined as

-1 -1

p(YY|Y):N<HY'+ Z Z(Y_HY),

Y

YTy

Y’ Y vy

3]

where uy and Zv indicate the mean and covariance of Y,
respectively, and X yy is the cross-covariance of Y and Y.
The means and covariances can be calculated by plugging
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in the model (Rasmussen and Williams, 2006; Huttunen
et al., 2019), as

yy = h(2) B+ B(X, X)) (k(X, X)+d21) "

, 4
(v —nx)"8

ST = kX, X)= KX, X) (KX, X)+021) kX, X)

Y'Y
[5]

where h (X') and & (X', X) are simplified symbolizations for
the vector and matrix with the components & (z;) and k
(w;%;), respectively. Using the conditional mean function
(equation 4), a prediction value for Y'can be computed
along with a confidence approximation given by the condi-
tional covariance (equation 5).

Choosing the functional form of the covariance
(kernel) function (k (z,2')) is mostly based on assump-
tions about the main function to be modeled. In this
study, the most widely used covariance function namely
“squared exponential function” was used. This kernel
function can be written as (Roberts et al., 2013):

k(z, z)=0d"¢ 7 [6]

where o is the variance, and A is the length scales for each
input (hyper-parameters).

To apply Gaussian processes in regression fitting,
the hyperparameters of selected covariance function
have to be optimized with respect to the experimental
data (Rasmussen and Williams 2006). In this way, the
Matlab’s fitrgp function estimates hyperparameters
of 6 (B,0%,0°s) by minimizing the negative log-
likelihood,

—1

Z(0)= — log (p(le,H) =05y"> y+0.5log det
0

; + g log 2w
[7]

where Z, = k (X,X;0)+0°.I The default value of parame-
ters in fitrgp (Mathworks, 2019) are chosen for optimizing
process of hyperparameter in equation 7.

A k-fold cross-validation (k = 5) method as described
in chapter 24 of Mathworks (2019) was used on the
data set to make validation sets. Validation set is
applied to monitor performance of the trained GPR
model. The fitting performance (in term of root mean
square error [RMSE]|) on the validation set was consid-
ered as an indicator for the generalization ability of
model, whereas the model selection was also carried
out using this criteria. The “GaussianProcess Corn”
program coded by the Matlab, and the source code
can be downloaded from https://github.com/
hahmadima/GaussianProcess Corn.
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Models Performance Evaluation

Goodness-of-fit criteria were calculated to measure the
model fits using following statistics: ratio of variation
accounted by the model (R?) which was calculated as 1
— MSE/S?, where MSE is the mean square error (resid-
ual standard deviation) and 82y is the whole variance of
the y variable, and the RMSE values which is the root of
MSE (Ahmadi, 2017). The ranges are 0 < R?>< 1 and
0 < RMSE < + . Obtained values closer to 1 for R?
and closer to 0 for RMSE indicate superior model perfor-
mance. Model adequacy was also examined using plots of
residuals (observed minus predicted) against predicted
values of y to test for linear prediction bias (St-Pierre,
2001). To compare the experimental and GPR model
predicted TMEn values, an additional one-way ANOVA
was used to find if they are significantly different.

RESULTS

The data for chemical composition and TMEn content
of corn samples from different origins are summarized in
Table 2. There were significant (P < 0.05) differences be-
tween different origins for CP, CF, and ash contents of
corn sample. Corn samples from China had higher
(P < 0.01) CP contents. The CF contents were lowest
(P <0.01) in corn samples from Brazil. The ash contents
were lowest (P < 0.05) in Ukrainian corn, whereas ash
contents in the Iran and China corn samples were inter-
mediate. The GE of corn samples submitted from
Ukraine were lowest (P < 0.01). There was no difference
(P > 0.05) between the EE and TMEn content of sam-
ples from different origins (Table 2).

Disregarding the origins of corn samples, average and
descriptive statistics values (whole data; n = 120) of
chemical composition (model inputs) and TMEn (model
output) obtained from bioassay and chemical analyses
are shown in Table 3. The first step in building a predic-
tion model was to estimate the coefficients of equation 1
by least squares method using the matrix of experi-
mental data and to obtain evidence about MLR model
fitness in the form of an analysis of variance. The calcu-
lated MLR model on the corn data set was obtained as
follow:

Truemetabolizable energy corrected for nitrogen of corn
sample (kcal /kg of DM) = 3906 (*259) + 56.4 (£13.6)
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CP + 30.2 (x19.1) EE - 1226 (£39.9) CF - 178.2
(+49.1) Ash R® = 0.23 RMSE = 104.85 kcal /kg of DM.

The calculated SE values of coefficients are given in
parentheses. Values for input variables considered as
percent of DM basis. All coefficient estimates except
EE were highly different from zero (P < 0.05), whereas
the EE tend to be significant (P = 0.1). The calculated
R? value indicates that only 23% of the variability in
the responses could be explained by the developed
regression model, whereas the mean error of the predic-
tion is 104.8 kcal/kg (found by RMSE value) when it
is faced with unforeseen data.

The prediction values calculated by the GPR model
are illustrated graphically in Figure 1. A visual compari-
son could be made between actual and predicted values of
corn TMEn obtained from both process of training and
cross-validation of proposed GPR model. The goodness-
of-fit statistical values (R” and RMSE) derived from the
GPR model to predict the TMEn are also shown in
Figure 1. The plot of model predicted (in validation
data set) against their respective residual values illus-
trated in Figure 2. Calculated linear regression on the re-
sidual plots (Figure 2) showed no evidence of any linear
prediction bias for the models, whereas the calculated
P-value was much larger than 0.05 (P = 0.31), suggesting
a good agreement between the actual and predicted
values of TMEn for the data set which is fed to the devel-
oped GPR model. One-way ANOVA results (Table 4)
showed no significant difference between experimentally
assayed and GPR model predicted TMEn.

DISCUSSION

The chemical composition were within the range re-
ported in the literature (Ertl, and Dale 1997; Collins
et al., 2001; Rodehutscord et al., 2016), but considerable
variation was observed between corn from different ori-
gins for chemical components of CP, CF, and ash. Differ-
ences in chemical contents may be related to differences
in agronomic factors and geographical location.
Rodehutscord et al. (2016) reported that time of harvest,
precipitation, temperature, soil conditions, fertilization,
and other agronomic parameters, as well as harvesting
and storage conditions, can affect chemical characteris-
tics of the cereal grains, including their energy content,
CP, CF, and ash.

Table 2. Chemical composition and TMEn content of corn samples from different origins."

Brazil China Iran Ukraine Pooled SEM
Item (n = 36) (n = 20) (n = 28) (n = 36) (n = 120) P-value
CP, % of DM 9.19" 9.72" 8.96" 8.94" 0.07 <0.01
EE, % of DM 3.26 3.15 3.40 3.27 0.05 0.43
CF, % of DM 3.78° 3.85%P 4.04* 4.04 0.03 <0.01
Ash, % of DM 1.55" 1.41%° 1.41%P 1.39" 0.02 0.02
GE, keal /kg of DM 4,380.80" 4,403.31* 4,396.20" 4,336.91" 6.51 0.01
TMER, kcal /kg of DM 3,780.50 3,815.20 3,780.20 3,764.50 10.70 0.50

*>Within a row, means without a common letter are significantly different (P < 0.05).
DM = dry matter; GE = gross energy; CP = crude protein; EE = ether extract; CF = crude fibre; and TMEn = true metabolizable energy
corrected for nitrogen. Thirty samples of corn grains submitted from the Brazil (n = 9), China (n = 5), Iran (n = 7), and Ukraine (n = 9). All criteria

were assayed with 4 replications for each corn sample (n = 120).
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Table 3. Information and descriptive statistics for the data used in
prediction modeling process.”

Whole data sets of corn samples (n = 120)

Item Minimum Maximum Mean SD
GE, kcal /kg 4,160.17 4,499.94 4,374.91 71.26
of DM
Model inputs
CP, % of DM 7.50 11.38 9.15 0.712
EE, % of DM 2.46 4.50 3.28 0.518
CF, % of DM 3.29 4.59 3.93 0.297
Ash, % of DM 1.13 2.09 1.45 0.243
Model output
TMEn, kcal /kg 3,461.60 4,051.60 3,781.40 117.60
of DM

'DM = dry matter; GE = gross energy; CP = crude protein; EE = ether
extract; CF = crude fibre; and TMEn = true metabolizable energy cor-
rected for nitrogen. Thirty samples of corn grains submitted from the
Brazil (n = 9), China (n = 5), Iran (n = 7), and Ukraine (n = 9). All criteria
were assayed with 4 replications for each corn sample (n = 120).

In many situation, the final objective of GPR
modeling is to fit models that give more precise and ac-
curate prediction value(s) of the output variable(s).
The comparison of actual and predicted output values
may define the performance of the prediction model
based on the investigated inputs. The proposed GPR

Training set: R?=0.98 RMSE=13.26

A ® Estimated TMEn  —e— Model predicted
4100
. S
5 4000
=
©
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m©
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[
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Figure 1. Comparison of experimental and predicted values of true
metabolizable energy corrected for nitrogen (TMEn) of corn samples
for poultry from the Gaussian process regression model. A) Training
set and B) cross validation set (k = 5 for k-fold cross validation process;
n = 120 for both sets). Abbreviation: RMSE, root mean square error.
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model could suitably predict the TMEn in the validation
data set that were not used during the training processes
(R* = 0.92 and RMSE = 33.68 kcal /kg DM). Moreover,
the model had relatively balanced goodness-of-fit statis-
tical values for the 2 subsets of training and cross valida-
tion (Figure 1), proposing that the established model
had a well generalizability when it faced a totally unseen
data set.

To assess the performance of prediction models, the R?
value is used as a routine measure to judge about the “ac-
curacy” of a model given its predictions, whereas the
RMSE is commonly used to indicate the “precision” of
a model based on residual (error) examination. Conse-
quently, it is preferred to consider a combination of
criteria to determine and/or compare overall perfor-
mance of prediction process. In modeling TMEn based
on concentrations of feed chemical component, the
goodness-of-fit in terms of R? and RMSE corresponding
to MLR, and GPR models showed a higher accuracy and
precision of prediction for GPR model as compared with
MLR model. The bias value denotes the magnitude of
the model over/under estimation with respect to the
average of observed values (St-Pierre, 2001). The
computed bias were not statistically significant as they
could be seen in Figure 2 and corresponding calculated
regression line on predicted values vs. residuals in the
validation data sets. The superior performance of GPR
over MLR model is primarily because of the fact that
the conventional MLR requires the arrangement of a
linear function to be regressed; thus, the degree of
freedom and flexibility of regression equation may be
limited. It is believed that the soft computing methods
of data modeling would require a very high amount of
data samples to build an efficient model. However,
GPR models may work well when the data are statisti-
cally well distributed in the input domain (Schulz
et al., 2018; Li et al., 2019). The main advantage of
GPR compared with classical regression tools are 1)
the GPR model does not require a prior specification of
proper fitting function and 2) the GPR model have a
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Figure 2. Plot of residuals against predicted values (validation set;
n = 120) of true metabolizable energy corrected for nitrogen (TMEn)
of corn samples for poultry from the Gaussian process regression
(GPR) model. The line represents the regression of residuals on GPR
model predicted TMEn [y = 48.1 — 0.0127 X predicted TMEn;
R? = 0.03; P = 0.31].
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Table 4. Comparison between experimental assayed and Gaussian process
regression model predicted values of corn TMEn (kcal/kg).

95% confidence
Item n Average SD interval
Experimental TMEn 120 3,781.4 117.6 (3,761.4-3,801.4)
Predicted TMEn 120 3,782.9 104.5 (3,762.9-3,802.9)
Pooled SE 717
P-value 0.92

Abbreviation: TMEn, true metabolizable energy corrected for nitrogen.

general approximation capability and it can approxi-
mate nearly all types of non-linear functions (Roberts
et al., 2013).

In conclusion, the present study revealed that corn
samples of different origins differ in their chemical
composition and GE, but no differences were observed
for their TMEn contents. The proposed GPR approach
was successfully applied to predict TMEn of corn sample
for poultry given levels of their chemical compositions of
CP, EE, CF, and ash. When compared with the data
from the actual experiment, developed GPR model pro-
duce relatively better prediction values in estimating
TMEn in corn sample than those produce by conven-
tional regression. The GPR model may be capable of
improving our aptitude and capacity to precisely predict
energy contents of feed ingredients to formulate optimal
diets for poultry.
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