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Abstract
While multiple studies have been conducted of gene expression in mouse models of Alzheimer’s disease (AD),
their findings have not reached a clear consensus and have not accounted for the potentially confounding effects
of changes in cellular composition. To help address this gap, we conducted a re-analysis based meta-analysis
(mega-analysis) of ten independent studies of hippocampal gene expression in mouse models of AD. We used
estimates of cellular composition as covariates in statistical models aimed to identify genes differentially
expressed (DE) at either early or late stages of progression. Our analysis revealed changes in gene expression at
early phases shared across studies, including dysregulation of genes involved in cholesterol biosynthesis and the
complement system. Expression changes at later stages were dominated by cellular compositional effects. Thus,
despite the considerable heterogeneity of the mouse models, we identified common patterns that may contribute
to our understanding of AD etiology. Our work also highlights the importance of controlling for cellular compo-
sition effects in genomics studies of neurodegeneration.
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Introduction
There is intense interest in understanding the molecular

mechanisms that contribute to Alzheimer’s disease (AD),
which involve complex interplays of genetic and environ-
mental factors. However, the early changes in the brain
before the onset of cognitive impairment in AD are still

poorly understood (Masters et al., 2015). In AD patients,
pathologic changes in the brain often precede the occur-
rence of clinical symptoms by years (Pennanen et al.,
2004; Webster et al., 2014; Wirz et al., 2014). Postmortem
brain samples of AD patients represent a late phase of the
disorder, and it is challenging to distinguish causes from
effects of neurodegeneration. Studying early molecular
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Significance Statement

A molecular understanding of Alzheimer’s disease (AD) is important to the development of treatments.
Because of the difficulty of studying brain tissue in humans, especially at very early stages of progression,
many groups have performed transcriptomic studies of rodent models. Our study identified changes in gene
expression that are strikingly consistent across multiple such studies, providing substantial insight into
molecular changes present at early stages of these disease models and which may be of importance in the
human condition. Our study also demonstrates the importance of accounting for the complex effects of
neurodegeneration on brain tissue in data analysis.
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changes in mouse models improves our understanding of
human disease pathogenesis. Various transgenic mouse
models have been developed based on known mutations
in familial AD cases and other AD related genes (Webster
et al., 2014). Despite the differences in mechanisms,
many of these animal models show similar age-de-
pendent progression in decline of cognitive functions that
are similar to AD symptoms observed in human (Webster
et al., 2014). Identifying genes that are differentially ex-
pressed (DE) during early disease phase in the mouse
models versus wild type could help understanding early
responses to disease initiation, which may be neuropro-
tective or contribute to disease progression.

Recent expression profiling studies of AD mouse mod-
els have reported up-regulation of genes in classical com-
plement cascade and changes of synapse-related genes
in early AD disease progression (D’Onofrio et al., 2011;
Hong et al., 2013, 2016). Studies of AD mouse models in
later phases of progression (Matarin et al., 2015; Saura
et al., 2015) often report expression changes of genes
related to inflammation and the immune system. How-
ever, their findings are not completely concordant. Differ-
ences in mouse models can be one of the contributing
factors, but differences in experiment design, sample
size, microarray platforms, and data processing methods
can also influence the results. Since these mouse models
develop similar phenotypes, they could share molecular
commonalities. A combined analysis of gene expression
profiles of mouse models (which we refer to as a mega-
analysis, to distinguish it from a meta-analysis, which
traditionally refers to pooling of reported findings from
studies rather than re-analyzing the raw data) has the
potential to identify cross-mouse-model and disease-
phase-specific transcriptional changes.

One of the challenges of bulk tissue transcriptome pro-
filing in AD studies is that samples represent a weighted
average of cellular composition, and cell counts of differ-
ent cell types are typically not directly assessed. As a
neurodegenerative disorder (ND), AD is characterized by
neuronal loss and neuroinflammation (Serrano-Pozo et al.,
2011). In AD patients and in some mouse models, loss of
pyramidal neurons and other types of neurons in the
hippocampus contributes to neuronal loss (Saxena and
Caroni, 2011; Serrano-Pozo et al., 2011). Cell-type pro-
portion changes have been identified as one of the driving
forces for expression changes in bulk tissues of an AD
mouse model (Srinivasan et al., 2016). Therefore, both
cellular composition differences and cell type-specific ex-
pression differences can contribute to the overall expres-
sion changes in bulk tissue samples between disease
models and controls, especially at late stages of progres-

sion. In contrast to late stages, early effects are expected
to be relatively subtle but perhaps more informative about
processes leading to pathology.

A recent study examined expression changes of
neuronal-specific marker genes in whole brain tissues of
human and mouse models of AD and revealed that ex-
pression profiles reflect cell population changes (Hokama
et al., 2014). To address the cellular composition problem,
methods for estimating cell-type proportions from bulk
tissue transcriptome profiles have been developed,
sometimes referred to as cell-type deconvolution. A com-
monly used method to deconvolute effects of cell-type
proportion changes of bulk tissue is to estimate cell-type
proportions by cell type-specific marker genes (Gaujoux
and Seoighe, 2013; Shen-Orr and Gaujoux, 2013; Chikina
et al., 2015; Mancarci et al., 2017). While not without
caveats, accounting for cell type-specific expression
changes improves the interpretability of bulk tissue data-
sets (Mancarci et al., 2017; Toker et al., 2018).

In this study, we re-analyzed publicly available expres-
sion data from the hippocampus of multiple AD mouse
models, accounting for between-study differences and
cell type-specific effects, with the goal of identifying con-
sistent cross-mouse-model transcriptional changes, es-
pecially at early phases.

Materials and Methods
Analyses were implemented in R (Team, 2016) except

where noted. The data and scripts used are available at
https://github.com/PavlidisLab/AlzMouseModelMeta.

Data pre-processing and quality control
We retrieved gene expression profiling studies of

mouse models of AD with the keyword “Alzheimer” from
Gene Expression Omnibus (GEO; RRID:SCR_005012) and
ArrayExpress (Barrett et al., 2013; Kolesnikov et al., 2015;
RRID:SCR_002964). We further filtered the datasets and
selected studies that have at least two biological replicate
per condition and contained hippocampal samples. Ini-
tially 11 independent studies met the selection criteria. All
were conducted on microarray platforms. We down-
loaded expression data and experimental design meta
data from GEO. Probeset and gene annotations of the
corresponding Affymetrix, Illumina and Agilent platforms
were obtained from Gemma (Zoubarev et al., 2012; RRID:
SCR_008007). On further examination, dataset GSE36981
was removed because genotype was confounded with
sample batches. This left a final group of 10 datasets.
Four major types of AD mouse models are among the
10: amyloid transgenic models, tau transgenic models,
knock-out (KO) models and anti-NGF AD11 (categorized
as “other”). Individual studies varied in their use of male or
female animals, with both sexes included in the aggre-
gated data. For overviews of the datasets, see Tables 1, 2.

The quality of the raw expression data of Affymetrix
arrays was evaluated as described in (Rogic et al., 2016).
All hippocampal samples using Affymetrix arrays passed
the quality control procedures. Such raw data quality
control procedures were not available for Agilent and
Illumina arrays. To standardize data processing, Af-
fymetrix and Agilent arrays were robust multi-array aver-
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age (RMA) background corrected by affy (Gautier et al.,
2004) and limma (Ritchie et al., 2015) R packages (RRID:
SCR_012835, RRID:SCR_010943 respectively) followed
by quantile normalization and log2 transformation. Illumina
arrays were quantile normalized and log2 transformed. Sam-
ples with brain tissues other than hippocampus were
discarded after normalization. Samples that were outliers
(two standard deviations away from the mean sample-to-
sample Pearson correlation within a dataset) were removed
and the remaining samples were batch-corrected for each
dataset by ComBat (Johnson et al., 2007; RRID:
SCR_010974) if batch information was available.

The time points when mouse models first develop phe-
notypes that are similar to the earliest clinical symptoms
for diagnosis in AD were used to define early and late
phases of AD. The mouse phenotypes of AD mouse mod-
els analyzed were based on the behavior data from orig-
inal publications, or the publications cited in the original
paper. Mild cognitive decline is an early diagnostic symp-
tom in AD patients (Webster et al., 2014). Cognitive im-
pairment is often assessed by water maze test in AD
mouse models. Therefore, AD mouse samples that did not
display impairment in memory and learning measured by
water maze tests were categorized as early phase AD
samples, while the rest as late phase AD samples. The
final dataset constituted data for early time points with
controls (116 samples) and late time points with controls
(96 samples).

To allow cross-platform comparison, within each data-
set, we removed non-specific probes (i.e., probes that

mapped to multiple genes), probes that did not map to
any genes, and probes that contained missing expression
values in one or more samples. When more than one
probe mapped to a gene, we retained only the probe with
the highest median expression value to represent the
mapped gene. Not all the genes are available on all plat-
forms used by the studies; we selected genes that were
present in more than at least 2/3 of the platforms as a
compromise between maximizing the number of genes in
the analysis and the requirement to have multiple mea-
surements to perform a mega-analysis. For each disorder,
two integrated datasets were created by combining sam-
ples across studies from each disease phase. Within each
integrated dataset, gene expression values were quantile
normalized to harmonize scales across studies. We then
filtered each dataset to remove non-expressed genes. To
set the threshold for filtering, we were guided by the
expression level of sex-specific genes (Toker et al., 2016).
The signal for sex-specific genes in the non-expressing
sex (e.g., Y-linked genes in females) can be taken as a
rough indicator of background levels. The median expres-
sion value of non-expressed sex-specific genes from all
samples was 5.2, and thus, we filtered genes with expres-
sion value lower than 6 as a more stringent threshold. For
the number of genes in each disease phase after gene
filtering, see Table 1.

Most of AD mouse models analyzed in this project were
transgenic mouse models with transgenes under the con-
trol of murine Thy1 tissue-specific regulatory elements.
The microarray probesets mapped to these transgenes

Table 1. Summary of selected gene expression profiling studies for AD

Disease Phase
Number of

studies
Number of

mouse models
Number of

controls
Number of

disease samples
Total

samples
Total unique

genesc

AD Early 4 9 61 69 116 10,853
Late 8 8 50 55 92 10,366

Total 10a 12b 84c 124 208 11,071d

a Two AD studies are categorized in both early and late disease phases.
b There are shared mouse models between early and late phases, and across studies.
c A total of 27 control samples were used as age-matched controls in both early and late phases in dataset GSE64398.
d Total unique genes are counts after removing genes with low expression values.

Table 2. Details of analyzed AD mouse model studies

Model
types Mouse model(s) Study (dataset) Phase(s) Samples Platform Genes M/F

Amyloid Tg2576 GSE36237 (Kleiman et al., 2010) Early 16 (8/8) GPL1261 18118 0/16
GSE1556 (Stein et al., 2004) Late 4 (2/2) GPL81 8237 0/4
GSE15056 (Pereson et al., 2009) Late 4 (2/2) GPL7202 19459 0/4

5xFAD GSE52022 (Noh et al., 2014) Late 4 (2/2) GPL1261 18118 0/4
GSE50521 (Paesler et al., 2015) Late 12 (6/6) GPL6096 16743 8/4

J20 GSE14499 (Nagahara et al., 2009) Late 6 (2/4) GPL1261 18118 2/4
Amyloid
TAU

TAS10, TPM, TASTPM
TAU

GSE64398 (Cummings et al., 2015;
Matarin et al., 2015)

Early, late 108(39/69) GPL6885 17339 108/0

TAU rTg4510 GSE53480 (Polito et al., 2014) Late 8 (4/4) GPL1261 18118 5/3
KO Aplp2 KO, App KO,

App/Aplp2
double-conditional
KO (NdC-KO)

GSE48622 (Li et al., 2010) Early 16 (4/12) GPL1261 18118 16/0

Other Anti-NGF AD11 (AD11) GSE63617 (D’Onofrio et al., 2011) Early, late 30 (15/15) GPL7042,
GPL7202

19459 0/30

Number of control and case samples are shown in parentheses (control/case). Genes refer to the number of unique genes mapped. M/F: number of male and
female samples. Amyloid: amyloid transgenic models; TAU: TAU transgenic models.
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and the endogenous copy, which artificially increased the
measured expression of Thy1. Therefore, Thy1 was re-
moved from the mega-analysis in AD mouse models.

Estimation of cell-type proportion changes
Cell-type proportions of three glial cell types (microglia,

astrocytes, oligodendrocytes) and three neuronal cell
types (pyramidal cells, dentate granule cells, GABAergic
cells) were estimated by marker gene profiles (MGPs)
using pre-selected markers specific to the murine hip-
pocampus (Mancarci et al., 2017). Expression of the
marker genes were first corrected for between-study vari-
ation for each disease phase and then used as input for
MGP estimation. For presentation MGPs were normalized
to a range between 0 and 1, where the sample with the
highest profile was assigned to 1 and the lowest was
assigned to 0. Wilcoxon rank-sum test and computation
of false discovery rates (FDRs) using the Benjamini–Hoch-
berg procedure (Benjamini and Hochberg, 1995) were
applied to test whether the profiles were significantly
different between disease mouse models and controls for
each cell type.

Fitting linear mixed-effects models (LMMs) and
jackknife procedure to rank genes

LMMs allow modeling multiple sources of variation,
such as mouse model-specific effects, laboratory effects,
and difference between disease models and controls
(Demirkale et al., 2010). For each disease phase group,
two LMMs were fitted for each gene using the “lmer”
function in R package lme4 version 1.1-12 (RRID:
SCR_015654), via maximum likelihood estimation [lmer-
(REML � F); Bates et al., 2015]. The first LMM corrected
for between-study variations without correction for the
MGPs; the second LMM corrected for both between-
study variations and MGPs. The p value for the signifi-
cance of the fixed effect of disease state (i.e., disease and
normal states) was obtained by the “anova” function in R
package stats version 3.3.1 (Chambers and Hastie, 1991).
Ranking of upregulated or downregulated genes was
based on p values in ascending order and the direction of
expression changes between mouse models and con-
trols. FDR estimated by the Benjamini–Hochberg proce-
dure was computed for each gene. Significantly DE genes
had FDR � 0.05. A jackknife procedure was applied to
yield more robust gene rankings.

Functional enrichment analysis
Functional enrichment analysis was performed using

the threshold-free precision-recall algorithm in ErmineJ
version 3.0.2 (Gillis et al., 2010; RRID:SCR_006450) to
determine enrichment of Gene Ontology (GO) terms for
the ranked list of genes from the jackknife procedure. We
used the multifunctionality-adjusted enrichment rankings
provided by ErmineJ to reduce the distorting effect of
highly annotated genes (Ballouz et al., 2016).

Results
We reanalyzed a total of 208 gene expression profiles

from 10 AD mouse model datasets (Tables 1, 2). With the
goal of identifying shared transcriptional alterations among

different mouse models in the early and late phases, two
separate mega-analyses were conducted: analysis of sam-
ples from “early” time points (before most pathologic ef-
fects), and a later time point. An important feature of our
analysis is the use of MGPs. Used directly, MGPs can be
used as an estimate of relative cellular proportions (Man-
carci et al., 2017). We also used MGPs as covariates in
our linear models to help isolate changes due to regula-
tion as opposed to changes in cellular makeup of the
tissue.

Estimation of cell-type proportion changes
The results of MGP estimation were largely consistent

with the expected cell-type changes in the early and late
phase mouse samples. Relative to controls, mouse model
samples in the early phase were predicted to show min-
imal or small cellular composition changes while late
phase samples would show more substantial changes. In
agreement, with this hypothesis, during the early phase,
MGP analysis indicated no significant changes in neurons
and glial cells (Fig. 1A,B). During the late phase, AD
mouse models had estimated reduced dentate granule
cells and pyramidal cells (Fig. 1A), and increased astro-
cytes and microglia (Fig. 1B).

Mega-analysis of gene expression in AD mouse
models

Using a mixed effect modeling approach with MGPs as
covariates (see Materials and Methods), we identified ex-
pression changes associated with early and late phases of
the AD mouse models. As expected, early changes were
subtle. The mega-analysis of 116 gene expression profiles of
mouse models and controls in the early phase revealed
small but consistent expression changes (Fig. 2). Only four
upregulated and three downregulated genes of the top
genes were significant at an FDR of 0.05. A few of the top
genes were functionally related based on the enrichment
analysis. Three of the top 40 upregulated genes (Sqle,
Msmo1, and Nsdhl ranked 2, 3, and 7; FDR � 0.05 except
Nsdh1, which met an FDR of 0.08) are involved in cholesterol
biosynthesis. C1qa, C1qb, and C1qc, which are involved in
the classical complement cascade, were among the top 40
upregulated gene in the early phase (ranks 28, 12, and 29,
meeting an FDR of 0.12).

In contrast to the subtle changes in the early phase, the
expression change signals in the late phase were stronger
(Fig. 3). The analysis also detected down-regulation of a
known AD risk gene, Trem2, which had also been re-
ported in the original publications of two studies analyzed.
Several GO terms were found significantly enriched in the
top downregulated genes, including “neuronal cell body”
and “regulation of neurogenesis.”

We note that using MGPs as covariates have important
effects on the results, which we documented by compar-
ing the results of fitting models in which MGPs are not
included. First, after MGP correction, as expected the
marker genes included in the MGPs themselves are
down-ranked, especially in the late phase. The number of
significant DE genes (FDR � 0.05) in the late phase was
greatly reduced after MGP correction:13.64% of the total
genes were DE genes before correction and dropped to
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0.22% after correction. We anticipated that the additional
parameters included in the models would reduce power,
so the fact that fewer genes met the FDR threshold was
not in itself surprising. However, the gene rankings
changed considerably, especially in the late phase. The
Spearman correlation coefficients of before and after cor-
rection in the late phase is 0.38, compared to 0.80 in the
early phase. Thus, MGP correction affected both the
number of DE genes and the gene rankings, which indi-
cated that cellular composition changes (as measured
by MGPs) contributed to bulk tissue gene expression
changes, especially in the late disease phase.

The gene rankings of early and late AD were quite
different, indicating phase-specific effects. The Spearman
correlation coefficient for gene ranking of all the genes
between early and late phase was 0.24 before MGPs
correction and 0.25 after. There were very few genes in
common among the top 100 dysregulated genes across
the phases. Specifically, only the top genes involved in
cholesterol biosynthesis (Sqle, Msmo1, Nsdhl) were dys-
regulated in concordance in both phases (FDR � 0.05) for
both before and after MGPs correction.

Discussion
We identified consistent transcriptomic alterations

across mouse models of AD. By categorizing samples
into early and late disease phases, gene expression
changes specific to the disease phase were revealed. This
revealed subtle but biologically interpretable changes
shared across mouse models in the early phase, which
may reflect reveal early disease mechanisms. Changes in
the late phase were stronger, and as expected were more
associated with changes in cellular populations. The top-
ranked genes in the early phase were not always affected
in the late phase, and vice versa, indicating phase-
specific expression changes.

Consistent transcriptomic alterations were identified
across different mouse models

Candidate genes identified in the original published
reports were often inconsistent, though some genes are
reported in more than one study. This may be due to
differences in analysis methods and thresholds used, but
doing a mega-analysis has the advantage of facilitating
detection of weaker signals. Thus our mega-analysis was
able to capture consistent signals that were not reported
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Figure 1. MGPs in AD mouse models. Each row of plots represents MGPs for one cell type as labeled at right. Each point represents
one sample. Boxplots representing the interquartile range and the sample means are also shown. The vertical axis is normalized to
the range 0 and 1. ��� FDR � 0.01. A, Neurons B, Glial cells.
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in the original source studies. For example, in the late AD
phase, two out of seven studies reported the AD risk
gene, Trem2, in their hit lists. However, we observed
consistent up-regulation of Trem2 in other studies (Fig.
4A). Similarly, we identified genes that had not been
reported in any of the original studies, included a top
upregulated gene, Msmo1, in the late AD phase (Fig. 4).

Applying cell population proportion correction
revealed transcriptional changes of cell type-specific
regulatory events

We used MGPs to adjust the expression profiles for the
effects of cellular proportion changes (Mancarci et al.,
2017). We note that MGP analysis should interpreted as
reflecting cellular proportions with caution, as it is an
indirect measure. A more conservative interpretation of an
MGP change is a cell type-specific change in expression.
However, given the known neurodegeneration in these
mouse models, changes in cellular proportions are the
likely cause in MGP shifts in our study (Serrano-Pozo
et al., 2011). Indeed, the cell-type proportion changes as
estimated by MGPs in AD mouse models were consistent
with previous mouse and human studies (Schmitz et al.,
2004; Serrano-Pozo et al., 2011; Hokama et al., 2014),
and indicated neuronal loss and gliosis in the hippocam-
pus in the late phase (Fig. 1A,B). The lack of significant
proportion changes of neurons and glial cells before the

occurrence of cognitive impairment in AD mouse models
(Fig. 1A,B) also agreed with a report that cognitive impair-
ment, neuronal loss and gliosis occur concurrently in the
hippocampus of AD mouse model J20 (Wright et al.,
2013). Therefore, we interpret the MGP shifts as cellular
proportion changes while keeping the indirect nature of
the measure in mind.

The changes of gene rankings, and decreased DE sig-
nal after MGPs correction, implies that the gene expres-
sion changes, especially in the late disease phase, were
substantially driven by changes in cell-type proportions.
Adjusting MGPs can reveal cell type-specific transcrip-
tional changes. Some of the markers remained top-
ranked of the same direction of regulation even after
correction, such as top-up-ranked microglia markers
Cd68 and Tyrobp, and astrocyte marker Slc14a1 in the
late AD phase remained top-up-ranked after correction.
Because the dysregulation of these marker genes cannot
be fully explained by the MGP changes, they may indicate
changes at transcriptional regulation level within microglia
that contribute to disease pathophysiology. However, be-
cause the changes in composition are confounded with
the experimental condition, it is also possible that some
residual effects of cellular proportion remain even after
including MGPs as covariates. Ultimately resolution of cell
type-specific changes in gene expression in these mod-
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Figure 2. Top 20 upregulated and downregulated genes for late phase. Expression values are corrected for studies and MGPs. Each
column is a brain sample, each row is a gene. For display purposes, each row is z score transformed. Gray cells represent missing
values. A gap separates the upregulated genes (top) and the downregulated genes (bottom).
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els, especially at late stages, will require cell type-specific
transcriptomic studies.

Shared gene expression changes revealed
upregulation of genes in cholesterol biosynthesis
and classical complement cascade in AD mouse
models

Our mega-analysis of the early phase revealed up-
regulation of genes in cholesterol biosynthesis and clas-
sical complement cascade. The changes were subtle in
the early phase compared to the late phase. However, the
results had some biological coherence as suggested by
the GO enrichment analysis. Thus, the enrichment of
genes involved in cholesterol biosynthesis in both early
and late phases, even after MGP correction, suggested
chronic dysregulation in cholesterol biosynthesis. Up-
regulation of genes in cholesterol biosynthesis has been
also observed in an AD amyloid transgenic mouse model,
APP23 (Tseveleki et al., 2010). Many lines of evidence
have linked cholesterol to AD, and to A� production in
particular (Puglielli et al., 2003; Wood et al., 2014), though
the interpretation and implications are still unclear. In
mouse and cell culture studies, decreased brain choles-
terol levels can reduce A� abundance (Di Paolo and Kim,
2011; Wood et al., 2014). Cleavage of APP by �-secretase
and �-secretase (the amyloidogenic pathway) mainly oc-
curs in lipid rafts of the plasma membrane, whereas
�-secretase of the non-amyloidogenic pathway tend to
localize at the non-lipid-raft sites (Kim et al., 2016). Lipid
rafts have high concentration of cholesterol (Kim et al.,
2016). Increased level of cholesterol enhances localization
of APP, �-secretase and �-secretase to the lipid rafts, and

subsequently promotes A� production (Marquer et al.,
2011; Kim et al., 2016). However, the mechanisms that
initiate the increased gene expression of cholesterol bio-
synthesis genes in mouse models are not known. The
majority of samples analyzed here were amyloid trans-
genic models, which express human transgenes (APP,
PSEN1, PSEN2) with known AD associated mutations
that promote APP processing through the amyloidogenic
pathway. Expression of these transgenes could play a role
in promoting the expression of cholesterol biosynthesis
genes, which lead to increased cholesterol level that can
accelerate A� production. The most established AD risk
factor is apolipoprotein E (ApoE, encoded by APOE),
which mediates cholesterol metabolism in the brain and is
found in A� plaques and neurofibrillary tangles (Yang and
Song, 2013; Ries and Sastre, 2016). It has been shown
that the high-risk isoform APOE4 has lower efficiency in
transporting cholesterol from astrocytes to neurons com-
pared to the neutral isoform APOE3, and lead to synaptic
dysfunctions (Bu, 2009). Our results suggest cholesterol
may play a role in AD-like process initiation and progres-
sion in mouse models.

Complement pathway genes, C1qa, C1qb, and C1qc,
were among the top-ranked upregulated genes in the
early phase, suggested up-regulation of genes in the C1q
pathway in early disease progression. The up-regulation
of C1q pathway, which initiates classical complement
cascade, has been linked to early synaptic loss before A�
accumulation, and is a response to injury in mouse model,
and could be neuroprotective against misfolded proteins
(Benoit et al., 2013; Hong et al., 2016). C1q pathway
genes were still differentially upregulated in the late
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Figure 3. Top 20 upregulated and downregulated genes for early phase. As in Figure 2, but for the early phase.
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phase, however, they were no longer among the top-
ranked genes after MGP correction. This suggests that
cellular composition changes are more responsible for
RNA levels changes of C1q genes in the late phase.

In the late phase, the GO term regulation of neurogen-
esis was enriched in the downregulated genes. The result
was consistent with previous studies (Noh et al., 2014;
Matarin et al., 2015), reflecting neuronal dysfunction in the
AD mouse brain, though as noted above this could also
potentially reflect imperfect correction for proportion ef-
fects. Interestingly, GO terms related to inflammation and
the immune system were not enriched in upregulated
genes. These results are contrary to other studies, which
report up-regulations of genes related to inflammation
and immune system (Matarin et al., 2015; Saura et al.,
2015). This seeming discrepancy can be explained as a

combination of effects of cell-type proportion consider-
ations and gene function annotations. Without MGPs cor-
rection, our results did indicate up-regulation of genes in
the immune response pathways. However, closer inspec-
tion revealed that some of the microglia markers are
annotated with GO terms “immune response” and “in-
flammatory response.” This further complicates separat-
ing cell-type proportion changes regulatory effects. On
the other hand, the dysregulation of a few astrocytes and
microglia markers could not be fully explained by the
cell-type population changes and remained top-ranked
dysregulated genes after MGPs correction. For example,
Cd68, a marker for microglial activation and is correlated
with A�42 load (Zotova et al., 2011), was upregulated in
the late phase. Another microglia marker, TYRO protein
tyrosine kinase-binding protein gene (Tyrobp) and its re-
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ceptor Trem2 were among the top upregulated genes. A
previous study reported that TYROBP binds to TREM2
and promotes microglial activation (Kobayashi et al.,
2016). These results may provide some evidence of mi-
croglial activation at the cell type-specific level in AD
mouse models.

In conclusion, our mega-analysis of gene expression in
mouse models revealed consistent and disease phase-
specific transcriptional changes and cell type-specific
regulatory events, despite the considerable heterogeneity
of the mouse models of AD. The identification of shared
gene expression changes in the early phase increases our
understanding of disease initiation and progression. Pri-
oritized top-ranked genes in the early phase can be can-
didate genes to study mechanisms in disease initiation
and worthy of further investigation.
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