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Abstract

The differentiation of cells into distinct cell types, each of which is heritable for many generations, underlies many biological
phenomena. White and opaque cells of the fungal pathogen Candida albicans are two such heritable cell types, each
thought to be adapted to unique niches within their human host. To systematically investigate their differences, we
performed strand-specific, massively-parallel sequencing of RNA from C. albicans white and opaque cells. With these data
we first annotated the C. albicans transcriptome, finding hundreds of novel differentially-expressed transcripts. Using the
new annotation, we compared differences in transcript abundance between the two cell types with the genomic regions
bound by a master regulator of the white-opaque switch (Wor1). We found that the revised transcriptional landscape
considerably alters our understanding of the circuit governing differentiation. In particular, we can now resolve the poor
concordance between binding of a master regulator and the differential expression of adjacent genes, a discrepancy
observed in several other studies of cell differentiation. More than one third of the Wor1-bound differentially-expressed
transcripts were previously unannotated, which explains the formerly puzzling presence of Wor1 at these positions along
the genome. Many of these newly identified Wor1-regulated genes are non-coding and transcribed antisense to coding
transcripts. We also find that 59 and 39 UTRs of mRNAs in the circuit are unusually long and that 59 UTRs often differ in
length between cell-types, suggesting UTRs encode important regulatory information and that use of alternative promoters
is widespread. Further analysis revealed that the revised Wor1 circuit bears several striking similarities to the Oct4 circuit that
specifies the pluripotency of mammalian embryonic stem cells. Additional characteristics shared with the Oct4 circuit
suggest a set of general hallmarks characteristic of heritable differentiation states in eukaryotes.

Citation: Tuch BB, Mitrovich QM, Homann OR, Hernday AD, Monighetti CK, et al. (2010) The Transcriptomes of Two Heritable Cell Types Illuminate the Circuit
Governing Their Differentiation. PLoS Genet 6(8): e1001070. doi:10.1371/journal.pgen.1001070

Editor: Gregory P. Copenhaver, The University of North Carolina at Chapel Hill, United States of America

Received May 5, 2010; Accepted July 15, 2010; Published August 19, 2010

Copyright: � 2010 Tuch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from the National Institutes of Health to ADJ and by Life Technologies. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Some of the authors (BBT, CKM, FMD) of this manuscript are or were employees of Life Technologies, which manufactures the
sequencing instrument and some materials used in this study.

* E-mail: ajohnson@cgl.ucsf.edu

. These authors contributed equally to this work.

Introduction

How differentiated cell types are epigenetically maintained

through repeated cell division is a topic of intensive study [1,2],

both for its role in basic developmental processes [3] and its

relevance to the advancement of human stem cell therapeutics [4].

However, as a basic model of differentiation, stem cell systems

have several drawbacks, such as the vast number of distinct cell

types, the difficulty of isolating large homogeneous cell popula-

tions, and the challenge of genetic manipulation. A much simpler

example of epigenetic inheritance of differentiated cell states is

found in Candida albicans, the most prevalent human fungal

pathogen. This eukaryote forms two distinctive types of cells, white

and opaque, that differ strikingly in their appearance [5]

(Figure 1A and 1B), competency to mate [6], and the human

tissues to which they are likely best suited [7–11]. Each cell type is

heritably maintained through many cell divisions, with switching

back and forth between the two cell types occurring stochastically,

only once every 104 generations. The low rate of switching makes

it easy to obtain large populations of homogeneous cells of each

type. Furthermore, it is relatively straightforward to manipulate

the genes of C. albicans, which has allowed dissection of both the

regulation underlying the switch and the functions of downstream

genes that are ultimately responsible for conferring the specific

attributes of each cell type [12–16] (for reviews, see [17,18]).

A master regulator of the white-opaque switch, White Opaque

Regulator 1 (Wor1), forms interlocking feedback loops with two

other transcription regulators (Czf1 and Wor2). The three

regulators are up-regulated in opaque cells compared to white

cells and together are responsible for the establishment and

maintenance of the opaque cell type [13]. The white state is

maintained by the transcription regulator Efg1, which is down-

regulated in opaque cells [13,19]. The expression of more than

400 genes was previously found to differ between the two cell types

[20,21], but subsequent genome-wide chromatin immunoprecip-

itation (ChIP-Chip) experiments indicated that Wor1 directly
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bound only 58 of these genes [13]. Much of this discordance may

be due to indirect regulation; indeed, Wor1 itself controls a large

number of transcriptional regulators that may direct the

differential expression of additional genes. However, it was much

more difficult to explain the observation that only 30% of all

Wor1-bound regions flank at least one differentially expressed

transcript. Are the other Wor1 binding sites simply non-

functional? Do they act only on more distal transcripts and/or

only in response to certain environmental cues? Does Wor1 also

play a non-regulatory role, helping to maintain chromosome

structure via these binding sites? Although we investigate this issue

specifically in C. albicans, we note that discordance between

binding (determined by ChIP) and regulation (based on RNA

analysis) has frequently been observed in the circuits of a broad

range of organisms [22–26].

To better resolve the relationship between the binding of a

master regulator of differentiation and differential expression of its

direct targets between cell types, we performed massively-parallel

strand-specific sequencing of RNA from white and opaque cells.

Applying several novel algorithms to the resulting dataset and

merging these results with the existing ORF-based gene annota-

tion, we first annotated the C. albicans transcriptome. This revealed

that thousands of transcripts overlap another transcript on the

opposite strand, demonstrating widespread presence of anti-sense

transcription in this yeast, as in the model yeast Saccharomyces

cerevisiae [27,28]. With the new annotation we found that the

abundance of 1,306 transcripts differed between white and opaque

cell types, a 3-fold increase over the number identified previously

by microarray. We next revisited the poor correspondence

between Wor1 binding and differential expression and found a

remarkable improvement in concordance. Thus, a large fraction of

the Wor1 bound regions previously lacking proximity to a

differentially expressed gene, and therefore also lacking obvious

function, can now be assigned the function of regulating previously

invisible or inaccurately-measured transcripts.

Our analysis of the Wor1 circuit revealed several unusual

properties. For example, the targets of Wor1 have abnormally long

upstream intergenic regions and un-translated regions (UTRs). We

show here that many of these long UTRs are cell-type-specific

(that is, the transcript length is differentially regulated) and thus

may function to bring additional layers of regulation to the

differentiation circuit. A meta-analysis of the Oct4 circuit [29–31],

which governs the pluripotency and differentiation of mouse

embryonic stem cells, reveals many of these same ‘‘unusual’’

properties. These surprising similarities across vast evolutionary

distances, combined with many other shared features, suggest that

several hallmarks of cell differentiation circuits exist broadly across

eukaryotes.

Results

The white and opaque transcriptomes
To characterize the transcriptomes of white and opaque cells,

we sequenced the poly(A) fraction of RNA extracted from replicate

white and opaque cell cultures (Materials and Methods and

Figure 1B), expecting to find messenger RNAs, polyadenylated

Figure 1. RNA sequencing of white and opaque cells. (A) White
and opaque cells have distinct morphologies. (B) Summary of
experimental design. (C) Summary statistics for alignments of RNA
sequence reads. Read counts listed are expressed in millions (left
column) or as a percentage of the total reads processed (right column)
for each sample.
doi:10.1371/journal.pgen.1001070.g001

Author Summary

The differentiation of cells into distinct cell-types, each of
which is ‘‘remembered’’ for many generations, underlies
the development of both healthy and cancerous tissues.
Such differentiation, however, is not restricted to multi-
cellular organisms: ‘‘white’’ and ‘‘opaque’’ cells of the
unicellular fungal pathogen Candida albicans are two
heritable cell-types, each thought to be adapted to unique
niches within their human host. Here we examine the
differences between these two cell-types by sequencing
their RNA contents and subsequently reconstructing and
comparing their gene expression profiles. We know that
the transcription factor Wor1 plays a central role in
mediating these expression differences. As with many
other transcriptional regulators, however, a major unre-
solved issue is the apparent discordance between the
genomic locations to which Wor1 binds and whether
neighboring genes are differentially expressed. Here we
resolve this discordance, showing that hundreds of Wor1
binding sites, previously without apparent function,
actually flank differentially-expressed genes that were
undiscovered, or not measured accurately, before. Addi-
tionally, we find that transcripts regulated by Wor1 have
many unusual properties, several of which we also observe
for transcripts regulated during the development of
mammalian embryonic stem cells, suggesting they may
be general hallmarks of cell differentiation.

The Transcriptomes of Two C. albicans Cell Types
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non-coding RNAs, and abundant non-polyadenylated transcripts

that persist through the purification steps. Importantly, the

sequencing libraries were prepared using an approach that

preserves the genomic strand from which the sequenced RNA

fragments were originally transcribed (see Materials and Methods

and Figure S1) [32]. Our sequencing runs yielded 29–136 million

50-base sequence reads per sample, which were subsequently

aligned to a filter database (containing, e.g., rDNA sequences) and

then to the Candida albicans genome (build Ca21) and a database of

previously annotated splice junctions (Materials and Methods and

Figure S2). An overview of the results is depicted in Figure 1C.

The majority of reads from each sample (60–68%) was successfully

aligned, allowing detection of 93–95% of previously annotated

exons with mean 50–200x sequence coverage (i.e., the number of

reads aligned across a genomic position). 37–47% of positions

were covered by an alignment in the strand-specific genome, and

423–904 deletions, which represent both splice junctions and

deletion polymorphisms relative to the haploid reference genome,

were detected (Mitrovich et al. [33], in preparation). On the

whole, we have obtained more than sufficient sequence depth from

these samples to build the first transcript annotation for C. albicans.

Candida albicans transcript annotation
Our RNA-Seq dataset allows us the first opportunity to define a

true transcript annotation for C. albicans, which until now has had

a gene annotation based primarily on computationally-predicted

open reading frame (ORF) sequence boundaries and generally not

informed by experimental data. We first developed a general

computational approach (Figure 2A) that can define a new

transcript annotation by combining an existing annotation (in this

case the ORF-based annotation) with evidence found in RNA

sequence data for un-translated regions (UTRs) and entirely novel

transcripts. This effort included the development of new methods

for the de novo identification of splice junctions and transcriptionally

active regions (TARs), which are based on gapped read alignments

and clusters of sequence coverage, respectively (Materials and

Methods, Figure S3, and Mitrovich et al. [33], in preparation). We

applied these methods to a single dataset produced by combining

the reads from all four RNA sequence libraries, reasoning that (1)

combining the datasets at this stage would be more powerful and

straightforward than combining four separate annotations further

downstream, and (2) the different datasets were sufficiently similar

to one another. This is supported by the high reproducibility of

biological replicates (r = 0.9520.99; Figure S5) and the observa-

tion that most exons, when expressed in both cell types, appear to

extend to roughly the same boundaries.

Rather than providing a completely de novo gene annotation (as

for S. cerevisiae in Yassour et al. [34], for example), we sought to

leverage the existing ORF-based annotation to provide an updated

annotation in which existing transcripts, if expressed, were

augmented with 59 and 39 UTRs, and new, isolated clusters of

expression (i.e., those not overlapping an annotated exon on the

same strand) were added to the annotation as novel TARs

(nTARs). Thus, we devised a method to merge the splice junction

and TAR-finding output with the existing ORF-based annotation

(Materials and Methods and Figure S4) and applied it to our

datasets, resulting in the new C. albicans transcript annotation

(Tables S1, S2, S5; summarized in Figure 2B).

The new transcript annotation contains 23% more transcripts

(N = 7,823) covering 13% more of the genome (76.1% versus

63.6%) than the old annotation. We estimate that roughly 1,048 of

these transcripts are non-coding because they do not contain a

canonical ORF that is at least 120 nucleotides long (i.e., encoding

a peptide at least 40 amino acids long), which increases the

Figure 2. Defining a new transcript annotation for C. albicans. (A)
Summary of computational workflow. (B) Summary statistics comparing
the old ORF-based and new RNA-Seq-based transcript annotations.
doi:10.1371/journal.pgen.1001070.g002

The Transcriptomes of Two C. albicans Cell Types
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number of non-coding RNAs (ncRNAs) annotated in C. albicans by

nearly 500%. However, there are also a large number of new

coding transcripts (i.e., transcripts that contain putative ORFs

encoding peptides 40 or more amino acids long), leading to an

estimated 9% increase in the number of coding transcripts. Many

of these ORFs may have been missed in previous annotations due

to their short length (91% are shorter than 100 amino acids) and,

in some cases, due to lack of conservation in other species. It is

likely that some of the ORFs defined here by our arbitrary length

cutoff are not translated into protein. On the whole though, the

number of putative ORFs at least 40 amino acids long found in

novel transcripts (N = 561) is significantly higher than expected by

chance (median N = 453; P-value ,0.0001 by simulation;

Materials and Methods), suggesting that many are translated into

protein. As detailed in the next section, at least 18 of these short,

novel ORFs are likely to serve an important function in opaque

cells.

In the new transcript annotation 59 and 39 UTRs of median

length 99 and 136 bases were defined for 5,465 and 5,768

transcripts, respectively. These estimates are longer than estimates

of 59 and 39 UTR length based on tiling arrays (68 and 91 in

David et al. [35]), but closely resemble those based on RNA-Seq

data (111 and 142 in Yassour et al. [34]) for the related model

yeast, Saccharomyces cerevisiae. Finally, 50% of transcripts in the new

annotation overlapped transcripts from the opposite strand by at

least 1 bp and 31% did so across more than 10% of their length,

indicating that, as in other eukaryotes [27,28,36], there is

widespread antisense transcription in C. albicans. This observation

underscores the importance of sequencing RNA in a strand-

specific manner. Overall, the new transcript annotation described

here represents a dramatic revision from previous annotations that

microarrays were designed to assess. Using this new annotation we

revisited the differences in gene expression between white and

opaque cells.

Transcripts differentially expressed between white and
opaque cell types

We determined which of the 7,823 newly defined transcripts

were differentially expressed between white and opaque cell types

by employing a likelihood ratio test [37]. We required a 2-fold or

greater change in expression and false discovery rate (FDR) of

1024 or less, which resulted in a set of 1,306 differentially-

expressed transcripts (Table S3). As expected, we find strong (50-

fold) up-regulated expression of WOR1, the gene that encodes a

master regulator of white-opaque switching (Figure 3A). As

predicted by a previous study [14], WOR1 has an unusually long

59 UTR (1,978 bp, compared to the genome-wide median length

of 99 bp). Unexpectedly, the lower WOR1 expression in white

cells is associated with increased expression on the strand

opposite this long UTR, suggesting an alternative internal

antisense promoter is active and may be repressing WOR1

expression in white cells.

To confirm the quality of these data we compared them directly

to data generated using microarrays that are commonly used to

study gene expression in C. albicans. We hybridized the same

samples used for RNA sequencing (Materials and Methods) and

examined the fold-change measurements produced by each

technology for all previously annotated transcripts (Figure 3B).

We found a strong overall correlation (r = 0.79), which, as noted in

other comparisons of RNA-Seq and microarray data, is stronger

for high abundance transcripts (r = 0.89) than it is for low

abundance transcripts (r = 0.71), which are generally more

accurately measured by RNA-Seq [32,37,38].

The 1,306 differentially expressed transcripts found here

represent a 3-fold increase in the number observed by microarray

[21], which is partly attributable to the fact that 37% of these

transcripts are novel (N = 488) and thus were not probed on

previous microarrays. Novel transcripts are unexpectedly frequent

amongst the set of white-opaque differentially-expressed tran-

scripts (N = 488 versus 218 expected; x2 P-value = 10289), a

provocative observation we can not yet entirely explain, but which

suggests an important role for non-coding transcripts and short

proteins in the white-opaque circuit. In any case, this observation

emphasizes the importance of ‘‘hypothesis-free’’ approaches to

measuring gene expression. The remaining differentially-expressed

transcripts, not recognized as such by microarray (N = 376), may

be explained by the documented, improved sensitivity and

dynamic range of RNA-Seq [38,39]; indeed, these transcripts

not discovered by microarray have 2-fold lower average

abundance than those that were, as estimated by RPKM (reads

per kb of transcript per million uniquely aligned reads).

We were especially interested in the 488 novel differentially

expressed transcripts, which fall into three major classes: (1)

antisense transcripts, (2) isolated transcripts that encode proteins,

and (3) isolated non-coding transcripts. We discuss these three

classes in turn. We found 213 novel transcripts that overlap

another transcript on the opposite strand across at least one third

of their length. NTAR_364 is a particularly informative example of

a differentially expressed novel transcript that overlaps another

transcript on the opposite strand (Figure 3C). The gene opposite

NTAR_364 is STE4, which encodes the b subunit of the

heterotrimeric G protein complex required for mating [40,41].

Mating is a process specific to opaque cells [6], and accordingly,

NTAR_364’s 14-fold down-regulation is inverse to STE4’s 8-fold

up-regulation in opaque cells. The anti-correlated expression of

these two overlapping transcripts strongly suggests a mechanism in

which NTAR_364’s expression acts to repress expression of STE4.

There is ample precedent for this type of regulation in eukaryotes

and bacteria [42–45]. To determine the prevalence of such

mechanisms in C. albicans, we examined the expression profiles of

all 759 such sense-antisense transcript pairs, filtering down to the

subset of 44 pairs in which both transcripts are significantly

changed and at least one transcript is coding (Figure 3D). Our

expectation was that we would observe strong anti-correlated

differential expression across all such pairs if these mechanisms are

prevalent and a lack of correlation if they are not. Instead, we

found a modest and significant anti-correlation (r = 20.25; P-

value = 0.05; Figure 3D). Sense–antisense pairs in which one

member is differentially-expressed are 2-fold more likely, than

expected by chance, to have the second member differentially-

expressed in the opposite direction (17% versus 8%; x2

P-value = 1024). These results suggest that some, but not all,

anti-sense transcripts act to repress the steady-state abundance of

their sense counterpart. Despite the lack of perfect anti-correlation,

there are several transcript pairs that, like the STE4-NTAR_364

pair mentioned, are considerably differentially-expressed in

opposite directions (Figure 4), which strongly suggests a regulatory

function for the novel antisense transcripts involved.

The second major class of novel, differentially-expressed

transcripts contains those that are isolated in the genome and

code for protein. In total, we identified 224 novel differentially

expressed transcripts that do not overlap a transcript on the

opposite strand. Sixty-nine of these transcripts encode a putative

protein at least 40 amino acids long. Amongst these is a group that

clusters into three genomic locations and encodes a large family of

novel, short ORFs (Figure 5A, Figure S6A and S6B). Eighteen of

the 24 ORFs in this family are encoded by transcripts that are

The Transcriptomes of Two C. albicans Cell Types
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opaque-specific, including NTAR_1179.2, which with 287-fold

higher abundance in opaque cells is the third most differentially-

expressed transcript genome-wide. Using a combination of

BLAST and PSI-BLAST against fungal genomes and eukaryotic

protein sequence databases, we identified 46 members of this

family (see sequence alignments in Figure 5B and Figure S6C), 24

from C. albicans and 22 from its closest known relative, Candida

dubliniensis. Homologs could not be identified in any other species,

further underscoring the potential importance of these genes to

opaque-cell differentiation, since these two yeast species are the

only two known to switch between distinct white and opaque

forms [46]. The neighbor-joining phylogeny inferred for these

ORFs (Figure 5C and Figure S6D) indicates that most were

present and similarly clustered in the common ancestor of C.

albicans and C. dubliniensis. Computational predictions of secondary

structure [47] indicated there are likely three b sheets followed by

two a helices in these proteins (Figure 5B) and the structure

prediction server I-TASSER [48] found a putative bacterial

hemolysin (PDB ID: 3HP7) to be the closest structural analog.

Finally, 155 of the isolated, differentially-expressed transcripts

do not appear to code for protein. At this time it is difficult to

assess their functions in a purely computational manner; thus, their

roles in the white-opaque switch await experimental character-

ization.

Figure 3. Transcripts differentially expressed between white and opaque cell types. (A) Expression and Wor1 enrichment at the WOR1
locus as visualized in the MochiView Genome Browser [68]. In this and all other genomic plots presented here, Wor1 ChIP-Chip data are plotted in the
top row (red-curves are from biological replicates of the Wor1 IP in opaque cells and orange curves are from IPs in wor1D D strains; normalized log2 IP
DNA/Input DNA enrichment values are plotted), followed by RNA-Seq data for white and opaque cells (colored green on the plus and blue on the
minus strand; values plotted are log2 sequence coverage), followed by transcript definitions in our new annotation (gray regions are coding and
white are un-translated), and finally regions determined to be Wor1-bound by the peak finding algorithm (gray boxes). For interested readers, a
MochiView database export of all the data presented in this work is provided at http://johnsonlab.ucsf.edu/mochi_files/Tuch_et_al_2010_PLoS_
Genetics.cvw. (B) Comparison of RNA-Seq and microarray measurements of differential transcript expression (for previously annotated transcripts
only). Transcripts are colored by their mean abundance across samples as measured by RNA-Seq: purple indicates mean RPKM #30 and orange
indicates mean RPKM .30. (C) The expression of STE4 is anti-correlated with the expression of its antisense transcript. (D) The expression of sense-
antisense transcript pairs is only modestly anti-correlated (r= 20.25; P-value = 0.05).
doi:10.1371/journal.pgen.1001070.g003
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In all three classes of novel transcripts we observe examples in

which the master regulator Wor1 is bound adjacent to or

overlapping the differentially expressed transcripts (Figure 3C

and Figure 5A), suggesting that these novel antisense and isolated

transcripts are directly regulated by Wor1 binding. Thus, they

may form a key, but heretofore unknown, part of the circuit.

The new transcript annotation illuminates the Wor1
circuit

To assess the concordance between Wor1 binding and

differential expression of nearby transcripts more globally we

compared the previous ORF-based and our new RNA-Seq-based

gene annotations to regions identified as Wor1-bound in

chromatin immunoprecipitation-on-tiling microarray (ChIP-Chip)

experiments [13]. We first associated Wor1-bound regions with

adjacent genes using both the new and the old annotations (Figure

S7), and then evaluated both the frequency with which Wor1

binding flanked at least one differentially expressed gene and the

frequency with which Wor1-bound genes were differentially

expressed (Figure 6). We also compared measurements of

differential expression from three different platforms: (a) hybrid-

ization to spotted PCR-product microarrays (reported previously

by Tsong et al. [21]), (b) hybridization to custom-designed Agilent

8x15k microarrays (reported here), and (c) strand-specific RNA-

Seq (also reported here). The pairing of the new transcript

annotation with the RNA-Seq measurements of differential

expression (Figure 6, first row) clearly yields the strongest

concordance between Wor1 binding and differential expression:

65% of Wor1-bound regions are associated with at least one

differentially expressed transcript. This represents a greater than 2-

fold improvement in concordance over a previously published

association [13], in which only 30% of bound regions were

observed to flank at least one differentially expressed transcript

(Figure 6, last row). In this previous association, differential

expression of transcripts was measured by spotted PCR-product

arrays designed to assay only transcripts in the old annotation. The

concordance between binding and differential expression improves

incrementally with the use of better microarray platforms (38–

40%; Figure 6, rows 5–6) and with RNA-Seq-based expression

Figure 4. A selection of sense-antisense gene pairs with the
most strongly anti-correlated expression. Each row lists a sense-
antisense transcript pair, the differential expression in opaque versus
white cells for each transcript in the pair, and whether or not each
transcript is Wor1 bound.
doi:10.1371/journal.pgen.1001070.g004

Figure 5. Three clusters of novel Candida-specific ORFs are strongly up-regulated in opaque cells. (A) Expression and Wor1 binding at
cluster A, the NTAR_1176 locus (others shown in Figure S6A and S6B), containing 7 novel ORFs on the positive strand, 6 of which are expressed only in
opaque cells. (B) Partial multiple sequence alignment of all members of cluster A (see Figure S6C for alignment of all 46 homologs) in C. albicans and
C. dubliniensis. The predicted secondary structure is noted in the final row (E = b sheet and H = a helix) [47]. (C) Compressed neighbor-joining
phylogeny of all 46 NTAR_1176 homologs found in C. albicans and C. dubliniensis (see Figure S6D for full tree).
doi:10.1371/journal.pgen.1001070.g005

The Transcriptomes of Two C. albicans Cell Types
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measurements computed using the old transcript annotation (48–

51%; Figure 6, rows 3–4). However, by far the best concordance is

found when RNA-Seq-based expression measurements are

computed using the new transcript annotation. Thus, the

dramatically improved association of master regulator binding

and cell type-specific expression observed here is attributable to

both the novel transcripts and the improved expression measure-

ments provided by RNA-Seq.

Unusual properties of the Wor1 circuit
The fact that the WOR1 gene has a 2 kb long 59 UTR and

about 6 kb of Wor1-bound intergenic DNA upstream of it

(Figure 3A) suggests that this master regulator of white-opaque

switching is under complex regulation. We next examined whether

other transcripts in the circuit have similar properties. It was

previously noted that Wor1-bound intergenic regions are, on

average, 5-fold longer than typical intergenic regions (median

3,390 bp for Wor1-bound genes versus 623 bp genome-wide)

[13]. However, given the substantial changes we have made to the

gene annotation, it was unclear whether this length bias would

remain; in particular, it seemed plausible that some of the

unusually long ‘‘intergenic’’ regions may actually contain, and thus

be due to, previously unannotated long UTRs. We find that while

genome-wide intergenic length is, on average, more than 2-fold

shorter in the new annotation (new median length = 262 bp), the

intergenic regions bound by Wor1 are still, on average, 5-fold

longer than expected by chance (new median length = 1346 bp;

Mann-Whitney P-value = 10280; Figure 7A). Unexpectedly, we

also found that 59 UTRs of Wor1-bound genes are 58% longer

than expected (median 157 bp in the circuit versus 99 bp genome-

wide; Mann-Whitney P-value = 10220; Figure 7B) and 39 UTRs in

the circuit are 22% longer than expected (median 166 bp in the

circuit versus 136 bp genome-wide; Mann-Whitney P-value = 1026;

Figure 7C).

The unusually long UTRs found in the Wor1 circuit and the

apparent change in UTR length at WOR1 (Figure 3A) motivated

us to look more generally into changes in promoter usage and

transcriptional termination between cell types, as reflected in

changes in 59 and 39 UTR length, respectively. We devised a

simple method to isolate putative cases of UTR length change,

reasoning that a change in UTR length for a given transcript could

be detected as a change in the apparent expression of the UTR that

is significantly less than or greater than what was measured for the

transcript’s coding region. We required a minimum 2-fold

difference in fold-change between UTR and coding region and

a x2 P-value less than 1025 (Materials and Methods). Using these

criteria, we identified 145 transcripts with at least one UTR

apparently changing length between white and opaque cells (Table

S4). Visual inspection revealed that not all these cases are

straightforward to interpret; however, many are, and these

provide several examples for further study (Figure 7D–7F). Most

of the cases identified here are changes in 59 UTRs (N = 111;

77%), which likely reflects an emphasis on the usage of alternative

promoters as a means of differentiating the two cell types. One of

the transcripts, EFG1, is a regulator of white-opaque switching and

was previously shown to exhibit different 59 UTR lengths in white

and opaque cells [49]. EFG1 and 26 other transcripts with

significant 59 UTR changes are also associated with Wor1 binding

nearby their genomic loci (observed frequency = 24%; expected

= 10%; x2 P-value = 1028). For several of these transcripts, such

as ORF19.2049 (Figure 7D) and EFG1 (Figure 7E), the UTR is

shorter in opaque cells and Wor1 is bound in opaque cells between

the apparent white- and opaque-preferred transcription start sites,

suggesting a direct regulatory mechanism. Other examples, such

as PPS1 (not shown) and ORF19.7060 (Figure 7F), are probably

not directly related to Wor1 binding, but may instead involve

mechanisms related to the transcription of antisense genes.

Comparing Wor1 binding to gene expression revealed an

additional feature of Wor1-controlled transcripts: direct binding of

Wor1 within a transcribed region (rather than upstream of it) is

associated with strong down-regulation of the bound transcript in

opaque cells. The non-coding transcript NTAR_913 provides a

Figure 6. Association of Wor1 binding with white-versus-opaque differential expression when different transcript annotations and
measurement platforms are employed. An RNA-Seq-based annotation with RNA-Seq-based differential expression measurements (top row)
provides the strongest concordance between differential expression and Wor1 binding. Footnotes: 1 The transcript annotation derived from RNA-Seq
data in this work. 2 The previous ORF-based gene annotation from Candida Genome Database (CGD). 3 Differential expression measurements from
RNA-Seq data reported in this work. 4 Differential expression measurements from hybridization to custom Agilent 8x15k microarrays reported in this
work. 5 Differential expression measurements from hybridization to spotted cDNA microarrays reported previously [21]. 6 Indicates whether or not a
gene expression detection threshold was employed to filter putatively dubious transcripts from the annotation prior to computing the association
between binding and differential expression. 7 Indicates whether or not the genes detected as having UTR length changes between the cell types are
considered ‘‘differentially-expressed.’’ Note that such genes may or may not be differentially expressed in the traditional sense (i.e., when considering
the entire transcript or just the coding region of the transcript).
doi:10.1371/journal.pgen.1001070.g006
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clear example of this phenomenon (Figure 7G). Genome-wide, we

found 89 cases in which a transcript overlaps a Wor1-bound

region by more than 50%, and the expression of such transcripts is

frequently white-specific (Figure 7H). This observation suggests the

prominence of an underappreciated mode of gene regulation in

which a transcription regulator may repress transcription via direct

binding to the transcribed region. Given the unusual character-

istics of the WOR1 locus and Wor1’s target genes, we next

examined whether other examples of heritable cell differentiation

circuits exhibited similar features.

Unusual properties of the Oct4 circuit governing
mammalian differentiation

One of the most studied transcription circuits is that of Oct4,

which governs the differentiation and pluripotency of mammalian

embryonic stem (ES) cells [1,50]. Oct4 is a master regulator of

Figure 7. Properties of transcripts in the Wor1 circuit. (A) The distribution of lengths for all intergenic regions and Wor1-bound intergenic
regions. The distribution of lengths for the (B) 59 UTRs and (C) 39 UTRs of all transcripts, transcripts associated with Wor1 binding, and transcripts that
are associated with Wor1 binding and differentially expressed (‘‘dEx-ed’’) between white and opaque cells. Expression and Wor1 binding at three
genes with apparent changes in UTR length between the cell types: (D) ORF19.2049, (E) EFG1, and (F) ORF19.7060. (G) Expression and Wor1 binding at
the NTAR_913 locus, an example of a gene for which down-regulation in opaque cells is correlated with overlapping binding of Wor1. (H) The
distribution of differential expression (opaque versus white fold-changes) for all transcripts, transcripts associated with Wor1 binding, and transcripts
that are directly overlapped at least 50% or 100% by Wor1 binding. The gray dashed oval highlights an enriched subset of transcripts for which
overlapping Wor1 binding is correlated with down-regulation in opaque cells.
doi:10.1371/journal.pgen.1001070.g007

The Transcriptomes of Two C. albicans Cell Types

PLoS Genetics | www.plosgenetics.org 8 August 2010 | Volume 6 | Issue 8 | e1001070



mammalian cell types in the same sense that Wor1 is a master

regulator of Candida cell types: Oct4 expression is required to

maintain the pluripotent ES cell type [51], and Oct4’s over-

expression in other cell types, along with additional factors, returns

them to the ES cell state [2,52]. Although much is known about

this circuit, we could not find any previous reports on the general

properties of the circuit (e.g., relative UTR length of Oct4-bound

genes). To determine if the unusual properties of the Wor1 circuit

in Candida are shared with the Oct4 circuit, we performed a meta-

analysis of publicly-available data, including ChIP-Seq-based Oct4

binding data [30,31] and microarray-based profiles of gene

expression during stem cell differentiation [29] (Materials and

Methods). We discovered that the Oct4 circuit of mice does indeed

share ‘‘unusual’’ characteristics with the Wor1 circuit of Candida.

Intergenic regions bound by Oct4 are 33% longer than expected

by chance (median 23 kb in the circuit versus 17 kb genome-wide;

Mann-Whitney P-value = 1023) and are 2-fold longer than

expected if they also flank a transcript that is differentially

expressed during differentiation (median 34 kb in the differential-

ly-expressed circuit; Mann-Whitney P-value = 1024; Figure 8A).

59 UTRs and 39 UTRs are also longer than expected (161 and

1048 bp in the circuit versus 137 and 727 bp genome-wide;

Mann-Whitney P-values = 1025 and 10212, respectively;

Figure 8B and 8C), but the relative magnitude of length bias for

59 versus 39 UTRs (+18% and +44%, respectively) is flipped

relative to that observed in the Wor1 circuit (+58% and +22%,

respectively). Unfortunately, the appropriate data are not yet

available to determine whether UTR lengths are frequently

changing between cell types in the Oct4 circuit of mice as they are

in the Wor1 circuit of Candida.

Discussion

By sequencing the transcriptomes of white and opaque cells

(Figure 1) and applying a novel computational approach

(Figure 2A), we have provided the first transcript annotation for

C. albicans (Figure 2B), the most prevalent human fungal pathogen.

This new view of the C. albicans transcriptional landscape includes

over a thousand newly discovered transcripts, some of which are

transcribed antisense to previously annotated genes, but many of

which are entirely isolated from other genes. A subset of these

transcripts codes for proteins, some of which are specific to Candida

species and may function in host-pathogen interactions. Overall,

the new view of gene expression in C. albicans is reminiscent of that

provided by recent sequencing of the transcriptome of another

yeast species, S. cerevisiae [28,34,38], but with two important

differences. First, we have captured a more faithful depiction of the

transcriptome by using a method that measures expression across

entire genes in a strand-specific fashion. Second, relative to the

model organism S. cerevisiae, the transcriptome of C. albicans was

poorly characterized prior to RNA sequencing. Our analysis

dramatically expands the view of transcription in this yeast,

resulting in annotations for hundreds of new coding and non-

coding transcripts and thousands of UTRs.

The revised annotation and expression data allowed us to

examine, at unprecedented resolution, the differences between two

cell types. White and opaque cells are specified by one of the

largest known transcriptional circuits in C. albicans; as discussed in

the introduction, each cell type is heritable for many generations

and switching between them is epigenetic. Our principle findings

are summarized as follows:

(1) Between white and opaque cells, hundreds of previously

unidentified transcripts are differentially-expressed. Most are

apparently non-coding, but a substantial fraction appears to

code for short, previously unrecognized proteins. On the

whole, we found 3-fold more differentially expressed tran-

scripts than were previously identified by microarray analysis.

Part of this difference can be attributed to the identification of

new transcripts and part to the greater sensitivity and dynamic

range offered by the RNA-Seq approach used here

[32,37–39,53].

(2) Among the new coding transcripts, perhaps most interesting

are 24 that encode a family of short proteins (Figure 5). The

transcripts encoding these proteins are nearly absent in white

cells (median RPKM = 0.1), but abundant in opaque cells

(median RPKM = 10.5). The presence of family members

only in the two species known to have distinct white and

opaque forms suggests a recent de novo origin, followed by an

expansion via gene duplication. Although we do not yet know

the function of these short proteins, it seems likely, based on

their narrow distribution in pathogenic fungal species, that

they are intimately linked to the adaptation of opaque cells to

their niche within the human host.

(3) Many of the non-coding, differentially-expressed RNAs are

antisense to mRNAs. In some cases the transcripts in these

sense-antisense pairs display anti-correlated differential ex-

pression between cell types (Figure 4), which likely indicates

regulation via transcriptional interference mechanisms. For

Figure 8. Properties of transcripts in the Oct4 circuit. (A) The distribution of lengths for all intergenic regions and intergenic regions that are
associated with Oct4 binding. The distribution of lengths for the (B) 59 UTRs and (C) 39 UTRs of all transcripts, transcripts associated with Oct4 binding,
and transcripts that are associated with Oct4 binding and differentially expressed (‘‘dEx-ed’’) during differentiation.
doi:10.1371/journal.pgen.1001070.g008
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example, STE4, which encodes a signaling protein required

for the opaque-specific developmental process of mating

[40,41], is strongly up-regulated in opaque cells coincident

with the strong down-regulation of its antisense transcript

(Figure 3C). This example is reminiscent of the antisense

regulation observed in S. cerevisiae of IME4 [45], which

controls initiation of meiosis, the complementary develop-

mental fate. Other non-coding RNAs are suggestive of

different types of regulatory mechanisms (see below).

(4) The integration of our RNA-Seq data with genome-wide

ChIP data provides a new understanding of the relationship

between the binding of a master transcription regulator

(Wor1) and the differentiated transcriptomes it specifies. We

found substantial (.100%) improvement of the concordance

between Wor1 binding and the differential expression of

nearby transcripts compared with our earlier analysis

(Figure 6). This new information greatly clarifies the function

of hundreds of Wor1-occupied sites in the genome that were

previously unexplained. It would not be surprising if many of

the binding sites proposed to be ‘‘non-functional’’ in other

transcription circuits [22–26] turn out to regulate transcripts

that were not previously observed or whose expression

differences were not accurately measured. This analysis also

revealed that many of the direct targets of the master

regulator Wor1 are non-coding RNAs, suggesting an

important role for regulatory RNAs in specifying the two cell

types.

(5) The Wor1-regulated mRNAs show unusually large 59 and 39

UTRs (Figure 7B and 7C), suggesting that post-transcriptional

regulation is a prevalent, although previously overlooked,

component of the regulatory circuit.

(6) Many mRNAs exhibit different 59 UTRs in white and opaque

cells (Figure 7D–7F), indicating the widespread use of

alternative promoters in specifying the two cell types.

In addition to the conclusions listed above, a comparison of the

RNA-seq data from C. albicans to those determined in other species

reveals some important differences and similarities. With the new

strand-specific data presented here we were able to systematically

examine changes in the expression of sense and antisense

transcripts. The high frequency of antisense transcripts combined

with the weak anti-correlated expression of transcripts in sense-

antisense pairs (Figure 3D) suggests that while transcriptional

interference mechanisms likely control transcription rates in some

cases, antisense transcription may also play a different role in this

yeast, perhaps acting post-transcriptionally via RNAi mechanisms

Genome-wide anti-correlated expression of sense-antisense pairs

was previously observed in S. cerevisiae [27], but in that study the

anti-correlation across all sense-antisense pairs was stronger than

what we observed here. It is possible that the difference between

species is related to the loss of mechanisms for post-transcriptional

control by antisense transcripts in S. cerevisiae, but not in C. albicans

[54]. Thus, whereas C. albicans may use antisense transcripts for a

mix of transcriptional and post-transcriptional regulation, anti-

sense transcription in S. cerevisiae may function primarily to regulate

sense transcripts through transcriptional interference.

Finally, we note several striking mechanistic similarities between

the Wor1 circuit that governs white-opaque switching in yeast and

the Oct4 circuit that controls the pluripotency and differentiation

of mammalian embryonic stem cells. In both systems, differenti-

ation is controlled by a series of master transcription regulators

arranged in interlocking feedback loops, the differentiation process

requires long periods of time relative to the cell division time, and

the differentiated states are ‘‘remembered’’ through many cell

generations [1,17,18,50]. In each system, hundreds of binding sites

for the master regulator were thought to be ‘‘non-functional’’ [25],

though, as we have shown here for the yeast system, many of these

instead are likely to impart cell-type specific expression to

previously unannotated transcripts. In addition, amongst the

direct targets of the master regulators is an abundance of genes

that encode transcription regulators themselves [13,29,55] and

genes with unusually long upstream intergenic regions (compare

Figure 7A to Figure 8A) and abnormally long UTRs (compare

Figure 7B and 7C to Figure 8B and 8C). It seems likely that the

latter two characteristics reflect a large number of regulatory

inputs to genes of these circuits. The expanded upstream regions

may also allow the formation of more complex tertiary chromatin

structures involved in gene regulation [56,57]. Regardless of their

function, they are clearly identifiable landmarks of both circuits.

We have also shown here that many of the long UTRs are

regulated, in the sense that they are longer in one cell type and

shorter in the other. Finally, it appears as though non-coding

RNAs are an important component of both circuits [31]. Taken

together, these findings suggest an unexpected level of sophistica-

tion is required to maintain distinct cell types through many cell

divisions—whether in a relatively simple fungal system with only

two cell types, or in a complex mammalian developmental system

involving numerous differentiated tissues.

Materials and Methods

RNA sample preparation
White cells of mating type a/a were selected by growth of C.

albicans strain QMY23 [58], a derivative of the sequenced strain

SC5314, on sorbose medium [59]. Opaque cell lines were then

isolated following spontaneous cell-type switching. Liquid cultures

of white or opaque cells (two samples of each, referred to

throughout the manuscript as white and opaque replicate #1 and

white and opaque replicate #2) were grown at 23uC in SC

medium [60] supplemented with 100 mg/l uridine to an OD600 of

1 (log phase growth). Samples (5 ml) were collected by

centrifugation (5 min, 2000 g, 4uC), and pellets frozen in liquid

nitrogen. Total RNA was extracted from frozen pellets as

described [61]. For each sample, poly(A) RNA was isolated from

50 mg of total RNA by two rounds of purification using a

Poly(A)Purist MAG kit (Ambion).

Whole transcriptome (WT) library preparation
To construct libraries suitable for SOLiD System sequencing

(Figure S1), each poly(A)-selected RNA sample (150–300 ng) was

fragmented in a 10 ml volume by incubation with 1 unit of RNase

III and 1X reaction buffer (Ambion) for 10 minutes at 37uC.

Fragmented RNA was then immediately diluted to 100 ml and

purified using a RiboMinus Concentration Module (Invitrogen)

following manufacturer’s protocol, with the following modifica-

tions: sample was initially mixed with 100 ml Binding Buffer and

250 ml ethanol, column was washed only once with 500 ml Wash

Buffer, and purified sample was eluted in 20 ml water. RNA

fragmentation was confirmed and sample quantified using an

Agilent 2100 Bioanalyzer, with an RNA 6000 Pico Chip, following

manufacturer’s protocol. 50 ng fragmented RNA was dried by

vacuum centrifugation at low heat, then suspended in 3 ml water.

An amplified cDNA library was constructed using components

from the SOLiD Small RNA Expression Kit (Ambion). Hybrid-

ization and ligation of Adaptor Mix A to the fragmented RNA and

reverse transcription were carried out according to manufacturer’s

protocol, but with 18 h ligations and no RNase H treatment.

cDNA was brought up to 100 ml and purified using a Qiagen
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MiniElute PCR Purification Kit, following manufacturer’s proto-

col. Half of the eluted cDNA was mixed with an equal volume of

loading dye (95% formamide, 0.5 mM EDTA, 0.025% each

bromophenol blue and xylene cyanol FF), heated to 95uC for

3 min, then cooled immediately on ice. Sample was run on a 7 cm

denaturing 7M urea/1X TBE/6% polyacrylamide gel at 180V for

17 min, then stained with SYBR Gold Nucleic Acid Gel Stain

(Invitrogen). DNA was visualized by UV-illumination, and

material between 100–200 nt excised by scalpel. The excised

region was further cut into 4 vertical strips (such that each

represented the same DNA size distribution). Amplification was

performed directly on gel strips again using components from the

SOLiD Small RNA Expression Kit (Ambion). Two 100 ml PCR

reactions were performed, each with one gel strip, 1X PCR Buffer,

0.2 mM dNTP mix, 2 ml AmpliTaq DNA Polymerase, and 2 ml

SOLiD PCR Primer Sets 1, 2, 3 or 4 (for white and opaque sample

replicates #1 and white and opaque sample replicates #2,

respectively). Reactions conditions were 95uC (5 min); 16 cycles of

95uC (30 sec), 62uC (30 sec), and 72uC (30 sec); 72uC (7 min). The

two amplification reactions were pooled and purified using a

PureLink PCR Micro Kit (Invitrogen) following manufacturer’s

protocol, but combining two sequential elutions. To ensure

appropriate size distributions (.75% of product .140 bp),

products were assayed using a Bioanalyzer DNA 1000 chip; yields

ranged from 360–1140 ng.

Emulsion PCR and sequencing of WT libraries
Templated beads were generated for sequencing using standard

manufacturers’ protocols. Beads from the first pair of white and

opaque libraries (‘‘Replicate #1’’) were deposited onto a full slide

with 8 other barcoded libraries not presented here. Beads from the

second pair of white and opaque libraries (‘‘Replicate #2’’) were

deposited onto two quadrants of a slide each. Massively parallel

ligation sequencing was carried out to 50 bases using Life

Technologies SOLiD System V3 and following the manufacturer’s

instructions.

Hybridization of cDNA to microarrays
For microarray analysis, we used aliquots of the same total RNA

samples used to generate the WT libraries (replicate #2; discussed

above). Aminoallyl-labeled cDNAs were synthesized using 5 mg of

total RNA in 50 ml reverse transcription reactions with 250U

SuperScript III Reverse Transcriptase (Invitrogen), as described

previously [58]. The cDNA samples were dried in a speed-vac to

#9 ml total. Samples were then brought to 9 ml with water and

supplemented with 1 ml of fresh 1M Na Bicarbonate, pH 9.0. Cy3

and Cy5 dyes were prepared by re-suspending Amersham mono-

reactive dye packs (Cat. #PA23001 and PA25001) in 10 ml DMSO,

and 1.25 ml of either Cy3 or Cy5 were added to each sample.

Labeling reactions were incubated for one hour at room tem-

perature in darkness. Dye-coupled cDNA samples were purified by

adding 800 ml of Zymo DNA binding buffer (Zymo Research) to

each sample and loading onto Zymo-25 columns. The remainder of

the purification was performed as per the manufacturer’s directions,

and the samples were eluted with 40 ml of water. For each

competitive hybridization, 0.2 mg each of Cy3 and Cy5 labeled

cDNA were combined in 25 ml final volume of water, incubated at

95uC for 3 min, cooled to room temperature, mixed with 25 ml of

Agilent 2x GE hybridization buffer (HI -RPM), and loaded onto

individual ‘‘blocks’’ (40 ml each) on Agilent 8x15k custom gene

expression microarrays. Hybridization was carried out at 65uC for

16 hours and the arrays were washed with Agilent wash buffers as

per the manufacturer’s recommendations.

Alignment of transcriptome reads
Whole transcriptome reads were aligned to a modified version

of the Assembly 21 release of the Candida albicans genome [62]. As

this is a haploid assembly, known single nucleotide variation

between alleles from the most recent diploid assembly (Assembly

19, [63]) was mapped to Assembly 21, and the genome sequence

was modified to reflect these ambiguous positions, allowing

expressed sequences from either allele to be aligned equivalently.

Alignment was performed with Life Technologies’ SOLiD Whole

Transcriptome Pipeline [32,64]. This software is open-source

and freely available (http://solidsoftwaretools.com/gf/project/

transcriptome/). An overview of the alignment strategy is

presented in Figure S2. In all the analyses of gene expression

presented here, only reads that were both uniquely and fully

aligned were considered. A ‘‘uniquely and fully’’ aligned read is

defined as a read with a max-scoring alignment to the genome (1)

scoring at least 31 (alignment score is calculated with a match

score of +1 and a mismatch score of 22), (2) scoring at least 9

higher than any of the other alignments of that read to the

genome, and (3) at least 40 bp long. All sequence data have been

deposited at the MIAME compliant Gene Expression Omnibus

(GEO) database at the National Center for Biotechnology

Information (http://www.ncbi.nlm.nih.gov/geo) and are accessi-

ble through accession number GSE21291.

Finding splice junctions
Known and novel splice junctions were identified by looking for

sets of read sequences whose alignments share a gap (specifically, a

deletion relative to the reference) with the same genomic start and

end coordinates. We determined empirically that by requiring at

least 5 such reads, and considering only deletions of at least 50

nucleotides, we captured, and thus validated, 85% of the 421

known junctions, while also predicting 158 novel junctions or

deletions. False positives were filtered from this set by requiring

matches to splice motifs and by removing deletions caused by

obvious artifacts (e.g., cleavage and polyadenylation junctions),

yielding 45 new introns in total. The details of this method are

provided elsewhere in Mitrovich et al. (In preparation) [33].

Finding putative transcriptionally active regions (pTARs)
A TAR is a region of the strand-specific genome exhibiting a

cluster of sequence coverage, most often representing the presence

of an exon. We employed a sliding window approach to identify

such clusters on each strand of the C. albicans genome. The

approach is described in depth in the manual for Life

Technologies’ Novel Transcribed Region (NTR) finder (http://

solidsoftwaretools.com/gf/download/docmanfileversion/138/693/

NTR_Finder_Manual_v1.1.pdf). Briefly, a window of specified size

is scanned base-by-base across the genome, average sequence

coverage is calculated within each window, and windows with

average coverage greater than a specified cutoff are marked. A set of

contiguous marked regions in the genome is then joined and

trimmed from each end to better fit the coverage profile, forming a

putative TAR (pTAR). We used the NTR finder to perform TAR-

finding on the combined dataset of all four sequence libraries

presented in this work. TAR-finding was performed with many

different parameter sets (i.e., different values chosen for the size of the

window and the minimum average coverage required for the

marking of a region) and it was determined that a window size of 125

and minimum average coverage of 20 were optimal for reproducing

the previously annotated TARs (aTARs), with the expectation that

the pTARs would be slightly larger than the aTARs because the

existing annotations were ORF-based only and thus did not include

UTR definitions (Figure S3). Other parameters were kept fixed:
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min-score = 25, trimming-fraction = 0.01, min-overlap = 0.9. The

existing transcript annotation (Ca21), which is primarily based on

putative ORF sequences, was downloaded from the Candida

Genome Database (http://www.candidagenome.org/) and the

exons defined therein were used as our aTARs.

In merging the pTARs with aTARs to define a new transcript

annotation, we found that in addition to this optimal pTAR set

(pTAR_opt_set, with parameters window-size = 125, min-window-

coverage = 20, min-score = 25, trimming-fraction = 0.01, and min-

overlap = 0.9), a more fragmented pTAR set produced from a

smaller window size (pTAR_frag_set, with parameters window-

size = 10, min-window-coverage = 20, min-score = 25, trimming-

fraction = 0.01, and min-overlap = 0.9) was also helpful (see below).

We also experimented with Hidden Markov Model (HMM)

approaches to finding pTARs (not shown), but found that the

models we trained did not perform better than the simpler sliding

window approach taken here. In fact, they tended to perform

much worse, which may simply reflect that we did not find the best

way of modeling the segmentation problem.

Merging pTARs and novel splice junctions with the
existing ORF-based transcript annotation (aTARs) to form
the new transcript annotation

Rather than providing a completely de novo transcript annotation

[34], we sought to leverage the existing annotation to provide an

updated transcript annotation in which existing ORF-encoding

regions, if expressed, were augmented with 59 and 39 UTRs and

isolated TARs (i.e., those not overlapping an aTAR on the same

strand) were added to the transcript annotation as novel TARs

(nTARs). Thus, we employed a set of rules that merged the

pTAR_opt_set with the aTARs in the previous transcript annotation

(Ca21, from the Candida Genome Database [65]) to form a new set

of transcript annotations. The rules are most concisely described

diagrammatically in Figure S4. For transcripts found to contain one

or more splice junctions, the internal exon coordinates defined by

reads spanning those splice junctions are used in place of those

defined by the pTARs (i.e., splice junction-derived coordinates

override these purely coverage-based coordinates). The more

fragmented pTAR_frag_set was used to define transcript boundaries

in cases where two or more aTARs were overlapped by a single

pTAR (scenario ‘f’ in Figure S4), which typically happens when

transcripts are positioned very close to one another on the same

strand. In such cases, if a pTAR was found in the more fragmented

set that overlapped the edge of one aTAR without also overlapping

the edge of the other aTAR, this pTAR was used to define the UTR

of the overlapping aTAR in the new annotation.

Simulation of expected number of ORFs found in nTARs
We performed 10,000 rounds of simulation to determine

whether the 561 nTARs containing an ORF of length 40 amino

acids or longer was more than expected by chance. In each round,

1,443 regions with the same size distribution as the 1,443 nTARs

were chosen randomly in a strand-specific fashion from regions of

the genome not covered by ORFs in the previous annotation (i.e.,

the Ca21 ORF-based annotation). The median number of ORFs

found per round was 453. 561 or more ORFs were not found in

any round of the simulation (P-value ,0.0001).

Differential expression between cell types from RNA–Seq
data

For each transcript model (in either the new or old annotation),

reads that uniquely aligned to the genome within its exons or

across its splice junctions were counted. One pseudo-count was

added to this sum and the resulting modified raw transcript count

was converted to a normalized measurement of abundance by

normalizing for transcript length and total number of uniquely

aligned reads in the sample (i.e., RPKM; reads aligned per kb of

transcript per million uniquely aligned reads) [39,66]. The fold-

change of each transcript between cell types was then computed by

dividing its mean RPKM across opaque cell replicates by its mean

RPKM across white cell replicates. We employed a recently

proposed likelihood ratio test combined with a fold-change cutoff

to define sets of differentially expressed transcripts [37]. Specifi-

cally, a false discovery rate (FDR) less than or equal to 1024 and

an absolute fold-change greater than or equal to 2 defined a set of

1306 differentially expressed transcripts using the new transcript

annotation and a set of 824 using the old annotation. RPKM, fold-

change estimates, P-values and FDRs for each transcript can be

found in Table S3.

Differential expression between cell types from
microarray data

Microarray data were normalized and differentially expressed

transcripts were identified using limma v2.16.5 [67] in R v2.8.1.

Background correction was performed with the ‘‘normexp’’

method and an offset value of 50. Normalization was then

performed within arrays using the ‘‘loess’’ method and between

arrays using the ‘‘quantile’’ method. Finally, differential expression

of transcripts between white and opaque cells was determined on

our dye-swapped replicate arrays using the ‘‘lmFit’’ and ‘‘eBayes’’

methods, which produced fold-change estimates and Benjamini-

Hochberg multiple test-corrected P-values for each probe on the

array. For each transcript, only the expression value given by the

probe with the highest average expression value (i.e., AveExpr

value) was used in downstream analysis. As with the analysis of the

RNA-Seq data, we applied an adjusted P-value cutoff of 1024 and

required an absolute fold-change greater than or equal to 2. This

defined a set of 512 differentially expressed transcripts.

Defining Wor1-bound regions from ChIP–Chip data
Wor1-bound regions were identified as peaks of binding

enrichment in the Wor1 ChIP-Chip data using the ‘‘Extract

peaks from Data Set(s)’’ utility of MochiView v1.311 [68]. The

algorithm is described in detail in the MochiView manual. Briefly,

a smoothing function is applied to the log2 enrichment values of

the Wor1 ChIP-Chip tiling arrays followed by the application of

an algorithm to detect local regions of maximal enrichment (i.e.

binding peaks), which are assigned a P-value using permutation

testing. Note that this algorithm is not based on deconvolution of

binding events using shearing profiles – in the case of the Wor1

ChIP-chip data, the binding peaks are atypically broad and varied,

and thus tend to confound deconvolution-based algorithms. Peak

extraction was applied independently to the normalized ChIP-

Chip data derived from antibodies targeting the N- and C-

terminus of Wor1 [13]. Peak-finding significance thresholds were

kept at their default values (P#0.001 in the Wor1 ChIPs of wild-

type cells and P.0.05 in the Wor1 ChIPs of wor1DD controls),

though the amount of sampling was increased 10-fold from default

to improve significance estimates. The minimum value for peak

inclusion/consideration was set to 0.25. All other settings were

kept at their default values. It was subsequently determined that

the union of Wor1-bound regions defined independently from the

N- and C-terminal datasets gave the best concordance with

microarray-based and RNA-seq-based gene expression measure-

ments of differential expression. Thus, the 504 Wor1-bound

regions used throughout this work result from taking the union of
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Wor1-bound regions generated from the N- and C-terminal ChIP-

Chip datasets.

Associating transcription factor (TF) binding with
putatively regulated overlapping and flanking transcripts

For the purposes of comparing Wor1 binding to differential

expression, Wor1-bound regions were associated with nearby

divergently transcribed transcripts as depicted in Figure S7.

Analysis of transcript features in the Wor1 circuit
For the purposes of calculating the distribution of intergenic

lengths ‘‘in the Wor1 circuit’’ a slightly different approach was

taken to associate Wor1-bound regions with nearby transcripts

than described above. In this case, Wor1-bound regions that fall

within intergenic regions were associated with all divergent

transcripts within 1 kb and intergenic regions that associated with

one or more such transcripts were determined to be ‘‘in the Wor1

circuit’’. This approach avoids the problem of length correction

required under the null model that binding sites are distributed

randomly throughout the genome (i.e., that longer intergenic

regions are inherently more likely to have random binding).

Similarly, to avoid length bias when determining the distribution

of 59 and 39 UTR lengths ‘‘in the Wor1 circuit’’, we only

considered Wor1-bound regions that resided in the intergenic

space immediately upstream of the transcript, thereby avoiding the

possibility that random binding to the longer UTRs themselves

would drive artificial UTR length discrepancies.

Differential UTR lengths between cell types
Putative cases of UTR length change between cell types were

isolated by comparing changes in UTR expression to changes in

coding sequence (CDS) expression between the cell types. We first

calculated differential expression (in white versus opaque cells)

independently for the 59 un-translated, coding, and 39 un-

translated regions of each coding transcript. The number of reads

aligned within each region of a transcript was counted in the

merged set of alignments from each cell type (i.e., the two

biological replicates for each cell type were combined) and a single

pseudocount was added. The counts for the opaque cell type,

whose dataset had 4% more uniquely aligned reads overall, were

normalized by the ratio of uniquely aligned reads in the datasets of

the two cell types (i.e., they were multiplied by a constant factor of

0.96). Fold-changes were calculated for each transcript region by

dividing the normalized count in opaque by the count in white

cells. We then scanned for UTRs whose expression changed more

or less than their corresponding coding sequence, as determined

by a x2 test of independence comparing the observed, normalized

UTR counts to the expected counts in the two cell types. The

expected count for each CDS region in each cell type was

calculated by redistributing the total reads counted across cell

types for the corresponding UTR in a fashion proportional to the

fold-change calculated for the CDS. To ensure accurate fold-

change estimates for the CDS regions, only transcripts with a CDS

that had at least 50 reads aligned in at least one cell type were

considered. By also requiring a minimum 2-fold absolute

difference in fold-change values for the UTR and CDS regions

and a x2 P-value less than 1025, we identified 145 transcripts with

putative UTR length changes (Table S4).

Meta-analysis of transcript features in the Oct4 circuit
The analysis of transcript features in the Oct4 circuit was

performed on publicly available data. Lists of Oct4-bound regions

in mouse ES cells determined independently by Chen et al. [25]

and Marson et al. [31] were downloaded from supplemental tables

provided by these groups in their respective publications. The

intersection of bound regions from these two sources was taken to

define a high confidence set of Oct4-bound regions that was used

for all further analysis. Gene expression measurements of

differentiating mouse ES cells were downloaded from a supple-

mental table provided by Loh et al [29]. For the purposes of our

analysis, we considered transcripts that were significantly (multiple

test-corrected P-value #1024) up- or down-regulated across the 18

profiling experiments (median fold-change of at least 1.5) to be

differentially expressed between cell types. Mouse transcript

annotations were downloaded from the UCSC Genome Browser

(http://genome.ucsc.edu/) and are based on alignments of RefSeq

transcripts to assembly mm8 of the mouse genome sequence [69].

The distribution of intergenic lengths ‘‘in the Oct4 circuit’’ was

calculated as described above for the Wor1 circuit, except that in

the mammalian circuit transcripts could be up to 10 kb away from

an Oct4-bound region. We allow a longer distance here since

intergenic regions are overall much longer in mouse and because

regulation is generally expected to occur over longer distances.

The distribution of 59 and 39 UTR lengths ‘‘in the Oct4 circuit’’

was calculated as described above for the Wor1 circuit.

Supporting Information

Figure S1 RNA-Seq library workflow. The protocol used to

prepare total RNA for SOLiD System sequencing is diagrammed

here. This approach achieves strand-specificity by employing end-

specific ligation of sequencing adapters to RNA, prior to the

cDNA synthesis step. The P1 sequencing adapter is an RNA/

DNA complex that contains a 6 bp 59 single-strand DNA

overhang allowing it to hybridize only to the 59 end of an RNA

fragment and, likewise, the P2 adapter will hybridize only to the 39

end. The ligase used is engineered specifically to prefer the types of

double-stranded substrates produced by these hybridizations,

effectively making proper hybridization a prerequisite for efficient

ligation. Thus, when cDNA is sequenced off the P1 adapter we can

determine the genomic strand from which the RNA originated.

Also, because RNA is fragmented prior to cDNA synthesis, the

protocol is less biased with respect to the positional origin of

fragments within transcripts.

Found at: doi:10.1371/journal.pgen.1001070.s001 (0.12 MB TIF)

Figure S2 Short read sequence alignment algorithm. RNA

sequencing reads were analyzed using Life Technologies Whole

Transcriptome software tools (http://solidsoftwaretools.com/gf/

project/transcriptome/). Briefly, each 50 base read was broken into

two pieces (consisting of bases 1–23 and 25–47; please note that for

simplicity the figure depicts the simplified scenario in which each read

is broken into two 25 bp halves) and each piece was mapped

independently and contiguously to the Candida albicans genome (Ca21)

and a database of annotated splice junction sequences. During this

mapping phase we allowed up to three mismatches and removed

reads that align to more than 100 locations. The mapping of each

read piece was extended along the mapped genomic region using

colors (i.e., di-base calls) from the rest of the read until a maximal

score was reached (+1 for a match and 22 for a mismatch). In cases

where the read pieces aligned to the same genomic location, the

results from the two halves were merged. Reads that did not align

‘‘fully’’ (i.e., with an alignment score of at least 31 and an alignment

length of at least 40) or uniquely after merger were passed through to

the rescue phase. During rescue a read is re-aligned to the region

extending 2 kb downstream of each position to which a read piece

was contiguously mapped, this time allowing a single insertion in the

read of up to 5 bases or deletion of up to 2 kb relative to the reference.
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This process is especially helpful for identifying novel splice junctions.

Only reads that were aligned both uniquely and ‘‘fully’’ were

subsequently used to generate counts for annotated exons, transcripts,

and genes, as well as genomic coverage plots (WIG files) that were

displayed in the MochiView Genome Browser [68].

Found at: doi:10.1371/journal.pgen.1001070.s002 (0.13 MB

TIF)

Figure S3 Putative transcriptionally active region (pTAR) finder

method and results. In the pTAR finding method a window of

specified size is scanned base-by-base across the genome, average

sequence coverage is calculated within each window, and windows

with average coverage greater than a specified cutoff are marked.

A set of contiguous marked regions in the genome is then joined

and trimmed from each end to better fit the coverage profile,

forming a putative TAR (pTAR). TAR finding was performed

with many different parameter sets (i.e., different values chosen for

the size of the window and the minimum average coverage

required for the marking of a region) and the resulting pTAR sets

were compared to annotated TARs (aTARs) from the previous

ORF-based transcript annotation. (A) The fraction of aTARs that

were ‘‘recovered’’ in the pTAR set for various window size

(represented as series with different colors) and minimum average

coverage (represented as the points within each series) values.

‘‘Recovered’’ aTARs must overlap a pTAR by at least 90%. (B)

The average fraction of each aTAR that overlaps a pTAR across

different pTAR sets. (C) The average fraction of each pTAR that

overlaps an aTAR across different pTAR sets. Based on these

plots, it was determined that a window size of 125 and minimum

average coverage of 20 are optimal for reproducing the aTARs

(panel A), with the expectation that the pTARs would be slightly

larger than the aTARs (B,C) because the existing annotations were

ORF-based only and therefore did not include UTR definitions.

Found at: doi:10.1371/journal.pgen.1001070.s003 (0.26 MB

TIF)

Figure S4 Algorithm for merging putative pTARs (pTARs) with

previously annotated TARs (aTARs). (A) The rules used to merge

the pTARs and aTARs to form the new transcript annotation are

depicted. For example, scenario ‘a’ is the ‘‘ideal’’ scenario in which

a single RNA-Seq-based pTAR overlaps a single ORF-based

aTAR, with the pTAR’s coordinates extending past aTAR’s

coordinates on both the 59 and 39 ends, defining the un-translated

regions (UTRs) of the transcript. The number of times each

scenario was observed is listed in parentheses. For transcripts

found to contain one or more splice junctions (see Methods), the

internal exon coordinates defined by reads spanning those splice

junctions are used in place of those defined by the pTARs (i.e.,

splice junction-derived coordinates override these purely coverage-

based coordinates). Occasionally two or more aTARs were

overlapped by a single pTAR (scenario ‘f’) in the optimal pTAR

set (pTAR_opt_set; see Methods), which typically happens when

transcripts are positioned very close to one another on the same

strand thus leading to either only a small or no break in sequence

coverage between the transcripts. In such cases, if a pTAR was

found in the more fragmented set (pTAR_frag_set, defined with a

smaller window-size parameter; see Methods) that overlapped the

edge of one aTAR without also overlapping the edge of the other

aTAR, this pTAR was used to define the UTR of the overlapping

aTAR in the new annotation. After the rules depicted are applied,

TARs assigned to scenario ‘b’ are merged with TARs in any

scenario if they fall within 100 bp, which appears to help clean up

fragmented long UTRs and yields a more conservative estimate of

the total number of nTARs found. (B) An example genome plot

illustrating how sequence coverage is used to call pTARs, which

are in turn merged with aTARs from the old transcript annotation

to form the new transcript annotation.

Found at: doi:10.1371/journal.pgen.1001070.s004 (0.85 MB

TIF)

Figure S5 Reproducibility of fold-changes across biological

replicates. The abundance of each transcript as estimated by

RPKM (reads per kb of transcript per million uniquely aligned

reads) from the sequencing of two independently grown (A) white

and (B) opaque cell cultures.

Found at: doi:10.1371/journal.pgen.1001070.s005 (0.34 MB

TIF)

Figure S6 Three clusters of novel Candida-specific ORFs are

strongly up-regulated in opaque cells. (A) Expression and Wor1

binding at cluster B of NTAR_1176 homologs on chromosome R

(‘‘chrR’’). (B) Expression and Wor1 binding at cluster C of

NTAR_1176 homologs on chrR. (C) Multiple sequence alignment

of all 46 NTAR_1176 homologs found by PSI-BLAST in C.

albicans and C. dubliniensis. (D) Neighbor-joining tree of the 46

NTAR_1176 homologs. Clusters A, B, and C are shaded green,

yellow, and blue, respectively.

Found at: doi:10.1371/journal.pgen.1001070.s006 (1.23 MB

TIF)

Figure S7 Associating Wor1-bound regions with putatively

regulated overlapping and nearby transcripts. Transcripts associ-

ated (shaded orange) and not associated (shaded white) with a

flanking Wor1-bound region (shaded red) are indicated. Arrows

indicate the inferred direction of transcription for each TAR.

Found at: doi:10.1371/journal.pgen.1001070.s007 (0.15 MB

TIF)

Table S1 New transcript annotation.

Found at: doi:10.1371/journal.pgen.1001070.s008 (2.74 MB

TXT)

Table S2 Hand-edited version of the new transcript annotation.

Same as Table S1 except here we have manually modified the

nTARs containing the short ORFs homologous to ntar_1176.

This required splitting some nTARs and creating others that were

not expressed under the conditions studied here. We also removed

the UTRs of HIS1, which has been replaced in the studied strain

with its ortholog from another species.

Found at: doi:10.1371/journal.pgen.1001070.s009 (2.74 MB

TXT)

Table S3 Results of the differential expression (white versus

opaque) analysis.

Found at: doi:10.1371/journal.pgen.1001070.s010 (0.87 MB

TXT)

Table S4 Results of the differential UTR length (white versus

opaque) analysis.

Found at: doi:10.1371/journal.pgen.1001070.s011 (1.04 MB

TXT)

Table S5 Final new transcript annotation. Same as Table S2

except here we have unified the transcript naming scheme and

manually modified the structure of one complex gene on the

mitochondrial genome, CaalfMp08. This table was not used for

any of the analyses mentioned in the paper; rather, the main

purpose of this table is to allow interested readers to easily load a

gene annotation into MochiView [68]. This is also the transcript

annotation we intend to deliver to the Candida Genome Database

(CGD) [65].

Found at: doi:10.1371/journal.pgen.1001070.s012 (2.73 MB

TXT)

The Transcriptomes of Two C. albicans Cell Types

PLoS Genetics | www.plosgenetics.org 14 August 2010 | Volume 6 | Issue 8 | e1001070



Acknowledgments

We would like to thank C. Barbacioru, M. Barker, C. Chaivorapol, E. Fox,

R. Gottimukkala, C. Guthrie, R. Holmes, M. Jacobson, S. Kuersten, M.

Mueller, Z. Zhang, and R. Zordan for experimental and computational

support, helpful guidance, and critical feedback.

Author Contributions

Conceived and designed the experiments: BBT QMM FMDLV ADJ.

Performed the experiments: QMM ADH CKM. Analyzed the data: BBT

QMM. Contributed reagents/materials/analysis tools: BBT QMM ORH

FMDLV. Wrote the paper: BBT QMM ADJ.

References

1. Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency

and nuclear reprogramming. Cell 132: 567–582.

2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al. (2007)

Induction of pluripotent stem cells from adult human fibroblasts by defined
factors. Cell 131: 861–872.

3. Reik W (2007) Stability and flexibility of epigenetic gene regulation in

mammalian development. Nature 447: 425–432.

4. Daley GQ, Scadden DT (2008) Prospects for stem cell-based therapy. Cell 132:

544–548.

5. Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, et al. (1987) ‘‘White-

opaque transition’’: a second high-frequency switching system in Candida
albicans. J Bacteriol 169: 189–197.

6. Miller MG, Johnson AD (2002) White-opaque switching in Candida albicans is

controlled by mating-type locus homeodomain proteins and allows efficient
mating. Cell 110: 293–302.

7. Kvaal CA, Srikantha T, Soll DR (1997) Misexpression of the white-phase-
specific gene WH11 in the opaque phase of Candida albicans affects switching

and virulence. Infect Immun 65: 4468–4475.

8. Lachke SA, Lockhart SR, Daniels KJ, Soll DR (2003) Skin facilitates Candida
albicans mating. Infect Immun 71: 4970–4976.

9. Huang G, Yi S, Sahni N, Daniels KJ, Srikantha T, et al. (2010) N-
acetylglucosamine induces white to opaque switching, a mating prerequisite in

Candida albicans. PLoS Pathog 6: e1000806. doi:10.1371/journal.
ppat.1000806.

10. Huang G, Srikantha T, Sahni N, Yi S, Soll DR (2009) CO(2) regulates white-to-

opaque switching in Candida albicans. Curr Biol 19: 330–334.

11. Ramirez-Zavala B, Reuss O, Park YN, Ohlsen K, Morschhauser J (2008)

Environmental induction of white-opaque switching in Candida albicans. PLoS
Pathog 4: e1000089. doi:10.1371/journal.ppat.1000089.

12. Zordan RE, Galgoczy DJ, Johnson AD (2006) Epigenetic properties of white-

opaque switching in Candida albicans are based on a self-sustaining
transcriptional feedback loop. Proc Natl Acad Sci U S A 103: 12807–12812.

13. Zordan RE, Miller MG, Galgoczy DJ, Tuch BB, Johnson AD (2007)
Interlocking transcriptional feedback loops control white-opaque switching in

Candida albicans. PLoS Biol 5: e256. doi:10.1371/journal.pbio.0050256.

14. Huang G, Wang H, Chou S, Nie X, Chen J, et al. (2006) Bistable expression of

WOR1, a master regulator of white-opaque switching in Candida albicans. Proc

Natl Acad Sci U S A 103: 12813–12818.

15. Srikantha T, Borneman AR, Daniels KJ, Pujol C, Wu W, et al. (2006) TOS9

regulates white-opaque switching in Candida albicans. Eukaryot Cell 5:
1674–1687.

16. Hnisz D, Schwarzmuller T, Kuchler K (2009) Transcriptional loops meet

chromatin: a dual-layer network controls white-opaque switching in Candida
albicans. Mol Microbiol 74: 1–15.

17. Lohse MB, Johnson AD (2009) White-opaque switching in Candida albicans.
Curr Opin Microbiol 12: 650–654.

18. Soll DR (2009) Why does Candida albicans switch? FEMS Yeast Res 9:
973–989.

19. Sonneborn A, Tebarth B, Ernst JF (1999) Control of white-opaque phenotypic

switching in Candida albicans by the Efg1p morphogenetic regulator. Infect
Immun 67: 4655–4660.

20. Lan CY, Newport G, Murillo LA, Jones T, Scherer S, et al. (2002) Metabolic
specialization associated with phenotypic switching in Candidaalbicans. Proc

Natl Acad Sci U S A 99: 14907–14912.

21. Tsong AE, Miller MG, Raisner RM, Johnson AD (2003) Evolution of a

combinatorial transcriptional circuit: a case study in yeasts. Cell 115: 389–399.

22. Struhl K (2007) Transcriptional noise and the fidelity of initiation by RNA
polymerase II. Nat Struct Mol Biol 14: 103–105.

23. Georlette D, Ahn S, MacAlpine DM, Cheung E, Lewis PW, et al. (2007)
Genomic profiling and expression studies reveal both positive and negative

activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells.

Genes Dev 21: 2880–2896.

24. Li XY, MacArthur S, Bourgon R, Nix D, Pollard DA, et al. (2008) Transcription

factors bind thousands of active and inactive regions in the Drosophila
blastoderm. PLoS Biol 6: e27. doi:10.1371/journal.pbio.0060027.

25. Chen X, Vega VB, Ng HH (2008) Transcriptional regulatory networks in
embryonic stem cells. Cold Spring Harb Symp Quant Biol 73: 203–209.

26. MacArthur S, Li XY, Li J, Brown JB, Chu HC, et al. (2009) Developmental roles

of 21 Drosophila transcription factors are determined by quantitative differences
in binding to an overlapping set of thousands of genomic regions. Genome Biol

10: R80.

27. Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, et al. (2009)

Bidirectional promoters generate pervasive transcription in yeast. Nature 457:

1033–1037.

28. Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, et al. (2009)

Widespread bidirectional promoters are the major source of cryptic transcripts in
yeast. Nature 457: 1038–1042.

29. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, et al. (2006) The Oct4 and
Nanog transcription network regulates pluripotency in mouse embryonic stem

cells. Nat Genet 38: 431–440.

30. Chen X, Xu H, Yuan P, Fang F, Huss M, et al. (2008) Integration of external

signaling pathways with the core transcriptional network in embryonic stem
cells. Cell 133: 1106–1117.

31. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, et al. (2008)
Connecting microRNA genes to the core transcriptional regulatory circuitry of

embryonic stem cells. Cell 134: 521–533.

32. Tuch BB, Laborde RR, Xu X, Gu J, Chung CB, et al. (2010) Tumor

transcriptome sequencing reveals allelic expression imbalances associated with
copy number alterations. PLoS One 5: e9317. doi:10.1371/journal.

pone.0009317.

33. Mitrovich QM, Tuch BB, De La Vega FM, Guthrie C, Johnson AD (2010)

Evolution of yeast non-coding RNAs suggests a novel mechanism for widespread

intron loss. In Preparation.

34. Yassour M, Kaplan T, Fraser HB, Levin JZ, Pfiffner J, et al. (2009) Ab initio

construction of a eukaryotic transcriptome by massively parallel mRNA
sequencing. Proc Natl Acad Sci U S A 106: 3264–3269.

35. David L, Huber W, Granovskaia M, Toedling J, Palm CJ, et al. (2006) A high-
resolution map of transcription in the yeast genome. Proc Natl Acad Sci U S A

103: 5320–5325.

36. He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW (2008) The

antisense transcriptomes of human cells. Science 322: 1855–1857.

37. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an

assessment of technical reproducibility and comparison with gene expression
arrays. Genome Res 18: 1509–1517.

38. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, et al. (2008) The
transcriptional landscape of the yeast genome defined by RNA sequencing.

Science 320: 1344–1349.

39. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and

quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628.

40. Yi S, Sahni N, Daniels KJ, Pujol C, Srikantha T, et al. (2008) The same

receptor, G protein, and mitogen-activated protein kinase pathway activate
different downstream regulators in the alternative white and opaque pheromone

responses of Candida albicans. Mol Biol Cell 19: 957–970.

41. Dignard D, Andre D, Whiteway M (2008) Heterotrimeric G-protein subunit

function in Candida albicans: both the alpha and beta subunits of the

pheromone response G protein are required for mating. Eukaryot Cell 7:
1591–1599.

42. Puig S, Perez-Ortin JE, Matallana E (1999) Transcriptional and structural study

of a region of two convergent overlapping yeast genes. Curr Microbiol 39:

369–0373.

43. Prescott EM, Proudfoot NJ (2002) Transcriptional collision between convergent

genes in budding yeast. Proc Natl Acad Sci U S A 99: 8796–8801.

44. Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference—a crash

course. Trends Genet 21: 339–345.

45. Hongay CF, Grisafi PL, Galitski T, Fink GR (2006) Antisense transcription

controls cell fate in Saccharomyces cerevisiae. Cell 127: 735–745.

46. Pujol C, Daniels KJ, Lockhart SR, Srikantha T, Radke JB, et al. (2004) The

closely related species Candida albicans and Candida dubliniensis can mate.
Eukaryot Cell 3: 1015–1027.

47. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction
server. Nucleic Acids Res 36: W197–201.

48. Zhang Y (2009) I-TASSER: fully automated protein structure prediction in
CASP8. Proteins 77 Suppl 9: 100–113.

49. Srikantha T, Tsai LK, Daniels K, Soll DR (2000) EFG1 null mutants of
Candida albicans switch but cannot express the complete phenotype of white-

phase budding cells. J Bacteriol 182: 1580–1591.

50. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, et al. (2009)

Regulation of stem cell pluripotency and differentiation involves a mutual
regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription

factors with polycomb repressive complexes and stem cell microRNAs. Stem
Cells Dev 18: 1093–1108.

51. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, et al. (1998)
Formation of pluripotent stem cells in the mammalian embryo depends on the

POU transcription factor Oct4. Cell 95: 379–391.

52. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from

mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:

663–676.

The Transcriptomes of Two C. albicans Cell Types

PLoS Genetics | www.plosgenetics.org 15 August 2010 | Volume 6 | Issue 8 | e1001070



53. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for

transcriptomics. Nat Rev Genet 10: 57–63.
54. Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, et al. (2009)

RNAi in budding yeast. Science 326: 544–550.

55. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, et al. (2005) Core
transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:

947–956.
56. Fraser P, Bickmore W (2007) Nuclear organization of the genome and the

potential for gene regulation. Nature 447: 413–417.

57. Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic
genome architecture in the nuclear space: regulation of gene expression in three

dimensions. Nat Rev Genet 8: 104–115.
58. Mitrovich QM, Tuch BB, Guthrie C, Johnson AD (2007) Computational and

experimental approaches double the number of known introns in the pathogenic
yeast Candida albicans. Genome Res 17: 492–502.

59. Magee BB, Magee PT (2000) Induction of mating in Candida albicans by

construction of MTLa and MTLalpha strains. Science 289: 310–313.
60. Sherman F (2002) Getting started with yeast. Methods Enzymol 350: 3–41.

61. Hernday AD, Noble SM, Mitrovich QM, Johnson AD (2010) Genetics and
Molecular Biology in Candida albicans. Methods in Enzymology Elsevier Inc. pp

737–758.

62. van het Hoog M, Rast TJ, Martchenko M, Grindle S, Dignard D, et al. (2007)

Assembly of the Candida albicans genome into sixteen supercontigs aligned on
the eight chromosomes. Genome Biol 8: R52.

63. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, et al. (2004) The

diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101:
7329–7334.

64. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. (2009) mRNA-Seq
whole-transcriptome analysis of a single cell. Nat Methods 6: 377–382.

65. Skrzypek MS, Arnaud MB, Costanzo MC, Inglis DO, Shah P, et al. New tools at

the Candida Genome Database: biochemical pathways and full-text literature
search. Nucleic Acids Res 38: D428–432.

66. Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq
studies. Nat Methods 6: S22–32.

67. Smyth GK (2004) Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol 3,

Article3.

68. Homann OR, Johnson AD (2010) MochiView: versatile software for genome
browsing and DNA motif analysis BMC Biology.

69. Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, et al. (2010) The
UCSC Genome Browser database: update 2010. Nucleic Acids Res 38:

D613–619.

The Transcriptomes of Two C. albicans Cell Types

PLoS Genetics | www.plosgenetics.org 16 August 2010 | Volume 6 | Issue 8 | e1001070


