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H I G H L I G H T S

∙ Closed-form solutions are obtained for the Fisher-KPP equation through the Homotopy analysis method.

∙ The effect of the proliferation rate of the model of interest on the entire population is studied.

∙ The invasive cell or the invasive population decreases in short time with the minimum proliferation rate.

∙ The Homotopy analysis method is found superior over other analytical methods.
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In this paper, the homotopy analysis method, a powerful analytical technique, is applied to obtain analytical 
solutions to the Fisher-KPP equation in studying the spatial spreading of invasive species in ecology and to 
extract the nature of the spatial spreading of invasive cell populations in biology. The effect of the proliferation 
rate of the model of interest on the entire population is studied. It is observed that the invasive cell or the invasive 
population is decreased within a short time with the minimum proliferation rate. The homotopy analysis method 
is found to be superior to other analytical methods, namely the Adomian decomposition method, the homotopy 
perturbation method, etc. because of containing an auxiliary parameter, which provides us with a convenient 
way to adjust and control the region of convergence of the series solution. Graphical representation of the 
approximate series solutions obtained by the homotopy analysis method, the Adomian decomposition method, 
and the Homotopy perturbation method is illustrated, which shows the superiority of the homotopy analysis 
method. The method is examined on several examples, which reveal the ingenuousness and the effectiveness of 
the method of interest.
1. Introduction

It is well recognized that reaction-convection-diffusion equations 
play a vital role in many areas of biology, ecology, chemistry, physics, 
engineering, and mathematical physics [1]. Diverse phenomena, such 
as population genetics, cellular ecology, reaction chemistry, heat 
transfer, combustion, fluid dynamics, foam drainage, crystal growth, 
soil-moisture, neurology, synergy, etc. can be described mathemati-

cally by using reaction-diffusion equations (RDEs) [1]. The Fisher–

Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation, also known 
as Fisher Kolmogorov (F-K) equation, is one of the most usually used 
RDEs in explaining most of the phenomena occurring in the fields men-
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tioned above [2, 3, 4]. As in ref. [5], in one space dimension, the F-K 
equation can be written as follows:

𝜕𝑢

𝜕𝑡
=𝐷

𝜕2𝑢

𝜕𝑥2
+ 𝛼𝑢

(
1 − 𝑢

𝐾

)
. (1)

Eq. (1) outlines the spatial and temporal evolution of a population of 
motile and proliferative individuals with density 𝑢(𝑥, 𝑡) that depends on 
the space 𝑥 ≥ 0 and the time 𝑡 > 0 [2, 6]. Individuals in the population 
migrate through a linear diffusion process with diffusivity 𝐷 > 0, the 
proliferation rate 𝛼 > 0, and have a carrying capacity density 𝐾 > 0
[5]. Solutions of the Fisher–KPP model on a semi-infinite domain that 
evolve from initial conditions (ICs) with compact support lead to long-
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time travelling waves that move with speed 𝑐𝑚𝑖𝑛 = 2
√
𝛼𝐷 [5]. The model 

also gives rise to traveling wave solutions (TWSs) with 𝑐 > 𝑐𝑚𝑖𝑛 for ICs 
that decrease sufficiently slowly as 𝑥 → ∞, though for most practical 
applications, we are interested in TWSs that travel with the minimum 
wave speed since ICs with compact support are often more relevant 
[7, 8, 9]. A TWS 𝑢 (𝑥, 𝑡) = 𝑢 (𝜉 = 𝑥− 𝑐𝑡), propagating with a speed 𝑐, is 
restricted to be positive and bounded [10]. Therefore, the boundary 
conditions (BCs) for the TWS of Eq. (1) are usually 𝑢 (𝜉 → −∞) → 1, 
𝑢 (𝜉 →∞)→ 0. Additionally, 0 ≤ 𝑢(𝑥, 𝑡) ≤ 1 and 𝑐 > 0 is the wave speed.

Fisher [2] first introduced the RDE (linear diffusion and nonlinear 
growth of a population) given by Eq. (1) as an ideal for the extension of 
a mutant gene with an advantageous selection intensity 𝐷 and an ad-

vantageous density 𝑢. This equation is encountered in chemical kinetics 
[11] and population dynamics which includes problems, such as the 
nonlinear evolution of a population in a one-dimensional habitat, and 
neutron population in a nuclear reaction. Moreover, the same equa-

tion occurs in logistic population growth models [12], flame propaga-

tion, neurophysiology, autocatalytic chemical reactions, and branching 
Brownian motion processes.

The F-K model and its various extensions have been used to study a 
broad range of biological phenomena. In this regard, in this paper, the 
generalized Fisher’s equation in the following form is considered [13]:

𝜕𝑢

𝜕𝑡
= 𝜕2𝑢

𝜕𝑥2
+ 𝛼𝑢(1 − 𝑢𝛽 ), (2)

where 𝛽 is a positive constant.

The F-K model and its various extensions are used to simulate the 
spatial expansion of invasion cell populations in biology [7, 8, 11, 12, 
14, 15, 16]. In ecology, the F-K model has been used to study the spa-

tial spreading of invasive species [17, 18, 19]. Further, as in refs. [3, 
5, 20], the F-K model supports TWSs that have been broadly cultivated 
using a range of mathematical techniques. Therefore, the equation of 
choice is of great interest from the mathematical point of view as well. 
These TWSs of the F-K model are frequently used to mimic biological 
invasion [9]. Interestingly, the constant speed travelling waves (TWs) 
play a significant role in a wide number of medical applications [7, 
8], and their behavior can be observed and measured experimentally. 
However, in spite of the measureless interest in TWSs to the F-K model, 
there are various features of these solutions that are biologically dissat-

isfactory [21]. For example, the TWSs do not have compact support for 
−∞ < 𝑥 <∞. On the other hand, the classical TWSs of the F-K equation 
do not involve a well-defined front and the cell density remains posi-

tive for 𝑢(𝑥, 𝑡) → 0 as 𝑥 → ∞. Further, any restricted IC with compact 
support will always contribute to effective colonization and popula-

tion growth. Unfortunately, the F-K equation is studied insufficiently 
to extract TWSs, as it is a challenging and difficult task of searching 
for such solutions to that equation [22]. To extract the TWSs of the F-K 
equation, researchers have, so far, applied some approximate and an-

alytical methods. These methods include the Adomian decomposition 
method (ADM) [10], the homotopy perturbation method (HPM) [13, 
23], the variational iteration method (VIM), etc. [24]. It is to be men-

tioned at this juncture that the series solutions attained by the HPM and 
the ADM are often convergent in restricted regions [25]. But sometimes 
it is required to enlarge the regions of convergence (ROC). To solve 
this problem, Liao proposed a powerful method, the homotopy analysis 
method (HAM) [26] on the basis of a fundamental concept in differ-

ential geometry and topology. The HAM is a semi-analytic approach 
for obtaining series solutions to a wide range of nonlinear equations, 
such as algebraic equations, ordinary differential equations (ODEs), par-

tial differential equations (PDEs), integro-differential equations (IDEs), 
differential-difference equations (DDEs), and their coupled equations. 
Homotopy is used to define the conjunction between any two several 
objects in mathematics that have identical characteristics in various 
appearances [27]. The HAM is different from other analytical tech-

niques for many purposes and recently it has been applied in many 
research fields. Unlike perturbation approaches, the HAM is indepen-

dent of large/small physical parameters and hence it is valid whether 
2

or not a nonlinear problem has small/large physical parameters. More 
crucially, unlike other perturbation and classic non-perturbation ap-

proaches, the HAM gives a simple mechanism to assure the convergence 
of series solutions, and hence the HAM is valid even for severely non-

linear situations. The HAM is based on the construction of a homotopy 
wherein an auxiliary linear operator is chosen to construct the homo-

topy. It is to be noted here that an auxiliary parameter is used in this 
method to control the ROC of the approximate series solution. A series 
solution of differential or integral equations achieved by the HAM con-

verges very quickly over other analytical methods, namely the HPM, the 
ADM, the artificial small parameter method, the 𝛿-expansion method, 
and the decomposition method [28], and hence it may reduce a sig-

nificant amount of computational cost. Also, the HAM provides greater 
flexibility in choosing auxiliary linear operators and initial approxima-

tions and as a result, a complicated nonlinear problem is transferred 
into a vast number of simpler linear sub-problems.

The HAM has recently been indicated to be useful for obtaining 
analytical solutions for nonlinear frequency response equations. Fur-

ther, the HAM is employed to solve linear and nonlinear stiff ODEs, 
the matrix Riccati differential equation, and the Genesio system [29]. 
Furthermore, the HAM has been effectively used in many nonlinear 
problems, namely viscous flows [30], heat transfer, nonlinear water 
waves and oscillations [31], entropy analysis [32], and so on. Recently, 
the HAM has been used to analyze the reverse flow reactor (RFR) model 
[33]. Also, heat transfer and the MHD flow of viscoelastic fluids over an 
exponentially stretching surface are analyzed by the HAM [34]. Thus, 
from the literature point of view, it is clear that no evidence has been 
found to solve the F-K equation with the application of the HAM. There-

fore, this research aims to use the effective and powerful method, the 
HAM, to solve nonlinear Fisher’s equation and to explain the solutions 
from ecological and biological points of view. For this purpose, we 
solve Eq. (2) for several cases using the HAM in studying the spatial 
spreading of invasive species in ecology, as well as in the study of the 
spatial spreading of invasive cell populations. Since the HAM provides 
us with a greater flexibility to choose the initial approximation and an 
auxiliary linear operator to solve any nonlinear problems even if the 
problem has a closed-form solution, the solutions of the F-K equation 
are possible taking into account more than one initial approximation, 
which can be found later. Furthermore, because this approach divides 
a complicated nonlinear problem into an unlimited number of simple 
linear sub-problems, thereby a complicated nonlinear problem can eas-

ily be solved that cannot be unraveled via the other analytical problems 
available in the literature. The facts mentioned above signify the rea-

son behind choosing the HAM to solve Fisher’s equation. To the best of 
the authors’ knowledge, this paper investigates for the first time, the ef-

fectiveness and the applicability of the HAM on the Fisher’s equation 
by describing the solutions in the case of spatial spreading of inva-

sive species in ecology and in biology to extract the characteristic of 
an invading cell population. Also, it describes the contribution of the 
proliferation rate in the Fisher-KPP model.

The rest of the paper is structured in the following way: The ba-

sic concept of the HAM for solving nonlinear problems is presented in 
Section 2. Applications of the HAM for solving the Fisher-KPP equation 
are introduced in Section 3, and the discussion of the attained results is 
presented in Section 4. Finally, the conclusion based on the outcomes 
emanated from the study is placed in Section 5.

2. Basic concept of the HAM for solving nonlinear problems

In this section, the basic idea for solving a nonlinear differential 
equation (NDE) by the HAM is presented briefly. For this purpose, we 
consider an NDE in the following form:

 [𝑢 (𝑥, 𝑡)] = 0, (3)

where  is a nonlinear operator, 𝑢 is an unknown function of the inde-

pendent variables 𝑥 and 𝑡. For simplicity, all the ICs or BCs are ignored. 
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Then the zero-order deformation equation following Liao [26, 31] can 
be set out as

(1 − 𝑞)𝐿[𝜑(𝑥, 𝑡; 𝑞) − 𝑢0(𝑥, 𝑡)] =𝐻(𝑥, 𝑡)𝑞ℎ [𝜑(𝑥, 𝑡; 𝑞)], (4)

where 𝐿 is an auxiliary linear operator, 𝐻(𝑥, 𝑡) denotes a non-zero 
auxiliary function, 𝑞 ∈ [0, 1] is an embedding parameter, ℎ ≠ 0 is a 
convergence-control parameter (CPP), and 𝑢0(𝑥, 𝑡) is an initial guess of 
𝑢 (𝑥, 𝑡). Clearly when the embedding parameter 𝑞 equals 0 and 1, then 
Eq. (4) holds 𝜑 (𝑥, 𝑡; 0) = 𝑢0(𝑥, 𝑡), 𝜑 (𝑥, 𝑡; 1) = 𝑢 (𝑥, 𝑡), respectively. Thus, as 
𝑞 increases from 0 to 1, then the solution 𝑢 (𝑥, 𝑡; 𝑞) varies from the initial 
guess 𝑢0(𝑥, 𝑡) to the exact solution 𝑢 (𝑥, 𝑡). Liao [35] expanded 𝜑(𝑥, 𝑡; 𝑞)
in a Taylor series as follows:

𝜑 (𝑥, 𝑡; 𝑞) = 𝑢0 (𝑥, 𝑡) +
∞∑
𝑚=1

𝑢𝑚(𝑥, 𝑡)𝑞𝑚, (5)

where

𝑢𝑚 (𝑥, 𝑡) = 1
𝑚!

𝜕𝑚

𝜕𝑞𝑚
{𝜑(𝑥, 𝑡; 𝑞)}𝑞=0.

The convergence of the series given by Eq. (5) depends upon the 
choice of the auxiliary linear operator, the initial guess, CCP ℎ, and 
the auxiliary function. If they are chosen properly, then the series (5) 
converges at 𝑞 = 1, we have the homotopy series solution as follows:

𝑢 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) +
∞∑
𝑚=1

𝑢𝑚(𝑥, 𝑡).

Differentiating 𝑚-times the zero-order deformation equation given 
by Eq. (4) with respect to 𝑞 and dividing by 𝑚!, we can easily derive the 
𝑚th-order deformation equation. Finally, setting 𝑞 = 0, we have

𝐿[𝑢𝑚 (𝑥, 𝑡) − 𝝌𝑚𝑢𝑚−1(𝑥, 𝑡)] =𝐻(𝑥, 𝑡)ℎ𝑅𝑚(𝑢𝑚−1(𝑥, 𝑡)), (6)

where 𝑅𝑚

(
𝑢𝑚−1 (𝑥, 𝑡)

)
= 1

(𝑚−1)!
𝜕𝑚−1

𝜕𝑞𝑚−1
{𝜑(𝑥, 𝑡; 𝑞)}𝑞=0 and 𝝌𝑚 =

{
0, 𝑚 ≤ 1
1, 𝑚 > 1.

In this fashion, the original nonlinear equation is converted into an 
infinite number of linear ones. It should be accentuated that the linear 
equations can easily be solved by any symbolic computation software, 
such as Maple, Mathematica, Matlab, and so on.

Applying 𝐿−1 on both sides of Eq. (6), we get

𝑢𝑚 (𝑥, 𝑡) = 𝝌𝑚𝑢𝑚−1 (𝑥, 𝑡) +𝐻(𝑥, 𝑡)ℎ𝐿−1𝑅𝑚(𝑢𝑚−1(𝑥, 𝑡)).

In this way, it is easy to obtain 𝑢𝑚 (𝑚 ≥ 1), at 𝑚th-order, and thereby, 
we have

𝑢 (𝑥, 𝑡) =
𝑀∑
𝑚=0

𝑢𝑚 (𝑥, 𝑡) . (7)

When 𝑀 →∞, an accurate approximation of Eq. (3) is obtained. If 
Eq. (3) has a unique solution, then this method will yield the unique 
solution and if Eq. (3) does not possess a unique solution, the HAM will 
yield a solution among many other possible solutions.

3. Applications of the HAM to Fisher’s equation

In this section, we envisage the generalized Fisher’s equation in the 
following form [13]:

𝜕𝑢

𝜕𝑡
= 𝜕2𝑢

𝜕𝑥2
+ 𝛼𝑢(1 − 𝑢𝛽 ). (8)

To incorporate our discussion, four important cases of nonlinearity, 
which correspond to some real physical processes, have been investi-

gated to show the reliability of the proposed scheme. For this purpose, 
several ICs have been selected.

Case 1: In this case, we will solve Eq. (8) for 𝛼 = 1 and 𝛽 = 1 (Fisher’s 
equation), i.e., we will solve the following equation with the help of the 
HAM:
3

𝜕𝑢

𝜕𝑡
= 𝜕2𝑢

𝜕𝑥2
+ 𝑢(1 − 𝑢). (9)

Eq. (9) can be used to study flame propagation and nuclear reactors. 
To solve Eq. (9) by the HAM, at first, we need to choose an appropriate 
initial approximation. To illustrate our purposes, we consider the initial 
approximation of Eq. (9) following Singh et al. [13] as 𝑢 (𝑥,0) = 𝛾 , where 
𝛾 is an arbitrary constant. For the analytical solution of Eq. (9), we 
choose the linear operator as 𝐿𝜑(𝑥; 𝑞) = 𝜕𝜑(𝑥;𝑞)

𝜕𝑡
with the property 𝐿 [𝑐] =

0, where 𝑐 is a constant and we assume that 𝐿−1 exists and is defined as 
𝐿−1 = ∫ 𝑡

0 (.)𝑑𝑡.
Now, we define the nonlinear operator  as

 [𝜑 (𝑥; 𝑞)] = 𝜕𝑢(𝑥; 𝑞)
𝜕𝑡

− 𝜕2𝑢 (𝑥; 𝑞)
𝜕𝑥2

+ 𝑢(𝑥; 𝑞)[1 − 𝑢 (𝑥; 𝑞)]. (10)

Using the definition given by Eq. (4), we construct the zero-order 
deformation equation as follows:

(1 − 𝑞)𝐿[𝜑(𝑥, 𝑡; 𝑞) − 𝑢0(𝑥, 𝑡)] =𝐻(𝑥, 𝑡)𝑞ℎ [𝜑(𝑥, 𝑡; 𝑞)]. (11)

For 𝑞 = 0 and 𝑞 = 1, from Eq. (11), we can write

𝜑 (𝑥, 𝑡; 0) = 𝑢0(𝑥, 𝑡) and 𝜑 (𝑥, 𝑡; 1) = 𝑢 (𝑥, 𝑡) , respectively.

Thus, the deformation equation of the 𝑚th order is attained as

𝐿[𝑢𝑚 (𝑥, 𝑡) − 𝝌𝑚𝑢𝑚−1(𝑥, 𝑡)] =𝐻(𝑥, 𝑡)ℎ𝑅𝑚(𝑢𝑚−1(𝑥, 𝑡)). (12)

Therefore, the solution of the 𝑚th order deformation equation by 
taking 𝐿−1 on both sides of Eq. (12) can be presented as

𝑢𝑚 (𝑥, 𝑡) = 𝝌𝑚𝑢𝑚−1(𝑥, 𝑡) +𝐻(𝑥, 𝑡)ℎ𝐿−1𝑅𝑚(𝑢𝑚−1(𝑥, 𝑡)). (13)

For 𝑚 ≥ 1 and 𝐻 (𝑥, 𝑡) = 1, using Eq. (10), we obtain

𝑅𝑚(𝑢𝑚−1 (𝑥, 𝑡)) =
𝜕𝑢𝑚−1 (𝑥, 𝑡)

𝜕𝑡
−

𝜕2𝑢𝑚−1 (𝑥, 𝑡)
𝜕𝑥2

− 𝑢𝑚−1 (𝑥, 𝑡)

+
𝑚−1∑
𝑖=0

𝑢𝑖 (𝑥, 𝑡)𝑢𝑚−1−𝑖 (𝑥, 𝑡) . (14)

Hence, from Eq. (14), we get

𝑅1
(
𝑢0
)
=

𝜕𝑢0 (𝑥, 𝑡)
𝜕𝑡

−
𝜕2𝑢0 (𝑥, 𝑡)

𝜕𝑥2
− 𝑢0 (𝑥, 𝑡) +

(
𝑢0 (𝑥, 𝑡)

)2
,

𝑅2
(
𝑢1
)
=

𝜕𝑢1 (𝑥, 𝑡)
𝜕𝑡

−
𝜕2𝑢1 (𝑥, 𝑡)

𝜕𝑥2
− 𝑢1 (𝑥, 𝑡) + 2𝑢0 (𝑥, 𝑡)𝑢1 (𝑥, 𝑡) , …

Substituting 𝑅𝑚(𝑢𝑚−1 (𝑥, 𝑡)) in Eq. (13) and solving for 𝑢𝑚 (𝑥, 𝑡), we 
see

u1 (𝑥, 𝑡) = ℎ𝐿−1𝑅1
(
u0 (𝑥)

)
= ℎ𝛾𝑡(𝛾 − 1),

u2 (𝑥, 𝑡) = u1 (𝑥, 𝑡) + ℎ𝐿−1𝑅2
(
u1 (𝑥)

)
= 1

2
ℎ𝛾𝑡(𝛾 − 1)(2ℎ𝛾𝑡− ℎ𝑡+ 2ℎ+ 2), …

Hence, the approximate solution of Eq. (9) by the HAM is given by 
(see Eq. (7))

𝑢 (𝑥, 𝑡) =
𝑀∑
𝑚=0

𝑢𝑚 (𝑥, 𝑡)

= 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡) + 𝑢2 (𝑥, 𝑡) +⋯

= 𝛾 + ℎ𝛾𝑡(𝛾 − 1) + 1
2
ℎ𝛾𝑡(𝛾 − 1)(2ℎ𝛾𝑡− ℎ𝑡+ 2ℎ+ 2) +⋯ (15)

When ℎ → −1, then we attain the exact solution 𝑢(𝑥, 𝑡) from Eq. (15), 
which can be presented in the following form:

𝑢 (𝑥, 𝑡) = 𝛾 +𝛾 (1 − 𝛾) 𝑡+
𝛾 (1 − 𝛾) (1 − 2𝛾) 𝑡2

2!
+𝛾 (1 − 𝛾)

(
1 − 6𝛾 + 6𝛾2

) 𝑡3

3!
+⋯

(16)

By using any symbolic computation system and performing some 
algebraic operations, the solution given by Eq. (16) can be brought to 
the following closed-form solution:
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Fig. 1. 2D plot of the solution of Eq. (9) given by Eq. (17) with 𝛾 = 2 and 𝛾 = 3.

𝑢 (𝑥, 𝑡) = 𝛾𝑒𝑡

1 − 𝛾 + 𝛾𝑒𝑡
, (17)

which is the exact solution to the problem specified by Eq. (9).

From the initial solution and the obtained solution, it is perceived 
that the initial solution can be generated from the closed-form solution 
by setting 𝑡 = 0.

The two-dimensional (2D) graphical illustration of the solution of 
Eq. (9) given by Eq. (17) for some values of the ICs is presented in 
Fig. 1 for a better perspective. It is perceived from the figure that if 𝑡
increases from 0 to 5, then 𝑢(𝑥, 𝑡) decreases for all values of 𝑥 with the 
ICs 𝛾 = 2, 𝛾 = 3. The solution given by Eq. (17) achieved via the HAM is 
exactly the same with those acquired by the ADM [10], the HPM [13, 
23], and the VIM [24], which is the exact solution of Eq. (9) with the 
specified initial approximation.

Case 2: In this case, we solve Eq. (9) with another initial approx-

imation to examine the flexibility of the HAM in the case of choosing 
several initial approximations. It is pertinent to note here that the HAM 
has greater flexibility in choosing an initial approximation, i.e., we can 
choose several approximations. For suitability and to make sense clear, 
we choose another initial solution of Eq. (9) following Hasnain and 
Saqib [36] as

𝑢 (𝑥,0) =
(
1 + 𝑒

1√
6
𝑥
)−2

. (18)

By the same process detailed in Case 1, we obtain

𝑢1 (𝑥, 𝑡) = −5
3

ℎ𝑒

1√
6
𝑥
𝑡(

1 + 𝑒

1√
6
𝑥
)3 ,

𝑢2 (𝑥, 𝑡) =
5
36

ℎ𝑒
1√
6
𝑥
𝑡

(
10ℎ𝑒

1√
6
𝑥
𝑡− 12ℎ𝑒

1√
6
𝑥 − 5ℎ𝑡− 12ℎ𝑒

1√
6
𝑥 − 12ℎ− 12

)
(
1 + 𝑒

1√
6
𝑥
)4 , …

Hence, the approximate solution of Eq. (9) by the HAM can be set 
as

𝑢 (𝑥, 𝑡) =
𝑀∑
𝑚=0

𝑢𝑚 (𝑥, 𝑡)

= 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡) + 𝑢2 (𝑥, 𝑡) +⋯

= 1(
1 + 𝑒

1√
6
𝑥
)2 − 5

3
ℎ𝑒

1√
6
𝑥
𝑡(

1 + 𝑒

1√
6
𝑥
)3

Fi
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gi
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g. 2. 2D plot of the solution given by (21) of Eq. (9) for 𝑥 = −1, 𝑥 = 0, and 
= 1.

+ 5
36

ℎ𝑒

1√
6
𝑥
𝑡

(
10ℎ𝑒

1√
6
𝑥
𝑡− 12ℎ𝑒

1√
6
𝑥
− 5ℎ𝑡− 12ℎ𝑒

1√
6
𝑥
− 12ℎ− 12

)
(
1 + 𝑒

1√
6
𝑥
)4 +⋯

(19)

Thus, the exact solution, 𝑢(𝑥, 𝑡) obtained from Eq. (19) as ℎ → −1 is 
ven by

(𝑥, 𝑡) = 1(
1 + 𝑒

1√
6
𝑥
)2 + 5

3
𝑒

1√
6
𝑥
𝑡(

1 + 𝑒

1√
6
𝑥
)3 + 5

36

𝑒

1√
6
𝑥
𝑡

(
10𝑒

1√
6
𝑥
𝑡− 5𝑡

)
(
1 + 𝑒

1√
6
𝑥
)4 +⋯

(20)

By performing some algebraic operations with the aid of a symbolic 
mputation software, the above solution presented in Eq. (20) can be 
ought to the following closed-form solution:

(𝑥, 𝑡) =
(
1 + 𝑒

1√
6
𝑥− 5

6 𝑡
)−2

. (21)

The solution given by Eq. (21) is another exact solution to the prob-

m given by Eq. (9). It is obvious that the initial approximation given 
 Eq. (18) can be procured from the obtained solution by setting 𝑡 = 0. 
r interpreting the result physically, its 2D graphical illustration is pre-

nted in Fig. 2.

Fig. 2 is presented with 𝛼 = 1, 𝛽 = 1, and initial approximation 

(𝑥,0) =
(
1 + 𝑒

1√
6
𝑥
)−2

for varying 𝑥 ∈ [−1, 1] where 𝑡 varies from −10 

 15. It is perceived from Fig. 2 that 𝑢(𝑥, 𝑡) increases over time, and 
ter some time (𝑡 > 5), 𝑢(𝑥, 𝑡) turns out to be constant.

Case 3: In this case, we examine the Fisher’s equation given by 
. (8) for proliferation rate 𝛼 = 6 whereas 𝛽 = 1 (Fisher’s equation), 
., we will seek the solution of the following equation:

𝑢

𝑡
= 𝜕2𝑢

𝜕𝑥2
+ 6𝑢(1 − 𝑢). (22)

In order to solve Eq. (22) by the HAM and illustrate our purpose, 
rst, as in ref. [13], we consider the initial approximation of Eq. (22) as

(𝑥,0) = 1
(1 + 𝑒𝑥)2

. (23)

According to the solution procedure detailed in case 1, the nonlinear 
erator is defined as
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 [𝜑 (𝑥; 𝑞)] = 𝜕𝑢(𝑥; 𝑞)
𝜕𝑡

− 𝜕2𝑢 (𝑥; 𝑞)
𝜕𝑥2

+ 6𝑢 (𝑥; 𝑞) [1 − 𝑢 (𝑥; 𝑞)] , (24)

and then the solution of the deformation equation of the 𝑚th order is 
given by

𝑢𝑚 (𝑥, 𝑡) = 𝝌𝑚𝑢𝑚−1(𝑥, 𝑡) +𝐻 (𝑥, 𝑡)ℎ𝐿−1𝑅𝑚(𝑢𝑚−1(𝑥, 𝑡)), (25)

where 𝐻 (𝑥, 𝑡) = 1 and

𝑅𝑚(𝑢𝑚−1 (𝑥, 𝑡)) =
𝜕𝑢𝑚−1 (𝑥, 𝑡)

𝜕𝑡
−

𝜕2𝑢𝑚−1 (𝑥, 𝑡)
𝜕𝑥2

− 6𝑢𝑚−1 (𝑥, 𝑡)

+ 6
𝑚−1∑
𝑖=0

𝑢𝑖 (𝑥, 𝑡)𝑢𝑚−1−𝑖 (𝑥, 𝑡) . (26)

Hence, from Eqs. (24) and (26), we attain

𝑅1
(
𝑢0
)
=

𝜕𝑢0 (𝑥, 𝑡)
𝜕𝑡

−
𝜕2𝑢0 (𝑥, 𝑡)

𝜕𝑥2
− 6𝑢0 (𝑥, 𝑡) + 6

(
𝑢0 (𝑥, 𝑡)

)2
,

𝑅2
(
𝑢1
)
=

𝜕𝑢1 (𝑥, 𝑡)
𝜕𝑡

−
𝜕2𝑢1 (𝑥, 𝑡)

𝜕𝑥2
− 6𝑢1 (𝑥, 𝑡) + 12𝑢0 (𝑥, 𝑡)𝑢1 (𝑥, 𝑡) , ...

Substituting 𝑅𝑚(𝑢𝑚−1 (𝑥, 𝑡)) in Eq. (25) and solving for 𝑢𝑚 (𝑥, 𝑡), it is 
easy to see

u1 (𝑥, 𝑡) = ℎ𝐿−1𝑅1
(
u0 (𝑥)

)
= − 10ℎ𝑡𝑒𝑥𝑡

(1 + 𝑒𝑥)3
,

u2 (𝑥, 𝑡) = u1 (𝑥, 𝑡) + ℎ𝐿−1𝑅2
(
u1 (𝑥)

)
= 5ℎ𝑒𝑥𝑡 (10ℎ𝑒𝑥𝑡− 2ℎ𝑒𝑥 − 5ℎ𝑡− 2𝑒𝑥 − 2ℎ− 2)

(1 + 𝑒𝑥)4
,

… … …

Hence, the series solution of Eq. (22) attained by the HAM is given 
by

𝑢 (𝑥, 𝑡) =
𝑀∑
𝑚=0

𝑢𝑚 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡) + 𝑢2 (𝑥, 𝑡) +⋯ (27)

The exact solution 𝑢(𝑥, 𝑡) obtained from Eq. (27) as ℎ → −1 is given 
by

𝑢 (𝑥, 𝑡) = 1
(1 + 𝑒𝑥)2

+ 10𝑡𝑒𝑥𝑡
(1 + 𝑒𝑥)3

+ 25𝑒𝑥 (2𝑒𝑥 − 1) 𝑡2

(1 + 𝑒𝑥)4
+⋯ (28)

With some algebraic operations performed by a symbolic computa-

tional tool, it is easy to see the solution presented by Eq. (28) in the 
following closed-form:

𝑢 (𝑥, 𝑡) = 1(
1 + 𝑒𝑥−5𝑡

)2 , (29)

which is the exact solution of Eq. (22) for case 3. It is noticeable that 
the initial solution given by Eq. (23) can be produced from Eq. (29) by 
setting 𝑡 = 0.

The 2D plot of the solution of Eq. (22) given by Eq. (29) is displayed 
in Fig. 3 for a clear understanding.

Fig. 3 is presented with 𝛼 = 6, 𝛽 = 1, and 𝑢 (𝑥,0) = 1
(1+𝑒𝑥)2

, for varying 
𝑥 ∈ [−1, 1], where 𝑡 varies from −3 to 3. It is perceived from Fig. 3 that 
𝑢(𝑥, 𝑡) increases over time and after some time, 𝑢(𝑥, 𝑡) becomes constant. 
The closed-form solution of Eq. (22) given by Eq. (29) is found to be 
exactly the same with those extracted via the ADM [10], the HPM [13, 
23], and the VIM [24], which is the exact solution of Eq. (22) with the 
given initial approximate solution.

Case 4: In this case, we examine the Fisher-KPP equation specified 
by Eq. (8) for 𝛼 = 1 and 𝛽 = 6 (generalized Fisher’s equation) i.e., we 
seek out the solution of the equation appended below:

𝜕𝑢

𝜕𝑡
= 𝜕2𝑢

𝜕𝑥2
+ 𝑢(1 − 𝑢6). (30)

The equation has applications in biology, especially in tumor growth 
and invasion. To solve Eq. (30) by the HAM and point out our intention, 
we consider the initial approximation following Singh et al. [13] as
5

Fig. 3. 2D plot of the solution of Eq. (22) given by (29) with 𝑥 = −1, 𝑥 = 0, and 
𝑥 = 1.

𝑢 (𝑥,0) =
(
1 + 𝑒

3
2 𝑥
)− 1

3
. (31)

On the basis of the process detailed in obtaining the solution in case 
1, the nonlinear operator can be defined as

 [𝜑 (𝑥; 𝑞)] = 𝜕𝑢(𝑥; 𝑞)
𝜕𝑡

− 𝜕2𝑢 (𝑥; 𝑞)
𝜕𝑥2

+ 𝑢(𝑥; 𝑞)[1 − 𝑢6 (𝑥; 𝑞)], (32)

and then the solution of the deformation equation of the 𝑚th order leads 
to

𝑢𝑚 (𝑥, 𝑡) = 𝝌𝑚𝑢𝑚−1(𝑥, 𝑡) +𝐻 (𝑥, 𝑡)ℎ𝐿−1𝑅𝑚(𝑢𝑚−1(𝑥, 𝑡)). (33)

Then from Eqs. (32) and (33) maintaining the same procedure de-

tailed above, we attain the following results:

𝑅1
(
𝑢0
)
=

𝜕𝑢0 (𝑥, 𝑡)
𝜕𝑡

−
𝜕2𝑢0 (𝑥, 𝑡)

𝜕𝑥2
− 𝑢0 (𝑥, 𝑡) +

(
𝑢0 (𝑥, 𝑡)

)7
,

𝑅2
(
𝑢1
)
=

𝜕𝑢1 (𝑥, 𝑡)
𝜕𝑡

−
𝜕2𝑢1 (𝑥, 𝑡)

𝜕𝑥2
− 𝑢1 (𝑥, 𝑡) + 7

(
𝑢0 (𝑥, 𝑡)

)6
𝑢1 (𝑥, 𝑡) ,

𝑅3
(
𝑢2
)
=

𝜕𝑢2 (𝑥, 𝑡)
𝜕𝑡

−
𝜕2𝑢2 (𝑥, 𝑡)

𝜕𝑥2
− 𝑢2 (𝑥, 𝑡) + 7𝑢2 (𝑥, 𝑡)

(
𝑢0 (𝑥, 𝑡)

)6
+ 21

(
𝑢2 (𝑥, 𝑡)

)2 (
𝑢0 (𝑥, 𝑡)

)5
, ...

Substituting 𝑅𝑚(𝑢𝑚−1 (𝑥, 𝑡)) in Eq. (33) and solving for 𝑢𝑚 (𝑥, 𝑡), we 
get

u1 (𝑥, 𝑡) = ℎ𝐿−1𝑅1(u0(𝑥)) = −5
4

ℎ𝑡𝑒
3
2 𝑥(

1 + 𝑒
3
2 𝑥
) 4

3

,

u2 (𝑥, 𝑡) = u1 (𝑥, 𝑡) + ℎ𝐿−1𝑅2
(
u1 (𝑥)

)
,

= 5
32

ℎ𝑡𝑒
3
2 𝑥

(
5ℎ𝑡𝑒

3
2 𝑥 − 8 − 8𝑒

3
2 𝑥 − 8ℎ𝑡𝑒

3
2 𝑥 − 15ℎ𝑡− 8ℎ

)
(
1 + 𝑒

3
2 𝑥
) 7

3

, and so on.

By the same process, we can attain the terms, as desirable, of the 
series. Hence, the approximate series solution of Eq. (30) by the HAM 
is given by

𝑢 (𝑥, 𝑡) =
𝑀∑
𝑚=0

𝑢𝑚 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡) + 𝑢2 (𝑥, 𝑡) +⋯ (34)

When ℎ → −1, then we can put forward 𝑢(𝑥, 𝑡) given by Eq. (34) in 
the following form:
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Fig. 4. 2D plot of the solution of Eq. (30) given by Eq. (36) with 𝑥 = 0.5, 𝑥 = 0.6, 
and 𝑥 = 0.7.

𝑢 (𝑥, 𝑡) = 1(
1 + 𝑒

3
2 𝑥
) 1

3

+ 5
4

𝑒
3
2 𝑥(

1 + 𝑒
3
2 𝑥
) 4

3

𝑡+ 25
32

𝑒
3
2 𝑥

(
𝑒
3
2 𝑥 − 3

)
(
1 + 𝑒

3
2 𝑥
) 7

3

𝑡2

2!
+⋯ (35)

By performing some algebraic operations through any symbolic 
computation software, one can see 𝑢 (𝑥, 𝑡) given by Eq. (35) in the fol-

lowing closed-form:

𝑢 (𝑥, 𝑡) =
{ 1
2
tanh

(
−3
4

(
𝑥− 5

2
𝑡

)
+ 1

2

)} 1
3
, (36)

which is the exact solution of Eq. (30). It is obvious that the initial 
solution given by Eq. (31) can be produced from Eq. (36) by setting 
𝑡 = 0.

The solution of Eq. (30) given by Eq. (36) is displayed in Fig. 4 for 
comprehending the intricate physical interpretation. Fig. 4 is presented 

with 𝛼 = 1, 𝛽 = 6, and 𝑢 (𝑥,0) =
(
1 + 𝑒

3
2 𝑥
)− 1

3
, where 𝑡 varies from 0 to 2. 

It is perceived from Fig. 4 that 𝑢(𝑥, 𝑡) increases initially and after some 
time, 𝑢(𝑥, 𝑡) turns out to be constant for all values of 𝑥. The closed-

form solution of Eq. (30) achieved through the HAM given by Eq. (36) 
provides the same results as those picked up via the ADM [10], the HPM 
[13, 23], and the VIM [24], which is the exact solution of Eq. (30) with 
the given initial approximate solution.

Theorem (Convergence analysis [37, 38, 39, 40]). Assume that 𝑢0, 𝑢1,
𝑢2, … are derived by the procedure mentioned above. Then, the series 
𝑢 (𝑥, 𝑡) = 𝑢0 (𝑥, 𝑡) +

∑∞
𝑚=0 𝑢𝑚(𝑥, 𝑡) converges if there exists 0 < 𝑟 < 1 such that ‖𝑢𝑚+1‖ ≤ 𝑟‖𝑢𝑚‖ for all 𝑚 ≥𝑚0 and for some 𝑚0∈ℕ, the set of natural num-

bers.

Furthermore, the estimated error can be given as ‖𝑢 −∑𝑘

𝑚=0 𝑢𝑚 (𝑥, 𝑡)‖
≤ 𝑟𝑘+1

1−𝑟 ‖𝑢0‖.

4. Discussion of the attained results

In this section, we describe the effectiveness and the applicability 
of the HAM to analyze the solution of the Fisher’s equation with the 
viewpoint of the spatial spreading of invasive species in ecology and in 
biology, the disposition of the spatial spreading of invasive cell popula-

tions, and the influence of the proliferation rate.

If we consider the Fisher-KPP model in the case of spatial spread-

ing of invasive species in ecology or to extract the nature of the spatial 
6

spreading of invasive cell populations in biology, Figs. 1–4 may be de-

scribed as follows: It is clear from Fig. 1 obtained for the proliferation 
rate 𝛼 = 1 that at the initial time 𝑡, the invasive species are located to 
a critical level, but as time 𝑡 increases, the invasive species or the in-

vasive cell populations decrease continuously with constant shape and 
constant speed, and after a brief period of time, the invasion is found 
to be constant. Thus, in this case, Fisher’s equation does not allow the 
invasive species or the invasive cell populations to go extinct.

With the same proliferation rate, we solve Eq. (9) in case 2 with the 

initial approximation 𝑢 (𝑥,0) =
(
1 + 𝑒

1√
6
𝑥
)−2

, and this is possible, be-

cause the HAM provides us with a proper base function so as to yield 
a better approximation of the nonlinear problem. It is seen from Fig. 2

that if the invasion species stand before starting time of our investi-

gation, then the invasion increases over time, but after a while, the 
invasion becomes constant. This case also does not allow the solution 
to go extinct.

But for the same proliferation rate, it is seen from Fig. 4 for the initial 

approximation 𝑢 (𝑥,0) =
(
1 + 𝑒

3
2 𝑥
)− 1

3
that if some species are invasion, 

then the invasion increases when time increases and after a brief period 
of time, the invasion remains constant. Thus, the solution of Eq. (30) 
given by Eq. (36) does not allow the invasive species or the invasive 
cell populations to go extinct.

Finally, if we increase the proliferation rate, then Fig. 3 illustrated 
for the solution given by Eq. (29) of Eq. (22) for the initial approxima-

tion 𝑢 (𝑥,0) = 1
(1+𝑒𝑥)2

presents that if the invasion species stand before 
starting our investigation time, then it is easily perceived from the fig-

ure (Fig. 3) that the invasion increases over time, but after a few times, 
the invasion becomes constant. This case also does not allow the so-

lution to go extinct. Thus, from the above four cases, we notice that 
Fisher’s equation gives the solution with compact support, but it does 
not allow the solution to go extinct. Furthermore, in the long-time limit, 
the solutions of Fisher’s equation lead to a constant speed and constant 
shape TW. It is of interest to note here that for every positive IC with 
compact support, Fisher’s equation will always amplify to a TW that 
moves with a minimum speed.

It can easily be perceived from the above results that the general 
solution of the Fisher’s equation 𝜕𝑢

𝜕𝑡
= 𝜕2𝑢

𝜕𝑥2
+ 𝛼𝑢(1 − 𝑢) is given by

𝑢 (𝑥, 𝑡) =
⎛⎜⎜⎝1 + 𝑒

√(
𝛼

6

)
𝑥− 5

6 𝛼𝑡
⎞⎟⎟⎠
−2

. (37)

From the solution given by Eq. (37), we notice that the prolifera-

tion rate 𝛼 is the only parameter used to describe the entire population. 
To examine the effect of 𝛼, the graphical illustration of the solution 
given by Eq. (37) for some values of 𝛼 is presented in Fig. 5 for a bet-

ter perspective. It is perceived from Fig. 5 that a TW is approached 
that travels in the positive 𝑥-direction with constant shape and constant 
speed in the case of spatial spreading of invasive species in ecology or 
the spatial spreading of invasive cell populations in biology. The in-

vasive cell population propagates severally on a semi-infinite region 
due to the variation of proliferation rate (see Fig. 5). For the prolifer-

ation rate 𝛼 = 1, Fig. 5(a) indicates that the invasion starts to decay in 
space quickly with a constant speed and after a short spatial distance, 
the invasion is found to be constant. For the proliferation rate 𝛼 = 2, 
Fig. 5(b) shows that for 𝑡 = 0, the invasion decreases quickly in space 
that means the propagation of the invasion is very less. On the other 
hand, for other times, at first, the invasion spreads out over space and 
then begins to decay as the spatial distance increases, and the inva-

sion becomes constant. Finally, Fig. 5(c)–(d) shows that the invasion 
declines after overlong spatial distance which signifies that the rate of 
the spatial spreading is maximum in those cases. It is clarified from 
the figure that the rate of invasion is almost stationary, but it does not 
go extinct. Therefore, it is perceived from the figure that the invasion 
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Fig. 5. 2D plot of the solution given by Eq. (37) for (a) 𝛼 = 1, (b) 𝛼 = 2, (c) 𝛼 = 3, and (d) 𝛼 = 4.
Fig. 6. Graphical illustration of the approximate series solution given by 
Eq. (15) with several orders of Eq. (9) and its exact solution.

spread out over space quickly when the proliferation rate is increased 
which means that the invasion starts to decrease rapidly only when the 
proliferation rate is lowered.

Further, it can be perceived from Fig. 5 that the solution approaches 
a travelling wave that moves in the positive 𝑥-direction with constant 
speed and constant shape. Our solutions confirm that the speed of prop-

agation is minimum, as expected.

To examine the convergence of the series given by Eq. (15), we 
present graphically the HAM approximation solutions with several or-

ders of Eq. (9) taking ℎ = −0.28, 𝛾 = 2 and its exact solution in Fig. 6. It 
can be observed from Fig. 6 that the HAM solution converges to the ex-

act solution after only 5 terms. We have also estimated the root mean 
square error (RMSE) between our approximate results taking the first 
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Table 1. The AErr of the approximate series solution (given by Eq. (15)) of 
Eq. (9) and its exact solution.

𝑡 AErr with 𝛾 = 2, ℎ = −0.28

𝑁 = 5 𝑁 = 6 𝑁 = 7 𝑁 = 8 𝑁 = 9
0 0 0 0 0 0

0.50 1.52 × 10−2 6.45 × 10−3 2.33 × 10−3 4.90 × 10−4 2.55 × 10−4

1.00 1.05 × 10−2 8.35 × 10−3 6.12 × 10−3 4.33 × 10−3 3.02 × 10−3

1.50 1.71 × 10−2 1.15 × 10−2 7.64 × 10−3 5.02 × 10−3 3.27 × 10−3

2.00 1.88 × 10−2 1.19 × 10−2 7.38 × 10−3 4.42 × 10−3 2.54 × 10−3

2.50 2.06 × 10−2 9.87 × 10−3 5.87 × 10−3 2.67 × 10−3 1.03 × 10−3

3.00 4.95 × 10−2 2.03 × 10−2 1.09 × 10−2 3.79 × 10−3 9.56 × 10−4

8 terms and the exact result. The estimated RMSE value is found to be 
4.7648 × 10−4, which is reasonable. To ensure the proper judgement of 
the above statements, the absolute error (AErr) between the approxi-

mate series solution given by Eq. (15) with several orders of Eq. (9) and 
its exact solution is presented in Table 1 taking 𝛾 = 2 and ℎ = −0.28. 
From Table 1, it is revealed that the AErr is minimum at the highest or-

der approximated solution. That means the HAM approximated series 
solution converges to the exact solution when 𝑁 tends to infinity.

To test the superiority of the HAM over the ADM and the HPM, we 
present graphically the exact solution of Eq. (9) and its approximate 
series solutions taking the first 8 terms attained by the HAM, the ADM, 
and the HPM in Fig. 7. It is to be noted here that the approximate series 
solutions of Eq. (9) by the ADM and the HPM are achieved by taking 
ℎ = −1 in Eq. (15), which is the same as the ones produced by the ADM 
[10] and the HPM [13, 23]. Therefore, the series solution attained by 
the HAM is superior to the series solutions that came out through the 
ADM and the HPM. It is seen also from Fig. 7 that the HAM result 
achieved by taking ℎ = −0.55 converges rapidly to the exact solution 
than the ADM and the HPM. To clarify the above judgment, the AErrs 
between the approximate series solution (15) of Eq. (9) obtained by the 
HAM, the ADM, and the HPM and its exact solution are presented in 
Table 2.

From the Table 2, it is perceived that at each time mentioned in the 
table, the HAM result is better than that of the ADM and HPM. Further, 
the HAM has a special advantage that controls the ROC by selecting 
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Fig. 7. A comparison between the exact solution and the approximate series 
solutions obtained by the HAM, the HPM, and the ADM of Eq. (9) when ℎ =
−0.55 and 𝛾 = 2 are taken.

Table 2. The AErrs of the approximate series solutions 
of Eq. (9) by different methods and the exact solution.

𝑡 AErr when 𝛾 = 2

HAM ADM HPM

0 0 0 0
0.25 1.13 × 10−5 1.09 × 10−4 1.09 × 10−4

0.50 1.81 × 10−5 4.43 × 10−2 4.43 × 10−2

0.75 1.34 × 10−5 1.41 × 100 1.41 × 100

1.00 5.60 × 10−5 1.59 × 101 1.59 × 101

Fig. 8. A comparison between the approximate series solution of Eq. (9) given 
by Eq. (15) obtained by the HAM with different values of ℎ and the exact solu-

tion of Eq. (9), where 𝛾 = 2 is taken into account.

suitable values of the CCP ℎ. To justify this advantage of the HAM, we 
exhibit the approximation series solutions of Eq. (9) given by Eq. (15) 
by taking the first 8 terms for several values of ℎ in Fig. 8. It is seen from 
Fig. 8 that the parameter ℎ controls the ROC. It is interesting to note 
here that the approximate series solution of Eq. (9) given by Eq. (15) 
8

Table 3. The AErr and relative error of the 
approximate series solution of Eq. (9) and its 
exact solution (when 𝛾 = 2, ℎ = −0.35).

𝑡 AErr Relative error

0 0 0

0.50 7.41 × 10−4 5.16 × 10−4

1.00 1.69 × 10−3 1.38 × 10−3

1.50 1.55 × 10−3 1.38 × 10−3

2.00 4.34 × 10−4 4.05 × 10−4

by taking the first 8 terms converges to the exact solution mostly for 
ℎ = −0.35. AErrs of the approximation series solution of Eq. (9) and its 
exact solution for varying 𝑡 is presented in Table 3 with ℎ = −0.35.

Thus, it is suggestive that the Fisher-KPP model can be used to em-

ulate biological invasion in various affections, but it cannot be used to 
emulate biological recession, as the Fisher-KPP model does not allow 
the solution to go extinct for all cases. For removing this limitation, we 
need to modify the Fisher-KPP model for simulating biological reces-

sion so that the population eventually can become extinct in all cases. 
However, the outcomes indicate that the HAM is a powerful mathemat-

ical technique for extracting exact and analytical solutions to nonlinear 
equations.

5. Conclusion

In this paper, we have promoted the solution of the nonlinear Fisher 
type equations using the HAM and studied the nature of the solutions 
from the viewpoint of ecology and biology. It is observed that every 
positive IC with compact support of the Fisher’s equation amplifies to 
a TW with a minimal speed. The effects of the proliferation rate in 
the Fisher-KPP model is discussed on the entire population and it is ob-

served that the invasive cell or the invasive population decreases within 
a short period of time whereas the proliferation rate is minimum. The 
HAM includes a certain CCP that provides a convenient way to con-

trol the ROC and convergence rate of the series solution. Thus, we can 
extend or shorten the experimental region by controlling the CCP ℎ
when the closed form is unavailable. Also, the solutions extracted by 
the HAM contain the solutions obtained by the HPM and ADM. There-

fore, it is confirmed that the HAM is superior to other semi-analytical 
methods. In the present study, Matlab software is used to figure out dif-

ferent effective graphs of the solution of the Fisher’s equation obtained 
via the HAM by setting the several values of the parameter ℎ in which 
Fig. 8 indicates ℎ controls the ROC. The approximated results of Eq. (9) 
(Fisher’s equation) by the HAM containing only first 8 terms matches 
reasonably well with the exact solution of the equation with respect 
to the RMSE value. However, our approximated outcomes are nearly 
identical within the range 6 ≤ 𝑁 ≤ 9. For a reasonable case, 𝑁 = 9 is 
justified, and for larger 𝑁 , approximate solutions may approach the ex-

act result. The outcomes show that the HAM is a powerful and efficient 
method for obtaining an analytic approximation solution to a nonlinear 
problem that converges to the actual solution relatively rapid (after just 
five iterations in the case of the current study, see Fig. 6). Since in the 
case of ecology or biology, the invasive species or invasion cell cannot 
counteract totally at any instant of time using the Fisher-KPP model, 
we need to reformulate the Fisher’s equation. For this purpose, we de-

liberate that if the diffusivity 𝐷 in the Fisher’s equation (2) is altered, 
the graph of the approximate solution may be terminated after a finite 
number of steps even in closed-form and so the invasive species may 
be counteracted in a concise stage. Future scope and perspective of our 
research work concentrates on investigating precisely under what con-

ditions solutions go to travelling waves or become extinct modifying 
the assumption that the contact point corresponds to zero cell density 
and on examining how quickly travelling waves develop as 𝑡 →∞.
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