
A Label-Free Mass Spectrometry Method to Predict
Endogenous Protein Complex Composition
Authors
Zachary McBride, Donglai Chen, Youngwoo Lee, Uma K. Aryal, Jun Xie, and Daniel B. Szymanski

Correspondence
dszyman@purdue.edu

In Brief
At least one third of soluble pro-
teins are predicted to exist in a
stable oligomeric state. How-
ever, the compositions of the
vast majority are unknown. This
paper describes a biochemical
method to predict protein com-
plex composition based on or-
thogonal chromatographic sepa-
rations and label-free protein
correlation profiling. The vali-
dated method predicts hundreds
of novel homo- and heterooligo-
meric complexes, and provides
a new way to analyze protein
complexes in any organism with
a well-annotated proteome.
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Highlights

• Endogenous protein complex composition was predicted using orthogonal protein separations,
protein correlation profiling, and novel data filtering scripts.

• The validated method accurately identifies homo- and heterooligomeric complexes.

• Profiling of the AIMP1 mutant validated the discovery of a t-RNA synthetase-clustering complex.
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Information on the composition of protein complexes can
accelerate mechanistic analyses of cellular systems. Pro-
tein complex composition identifies genes that function
together and provides clues about regulation within and
between cellular pathways. Cytosolic protein complexes
control metabolic flux, signal transduction, protein abun-
dance, and the activities of cytoskeletal and endomem-
brane systems. It has been estimated that one third of all
cytosolic proteins in leaves exist in an oligomeric state,
yet the composition of nearly all remain unknown. Sub-
units of stable protein complexes copurify, and combina-
tions of mass-spectrometry-based protein correlation
profiling and bioinformatic analyses have been used to
predict protein complex subunits. Because of uncertainty
regarding the power or availability of bioinformatic data to
inform protein complex predictions across diverse spe-
cies, it would be highly advantageous to predict compo-
sition based on elution profile data alone. Here we de-
scribe a mass spectrometry-based protein correlation
profiling approach to predict the composition of hundreds
of protein complexes based on biochemical data. Extracts
were obtained from an intact organ and separated in
parallel by size and charge under nondenaturing condi-
tions. More than 1000 proteins with reproducible elution
profiles across all replicates were subjected to clustering
analyses. The resulting dendrograms were used to predict
the composition of known and novel protein complexes,
including many that are likely to assemble through self-
interaction. An array of validation experiments demon-
strated that this new method can drive protein complex
discovery, guide hypothesis testing, and enable sys-
tems-level analyses of protein complex dynamics in any
organism with a sequenced genome. Molecular & Cel-
lular Proteomics 18: 1588–1606, 2019. DOI: 10.1074/mcp.
RA119.001400.

There are important roles for “omics” technologies to gen-
erate systems level data to inform strategies for trait engineer-

ing (1, 2). Information about protein oligomerization is some of
the most valuable biological data that can provide insight into
the control of metabolic pathways and cellular systems (3–5).
Protein complex composition identifies genes that function in
a common pathway (6). Protein complex formation can also
strongly influence metabolism, as oligomerization can control
enzyme activity, alter substrate specificity, and define meta-
bolic flux into distinct pathways (4, 7). Protein complex com-
position provides insight into how molecular machines form
vesicles (8) or recognize, unfold, and degrade ubiquitinated
proteins (9). Protein complexes also can serve as coincidence
detectors to convert multiple input signals into a coherent
output (10). Cytosolic proteins also impact the complex shape
of a plants cell and organs by regulating cytoskeletal proteins
and cell wall properties (11). A single protein can assemble
into multiple distinct protein complexes, providing important
clues about how distinct cellular pathways might be inte-
grated (12).

Using the plant model Arabidopsis, it is estimated that
about one third of the cytosolic proteins exist as a subunit of
a stable complex (13); however, the composition of the vast
majority remains unknown. This is largely because protein-
protein interactions cannot be predicted by genome se-
quence or expression data alone, and a biochemical experi-
ment is required to detect physical interactions. There are
many effective methods to test for protein complex formation
in a high throughput manner (13–21). The yeast-two-hybrid
assay was adapted to high throughput workflows to detect
binary protein-protein interactions (22). Large scale yeast-
two-hybrid datasets can be analyzed to indirectly predict
higher order protein complex composition by generating net-
works of interactors; however, the probability of false posi-
tives increases as the number of interactors increases (23,
24). Native complexes can be isolated and identified with
antibodies and coimmunoprecipitation (CoIP)1 or tandem af-
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finity purification coupled with mass spectrometry (25–27).
This requires either robust antibodies (28) or the generation of
transformed organisms in which the affinity-tagged protein is
functional and expressed at appropriate levels to minimize
artifactual protein complex formation (14, 22, 29, 30).

Protein correlation profiling is an attractive method to ana-
lyze endogenous protein complexes as a function of their
elution profiles. Protein complex composition prediction is
based on the premise of “guilt by association” in which sub-
units of stable protein complexes coelute independent of the
purification strategy. The method is enabled by the parallel
protein quantification inherent to modern protein mass spec-
trometry and the availability of high-quality proteomes. In-
creased protein coverage and accurate quantification is being
driven by improvements in mass spectrometry instrumenta-
tion and data analysis pipelines (13, 21, 31–33).

In practice, protein complex composition prediction is chal-
lenging because the cell extract is a mixture of thousands to
tens of thousands of monomers and complexes. Using size-
based separations it is possible to measure the apparent
mass of hundreds to thousands of proteins in a single exper-
iment, and the subset that is likely to exist in an oligomeric
state (13, 31, 32, 34, 35). However, chance coelution limits
one’s ability to accurately predict complex composition based
solely on an SEC separation. As an alternative approach, ma-
chine learning and bioinformatic algorithms that combine
LC/MS profile data with gene coexpression, coevolution, and
protein-protein interaction datasets have been used to make
more restricted predictions about protein complex composition
(36, 37). One way these algorithms are validated is through
prediction of known protein complexes. In Arabidopsis, sub-
units of known, evolutionarily conserved protein complexes
rarely exist as stable, fully assembled forms (32). Therefore,
mass spectrometry profile data can be incongruent with orthog-
onal datasets that are constructed based on “golden stand-
ards” of assumed fully assembled complexes.

Our goal here is to develop a protein correlation profile
workflow in which imperfect but highly useful protein complex
composition predictions can be made based on LC/MS profile
data alone. Soluble Arabidopsis leaf extracts, enriched in
soluble cytosolic and chloroplast proteins, were separated by
SEC and IEX chromatography to generate thousands of elu-
tion profiles. Automated data filtering of biological replicates

was used to identify and combine reproducible profiles and
subject them to distance-based clustering analyses to identify
groups of proteins with similar elution profiles. The intrinsic
information content of the dendrogram and the behaviors of
selected known proteins complexes were used to divide the
dendrogram and generate specific protein complex compo-
sition predictions. An array of biochemical and genetic val-
idation experiments demonstrates the utility of this dataset
and the potential use of this method to generate systems-
level knowledge about protein complex composition and
dynamics.

MATERIALS AND METHODS

Experimental Design and Statistical Rationale—For LC-MS/MS
profiling two biological replicates were used based on the high level of
reproducibility between replicates. In previous studies most of the
proteins had a reproducible peak between biological replicates (13,
21, 32). Ion exchange chromatography provided a high-resolution
separation and 65 fractions were analyzed by mass spectrometry
(analyzed on Sciex 5600 mass spectrometer). For the SEC and IEX
profiling experiments that were analyzed to predict protein complex
composition were analyzed on Sciex 5600 mass spectrometer. The
SEC fractions that were analyzed to test for oligomerization changes
in predicted AIMP1L-interactors by profiling the aimpl1 mutant were
analyzed on Q Exactive mass spectrometer. For CoIP-MS pull downs
three replicates were performed with antibodies against the protein of
interest and negative controls and were analyzed on Q Exactive mass
spectrometer.

Plant Growth and Cell Fractionation—Arabidopsis thaliana ecotype
Colombia was grown in tissue culture under continuous light (0.5�
MS salts, 1% sucrose, 0.8% Bacto agar) for 21 days after germination
(13). Two grams of leaf tissue was collected and all the remaining
steps were performed immediately without freezing at 4 °C on ice.
The leaves were transferred to a 50 ml round bottom centrifuge tube
with 7 ml of ice-cold MIB buffer (50 mM HEPES-KOH pH 7.5, 250 mM

sorbitol, 50 mM KOAc, 2 mM Mg(OAc)2, 1 mM EDTA, 1 mM EGTA, 1 mM

DTT, 2 mM phenyl methyl sulfonylfluoride and 1% (v/v) inhibitor mix-
ture (160 mg/ml benzamidine-HCl, 12 mg/ml phenanthroline, 0.1
mg/ml aprotinin, 100 mg/ml leupeptin, and 0.1 mg/ml pepstatin A) for
homogenization. Two 10 s bursts of a polytron (Brinkmann Instru-
ments, Riverview, FL) homogenized the tissue. Debris was removed
by filtration of the homogenate through four layers of cheesecloth.
Differential centrifugation enriched the soluble proteins by spinning at
1000 � g (Beckman Avanti 30, Alanta, GA) for 10 min, 4 °C. The
supernatant was enriched by pelleting membranes by ultracentrifu-
gation at 200,000 � g for 20 min, 4 °C (Beckman Optima Ultracen-
trifuge). The remaining supernatant contained the crude cytosolic
proteins. RuBisCO was depleted from the crude cytosolic fraction
using Seppro RuBisCO spin columns according to the manufacturer’s
specifications (Sigma Aldrich, St. Louis, MO).

Size Exclusion and Ion Exchange Chromatography—Size exclusion
chromatography was performed on an AKTA FPLC system (GE Life
Sciences, Pittsburgh, PA) using either a Superdex increase 200 10/
300 GL (GE Healthcare) or HiLoad 16/600 Superdex 200 pg column
(GE Life sciences). The mobile phase was [50 mM HEPES-KOH pH
7.8, 100 mM NaCl, 10 mM MgCl2, 5% glycerol and 1 mM DTT] and flow
rates were 0.6 ml/minute for the 10/300 column and 1 ml/min for the
16/600 column. Protein loading was 0.5 ml (�1 �g total protein) for
the 10/300 and 2 ml (�4 mg total protein) for the 16/600 column. The
columns were calibrated using the gel filtration kit 1000 (MWGF1000,
Sigma-Aldrich) using standards ranging from 669 to 29 kDa and the

1 The abbreviations used are: CoIP-MS, coimmunoprecipitation-
mass spectrometry; IEX, ion exchange chromatography; Mapp, appar-
ent mass measured by size exclusion chromatography; Mcalc, calcu-
lated mass of a predicted protein complex based on the proteins in
cluster; Mmono, calculated monomer mass for a protein; P200, 200k �
g pellet containing the microsomal fraction; Rapp, ratio of the apparent
mass to the calculated mass of the monomer; S200, soluble proteins
after differential centrifugation; SDS-PAGE, sodium dodecyl sulfate
polyacrylamide gel electrophoresis; SEC, size exclusion chromatog-
raphy; SEC�IEX, concatenated SEC and IEX protein elution profiles;
TAIR, the Arabidopsis information resource.
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void was determined using blue dextran as previously described (13).
Fractions were collected starting at the void to �5 kDa.

For separation by charge using ion exchange chromatography a
buffer exchange was required for effective protein binding to the solid
phase. Buffer exchange was performed using Amicon ultra-15 50 ml
centrifugal filters (Milipore, Burlington, MA) to exchange into 20 mM

Tris/HCl pH 7.5. IEX chromatography was performed using a Dionex
Ultimate 3000 UPLC (Thermo Fisher, Waltham, MA) and a PolyLC
(Columbia, MD) mixed bed ion exchange column in Buffer A [20 mM

Tris/HCl pH 7.5, 5% glycerol, and 0.5 mM DTT] then eluted with a 35
min linear gradient to increase the mobile phase to 50% buffer A and
50% Buffer B [20 mM Tris/HCl pH 7.5, 5% glycerol, 1.5 M NaCl and 0.5
mM DTT] and over the final 5 min the buffer composition was ramped
to 25% Buffer A and 75% Buffer B. Sixty-five 500 �l fractions were
collected.

Gel Electrophoresis—Proteins were separated by SDS-PAGE and
visualized with Coomassie blue staining using standard procedures.
Proteins were loaded by equal proportions in 1� Laemmli buffer [0.1
M Tris-HCl, pH 6.8, 1% SDS and 5% glycerol] onto 10% gels and
stained with Coomassie blue [50% Methanol, 10% acetic acid and
0.0125% Coomassie blue].

LC-MS/MS Sample Preparation and Analysis—For mass spec-
trometry analysis, proteins were digested to peptides as described in
(32). Briefly, the chromatography mobile phase was removed by
acetone precipitation, proteins were solubilized and denatured with
urea and digested with trypsin. Peptide concentrations were meas-
ured with a BCA assay and the most concentrated sample was
adjusted to have a peptide concentration of 0.2 �g/�l and an injection
volume of 5 �l was analyzed by mass spectrometry.

AB Sciex 5600—For the AB Sciex 5600, SEC and IEX samples
were analyzed by LC-MS/MS as described by Aryal et al. (21). In brief,
an Eksigent nano-LC 425 HPLC (Dublin, CA) separated the peptides
over a 90 min 0 to 35% acetonitrile gradient. For the AB Sciex 5600,
a quadruple time-of-flight mass spectrometer operated in a data-de-
pendent mode.

Thermo Fisher Q Exactive—For the Thermo Fisher Q Exactive high
field mass spectrometer, samples were analyzed by reverse-phase
HPLC-ESI-MS/MS using the Dionex UltiMate 3000 RSLC nano Sys-
tem coupled to the Q Exactive High Field (HF) Hybrid Quadrupole
Orbitrap MS (Thermo Fisher Scientific) and a Nano- electrospray Flex
ion source (Thermo Fisher Scientific). Peptides were loaded onto a
trap column (300 mm x 5 mm) packed with 5 mm 100 Å PepMap C18
medium and washed using a flow rate of 5 �l/minute with 98%
purified water/2% acetonitrile (ACN)/0.01% formic acid (FA) for 5 min.
Peptides were separated using a reverse phase Acclaim PepMap
RSLC C18 analytical column using a 120-min method at a flow rate of
300 nl/minute. The analytical column was packed with 100 Å PepMap
C18 medium (Thermo Fisher Scientific). Mobile phase A consisted of
0.01% formic acid in water and a mobile phase B consisted of 0.01%
FA in 80% ACN. The peptides were separated over a linear gradient
started at 5% B and reached 30% B in 80 min, 45% B in 91 min,
before the column was washed and regenerated. The sample was
injected into the QE HF through the Nanospray Flex™ Ion Source
fitted with an emission tip from Thermo Scientific. Column tempera-
ture was maintained at 35 °C. MS data was acquired with a Top 20
data-dependent MS/MS scan method. The full scan MS spectra were
collected over 300–1,650 m/z range with a maximum injection time of
100 milliseconds, a resolution of 120,000 at 200 m/z, spray voltage of
2 and AGC target of 1 � 106. Fragmentation of precursor ions was
performed by high-energy C-trap dissociation (HCD) with the normal-
ized collision energy of 27 eV. MS/MS scans were acquired at a
resolution of 15,000 at 200 m/z. The dynamic exclusion was set at
20 s to avoid repeated scanning of identical peptides.

Peptide Identification and Quantification—MaxQuant software (v.
1.5.3.28) (38) was used to analyze and align the LC-MS raw data files,
with its built-in Andromeda search engine (39). The search was per-
formed with all the fractions in the biological replicates analyzed
together in a single search. The MS/MS spectra were searched
against the TAIR (The Arabidopsis Information Resource) protein se-
quence database version 10 (TAIR10; 35386 protein sequences,
14,482,855 residues) for protein identification. A minimal length of six
amino acids was required in the database search. The search was
performed with the precursor mass tolerance set to 10 ppm and
MS/MS fragment ions tolerance was set to 40 ppm. Database search
was performed with enzyme specificity for trypsin, allowing up to two
missed cleavages. Oxidation of methionine was defined as a variable
modification, and carbamidomethylation of cysteine was defined as a
fixed modification. The “unique plus razor peptides” were used for
peptide quantitation. The false discovery rate (FDR) of peptide and
protein identification was set at 1%. Proteins identified by a single
spectra were accepted because they were identified in a minimum of
two independent experiments.

To increase the number of peptides that can be used for peptide
extracted ion chromatogram (XIC)-based quantification and protein
quantification and relative abundance profiling across SEC fractions,
the “match between runs” function was enabled in a search contain-
ing all raw files with a maximum retention time window of 1 min (21).
This “match between runs” allows the transfer of peptide identifica-
tion between precursor ion signals in nearby fractions in the absence
of peptide sequencing by MS/MS spectra, utilizing their accurate
mass and aligned retention time (38). Protein and peptide groups
were exported as .txt files and additional analysis was performed
using Matlab, R, Microsoft Access, and Excel.

Reproducibility, Peak Fitting, and Clustering Analyses—Proteins
with reproducible profiles were determined by the optimized Gauss-
ian fitting algorithm described in (32). To summarize, proteins were
selected for Gaussian fitting when they had �2 adjacent nonzero
fractions. Based on the resolution of the column, up to four Gaussian
peaks were allowed; however adjacent peaks had to be separated by
a minimum of four fractions. The maximum shift in peak location
between biological replicates was selected based on the number of
fractions collected and the peak capacity of the column. A Bayesian
information criterion was used that added a penalty to each additional
fitted peak to reduce over fitting (40). When a protein did not have two
adjacent nonzero fractions, the fraction with the highest intensity was
used as the peak, and raw intensity values were retained for all
fractions. A matrix of all the peaks in the two biological replicates for
a protein was used to find the reproducible peaks that were separated
by �2 fractions for SEC or �4 fractions for IEX.

Clustering Analysis and Data Filtering—Hierarchical clustering was
used to generate groups of proteins with the most similar elution
profiles. To reduce noise in the analysis Gaussian fitted peaks were
used when available. For proteins not fitted to a Gaussian peak the
raw profiles were used. The intensity range of the protein profiles was
normalized from zero to one. Clustering analysis was performed on
SEC only, IEX only, and concatenated SEC�IEC datasets. The con-
catenated dataset was comprised of the combined profiles for the
subset of proteins that had reproducible peak location across all
replicates and both column types. Clustering assigned proteins into
groups/individual clusters based on the similarity of their elution pro-
files. Similarity of protein pairs was measured by the squared Euclid-
ean distance, which is the sum of the squared difference of the pair
(41). For the SEC peaks, the first peak was used that corresponds to
the peak with the largest Mapp. In rare cases in which multiple peaks
were present in the SEC and IEX profiles for the same protein there
would be uncertainty regarding the correct correspondence between
the SEC and IEX peaks. In these instances, the peak with the largest
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Mapp was used because this corresponds to the protein peak that is
most likely to participate as a complex subunit. IEX profiles that
contained multiple peaks were deconvoluted and split into multiple
entries with a sequential suffix based on the peak number. The
dendrogram results were made available at a wide range of divisions
with different cluster numbers to enable individuals to search for
candidate proteins in nearby clusters with similar elution profiles. A
specific protein complex composition was generated by analyzing the
dendrogram at a cluster number that was designed to have a high
cluster number that decreased false positives, but not too high to
separate subunits of known complexes and increase false negatives.
This was achieved by analyzing the intactness and purity of known
complexes and by analyzing the inherent resolution of the combined
datasets. To analyze the intrinsic resolution of the data, we calculate
the distance within a cluster. A cluster center is first obtained as the
average profile of all proteins in the cluster. The distance within
the cluster is the average distance of proteins from the cluster center.
The average within cluster distance is calculated as a function of
increasing cluster number. Orthologs to known metazoan complexes
were used as to identify the small subset of known complexes that
were likely to be fully assembled (21). The behaviors of known com-
plexes were used to guide the final cluster number for protein com-
plex predictions. Intactness and purity can be used known protein
complexes as a standard to evaluate the clustering result (42). Intact-
ness measured the fraction of subunits from a known complex that
fell into a single cluster. Intactness was calculated by taking the
maximum number of subunits in a single cluster divided by the total
number of subunits of the known complex. Purity determined the
fraction of proteins in a cluster that were subunits of the known
complex. Purity was measured by taking the cluster with the highest
number of subunits from a known complex and calculating the frac-
tion of known subunits divided by the total number of proteins in the
cluster.

Intactness �
Number of subunits from a complex in a single cluster

Total number of complex subunits identified

Purity �
Max number of subunits from a complex in a single cluster

Total number of proteins in the cluster

Coimmunoprecipitation and LC/MS—Coimmunoprecipitation was
performed using either a GFP tagged protein or antibodies with
known specificity to the protein of interest. For both approaches two
grams of leaves were frozen with liquid nitrogen, powdered by grind-
ing in a mortar and pestle, resuspended in 7 ml of MIB buffer, and
soluble proteins were enriched with centrifugation (21). Antibodies
generated against ACTIN (C4 clone; Millipore) were bound to Pierce
protein A/G magnetic beads (Pierce biotechnology, Waltham, Mas-
sachusetts). YFP-GAPC2 (43) was pulled down using GFP-Trap
(ChromoTek, Hauppauge, NY). The binding reactions were assem-
bled as follows: 350 �l of soluble proteins were brought to a final
concentration of 150 mM NaCl, 20 mM HEPES pH 7.2, and 1% NP-40
in 1 ml and incubated overnight at 4 °C on a rocking table. The beads
were then washed three times with 20 mM HEPES pH 7.2, 150 mM

NaCl, and 1% NP-40 and two times with 20 mM HEPES pH 7.2. The
magnetic bead-trapped proteins were eluted from the beads by heat-
ing at 65 °C in 8 M urea and prepared for MS analysis as described
above. Peptides from these samples were analyzed on a Thermo
Fisher Q Exactive as described above.

Protein Complex Prediction Validation Using An Arabidopsis
Knockout of a Predicted Complex Subunit—To test for an effect of a
predicted novel protein complex subunit on the oligomerization state
of the protein complex, an independent SEC profiling experiment with
biological replicates was conducted using the preparation of soluble
proteins from the aim1pl (AT2G40660) knock out and wild-type (Col-

0). The methods were as described above but were analyzed using
the Thermo Q Exactive with improved sensitivity and reproducibility
compared with the AB Sciex 5600. The aimp1 knock out Gabi Kat
220E08 line was confirmed by PCR to contain a T-DNA insertion in
exon 2 of AT2G40660 using PCR (44). The elution profiles of the
predicted AIMP1L-associated proteins were compared in duplicate
samples from wild-type and mutant extracts. As a negative control, all
cytosolic tRNA ligases in the Q Exactive dataset were compared.

RESULTS

A Workflow for Protein Correlation Profiling-based Predic-
tions of Protein Complex Composition—The objective of this
work was to create a label-free proteomic method to predict
the composition of endogenous protein complexes from leaf
extracts (Fig. 1). An intact organ was used to minimize arti-
facts caused by generating protoplasts and to facilitate func-
tional analyses of leaves under different growth conditions.
Soluble protein extracts were generated from Arabidopsis
leaves by homogenization and differential centrifugation.
Each biological replicate was split into two samples: half was
separated by SEC to obtain an estimate of the apparent mass
of the endogenous protein based on its hydrodynamic radius

FIG. 1. A label-free proteomic and data analysis workflow to
predict the composition of endogenous protein complexes. Sol-
uble proteins from Arabidopsis shoots were separated under native
conditions and in parallel by size exclusion (SEC) and ion exchange
chromatography (IEX). Abundance profiles were generated by ana-
lyzing each fraction using label-free quantitative mass spectrometry
and precursor ion intensities. The method is based on automated
peak detection and tests for reproducible peaks in both biological
replicates for the SEC and IEX separations. Proteins with reproducible
profiles across all separations were subjected to clustering analyses
based on the normalized relative protein abundance. Protein com-
plexes were predicted by cutting the resulting dendrogram at a spe-
cific location (green line) based on the resolution of the data and
benchmarks using known protein complexes.
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and the other half was separated by charge using a mixed bed
IEX column. Proteins in each column fraction were digested
and analyzed using quantitative label-free mass spectrome-
try. Reliable proteomic and bioinformatics data were used to
assign the proteins into separate soluble chloroplast and
cytosol-enriched datasets (13, 21). Hierarchical clustering
analysis was used to group proteins based on the similarity
of their elution profiles, and the clustering results were
filtered to define a specific cluster number to generate an
optimal prediction.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)
is a highly abundant chloroplast protein that confounds quan-
titative proteomics studies because it suppresses the signals
of coeluting peptides and caused artifactual peak splitting in
profiling experiments (13, 21). In our workflow RuBisCO con-
tamination (Fig. 2A, lane 1) was unavoidable because chloro-
plasts were broken during homogenization. To solve this
problem an antibody column was used to deplete RuBisCO to
the extent that it was no longer the most prominent protein
(Fig. 2A, lanes 2 and 3). The RuBisCO-depleted crude cyto-
solic fraction was separated by SEC and IEX, and fractions
were collected for LC-MS/MS profiling. Profiling was per-
formed on two biological replicates of 38 SEC fractions and
65 IEX fractions to identify over 1500 and 2300 proteins in
both biological replicates for SEC and IEX, respectively (Fig.
2B). There are tradeoffs between sample processing costs,
mass spectrometer instrument time, and experimental repli-
cation. A previous study relied on a combination of replicates,
single runs, and a high number of different separation strate-
gies (36). For this study, we reduced sample processing costs
by creating robust chromatography pipelines and automated
protein quantification scripts that enabled us to use biological
replicates and reproducibility filters to greatly reduce the

noise in the data. The raw files have been deposited at JPOST
(PXD012601) (45). Supplemental Table S1 contains the raw
profiles for proteins and peptides identified in this study. A
heatmap of the Pearson correlation coefficients between the
biological replicates indicated a high degree of similarity be-
tween the biological replicates, with the highest similarity
occurring at identical fraction numbers (along the diagonal) for
both the SEC and IEX separations (supplemental Fig. S1). The
overlap between the SEC and IEX datasets was good with
�1390 proteins being detected in all four replicates, and this
subset was used for further analysis.

Proteins that reside in completely distinct cellular compart-
ments cannot form a protein complex. Although enriched in
cytosolic proteins, our sample contains hundreds of chloro-
plast proteins (13). Chloroplast proteins can be accurately
identified based on prior proteomic data, known chloroplast
targeting signals, and the sequence of genes encoded by the
chloroplast subgenome (13). Therefore, profile data from chlo-
roplast and cytosolic proteins were separated into two groups
and separately subjected to a distance-based clustering anal-
ysis as described in Aryal et al., 2014. In our dataset 417
chloroplast proteins were subjected to clustering analysis
(supplemental Fig. S2A). 64 additional proteins were removed
because they contained one or more transmembrane do-
mains and appeared to be proteolytic fragments of integral
membrane protein, leaving �700 cytosolic proteins for the
clustering analysis.

In this study, only proteins with a reproducible peak in both
replicates were used for protein complex predictions. The use
of biological replicates is justified because SEC MS profiling
was shown to be highly reproducible in previous studies (13,
21), and similar data filtering procedures have been used here
to extract the high-quality reproducible data from the IEX

FIG. 2. The workflow generates highly reproducible peaks in both SEC and IEX separations. A, To increase proteome coverage and
reduce ion suppression and artifactual peaks, the highly abundant protein RuBisCO was depleted. Lane 1, crude cytosolic input with RuBisCO
highlighted in the red box. Lane 2, flow through containing the RuBisCO depleted extract, lane 3, proteins bound to the RuBisCO depletion
matrix. B, Proteome coverage of identified proteins for SEC (left) and IEX (right) illustrated using Venn diagrams of biological replicates 1 and
2. C, Histogram of fraction shifts in peak locations of all proteins that were detected in both biological replicates of the SEC (orange) and IEX
(blue) separations. D, Overlap in the number of reproducible protein profiles for the SEC and IEX datasets.
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profiles. Peaks in the elution profiles were identified in an
automated manner using an optimized Gaussian-fitting algo-
rithm has been previously published and is available as sup-
plemental data (21). To evaluate the fitting error of the Gauss-
ian fitted peaks against the raw data a boxplot of the root
mean squared error was plotted for both SEC and IEX repli-
cates. The peak fitting strongly reflected the raw data because
the mean of the RMSE is near 0 (supplemental Fig. S2B). The
R2 analyses of the fitting outcomes, which can be interpreted
as the square of the correlation between the observed values
and the fitted values are displayed in a boxplot, and again a
strong correlation was observed with the mean of the boxplot
being near 1.0 (supplemental Fig. S2C).

The Gaussian-fitting algorithm fitted 81% (591 Gaussian
fitted profiles/727 total profiles) of the proteins in the SEC
profiling experiment and 97% (705 Gaussian fitted profiles/
727 total profiles) in the IEX profiling experiment. In this study,
the peak locations in the SEC and IEX separations were
reproducible between replicates because 84% of proteins
profiled in the SEC had � 2 column fraction shift and 94% in
the IEX had � 4 fraction shift (Fig. 2C). Using these reproduc-
ibility data filters, 727 cytosolic and 402 chloroplast protein
profiles were reproducibly measured across all separations
(Fig. 2D, supplemental Table S2), and this subset was used for
protein complex composition predictions.

Not all proteins had a single peak in the SEC and IEX
separations, and we did not want to ignore the plausible and
biologically relevant possibility that a protein could have
combinations of physical associations with itself (homo-
oligomerization) and/or unrelated proteins (hetero-oligomer-
ization). The deconvolution of complex elution profiles into
individual peaks enabled a protein to have multiple oligo-
merization states and multiple protein complex predictions
(31). In this data set multiple peaks were relatively rare, 86%
of the proteins had a single peak in both the SEC and IEX
separations (supplemental Fig. S2D). Fourteen proteins had
multiple peaks on the SEC column. Seventy-six proteins
had multiple peaks only on the IEX. This higher number for
the IEX likely reflects both the increased resolution of the
column and/or the possibility that less stable complexes
could partially disassemble during the high salt elution.
However, peak locations among 70 cytosolic proteins with
multiple IEX peaks were not correlated with high salt con-
centration, because only 24 of 140 peaks resided in the last
third of the column fractions containing the highest salt
concentration.

Four proteins had multiple peaks in both the SEC and IEX,
making it impossible to accurately pair the deconvoluted SEC
and IEX peaks in a clustering-based composition prediction.
For these 4 we selected only the one SEC peak with the
largest apparent mass, duplicated it, and concatenated these
profiles with the deconvoluted peaks from IEX column. In
most cases the secondary SEC peak corresponded to the
expected mass of the monomeric form making it less impor-

tant for protein complex prediction anyway. Each of the pro-
teins with multiple peaks in the IEX were given multiple entries
(multiple data rows in the profile database) and labeled with
a unique “_peak number” suffix. In this way proteins with
multiple peaks could be clustered into multiple protein
complexes.

Evaluation and Optimization of Protein Profile Clustering:
Known Complexes and Intrinsic Features of the Dendro-
gram—Protein complex predictions assume that stable sub-
units of a protein complex will coelute under any chromatog-
raphy condition. The heatmap in Fig. 3A is an example
clustering result using only one biological replicate. The red
color represents column fractions with maximal relative pro-
tein abundance which were normalized from 0 to 1 allowing
proteins to cluster independent of their abundance. Well-
resolved protein peaks were distributed across the SEC and
IEX column fractions. One highly useful way to validate the
clustering result is to test for the coelution of known protein
complex subunits. For conserved known protein complexes,
the major subunit pool does not exist in a fully assembled
state in this profiling workflow (21). Nonetheless, a database
of conserved Arabidopsis complexes (32) was mined to iden-
tify some useful knowns that could be used to evaluate our
predictions. The elution profiles of subunits of the 20S pro-
teasome, heterodimers of 14–3-3/General Regulatory Factors
(GRFs), the coatomer vesicle coat complex, the translation
initiation factor 3 (EIF3) complex, and chaperonin containing
TCP1 folding complex (CCT) complexes coeluted (Fig. 3A).
Subunits of the coatomer complex (Fig. 4B) and 20S protea-
some core particle (Fig. 5B) coeluted on both columns. The
value of the orthogonal IEX separation to resolve complexes
that coeluted in the SEC was clear. The coatamer and 20S
proteasome complexes coeluted on the SEC, but were clearly
resolved on the IEX column (supplemental Fig. S3A). Similar
increased resolution was evident for the EIF3 and CCT com-
plexes (supplemental Fig. S3B). Coelution of multiple subunits
from a known complex indicates that all steps of our workflow
were reliable because errors in protein identification, quanti-
fication, or clustering analysis would generate scattered elu-
tion profiles for known complex subunits.

A variety of metrics were developed to analyze the resolu-
tion of our datasets and choose a cluster number to divide the
dendrogram and generate a specific set of protein complex
predictions. One way to analyze the intrinsic resolving power
of a clustering result is to calculate the average within cluster
distance (described in the previous section) as a function of
increasing cluster number. When the average distance within
a cluster is high, the elution profiles of the proteins are not as
similar compared with when the distance is small. A boxplot
showing the mean, first, and third quartiles of the within
cluster distance for all clusters in the cytosolic protein dataset
was constructed as a function of increasing cluster number
(Fig. 3B). The plots showed the average distance within clus-
ters was high when the dendrogram was divided into 20
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FIG. 3. An example clustering result for a combined pair of SEC and IEX profile data from a split sample and one biological replicate,
and methods used to define the location where the dendrogram is divided to make a protein complex composition prediction. A, A
hierarchical clustering analysis was performed on the concatenated abundance profile dataset from a single SEC and IEX replicate grouped
proteins with similar elution profiles. Subunits of known protein complexes (20S proteasome, CCT, Coatomer, 14–3-3 and EIF3) coeluted. See
supplemental Table S2 column D for the subunits of known protein complexes. The arrows point to the precise region of the heatmap where
the known subunits eluted. B, An intrinsic test of the resolving power of individual and combined profile datasets. Boxplots for the mean
distance of protein profile data within the clusters was plotted as a function of increasing cluster number. The distance was defined as the
pairwise Euclidean distance of each proteins in the cluster to the mean distance within the cluster. The boxplot represents the first and third
quartile of the data with whiskers at 1.5 times the interquartile range. C and D, Extrinsic tests to guide dendrogram splitting and protein complex
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clusters and decreased to zero with increasing cluster num-
ber. The within cluster distance approached zero because
many of the clusters contained a single protein, meaning there
was no distance measured with that cluster. In the boxplot for

SEC and IEX alone, the minimum value of the third quartile
approached zero at �180 clusters (Fig. 3B). Concatenating
the SEC�IEX profile data from both replicates increased the
resolution and the lowest values in the third quartile did not

composition prediction. C, A test to quantify how known protein complexes remain assembled as the dendrogram was divided into an
increasing number of clusters. The intactness of the complexes was calculated (see equation in inset) as a function of increasing cluster
number. D, A test to determine if there were optimal cluster numbers to generate pure clusters containing only the subunits of known protein
complexes. The purity (see equation in the inset) of each known complex was calculated as a function of increasing cluster number. The known
complexes are color coded as shown in the inset.

FIG. 4. Protein complex predictions and their evaluation using known complexes and global analyses of predicted complex mass
and measured apparent mass from SEC profile data. A, 216 cytosolic protein complexes were predicted that contained two or more
subunits. The cartoon shows the subunits as red boxes connected to the black node reflected a group of proteins that may be are associated
with each other but do not necessarily directly physically interact. B, The SEC and IEX elution profile for each protein in the cluster 26 that
contains multiple subunits of the coatomer complex (left, Locus ID in supplemental Table S2 column E). The profiles and dendrogram for cluster
26 were plotted with the known subunits color coded and a single likely contaminant is shown in red (right). C, Clusters containing the known
complexes, the 20S proteasome, coatomer, EIF3, and 14–3-3 proteins are summarized. The green boxes represent the subunits of known
complexes and magenta boxes are either contaminants or new interactors. The purity is shown as the fraction of knowns to total proteins in
the cluster. To test if the complex eluted as fully assembled the average Mapp of the proteins in the cluster was compared with the calculated
mass of the predicted complex. The calculated mass of the cluster was determined by the summation of monomer masses for all the proteins
in the cluster. D, A global comparison of the cluster-based predicted mass of a protein complex (Mcalc) and the measured apparent mass of
individual proteins using SEC (Mapp). Mcalc (x axis) is the sum of all the protein masses contained within a single cluster assuming a 1:1
stoichiometry. The plot was divided into three quadrants with the green sector in the middle containing the most reliable predictions because
there is less than a 2-fold difference between the Mcalc and Mapp. The yellow region contains proteins with predicted high subunit stoichiometry
with Mapp 2-fold greater than the cluster calculated mass. This sector may also contain false negatives in which binding partners are either
mis-categorized or not deteced. The pink-shaded region contains putative false positives where Mcalc is more than 2-fold greater than Mapp.
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reach zero until �300 clusters (Fig. 3B), suggesting that cut-
ting the dendrogram of the concatenated IEX and SEC data-
sets at or near 300 clusters would capture most of the resolv-
ing power of the profile data.

Additional metrics were developed to analyze the “intact-
ness” and “purity” of known protein complexes as a function
of increasing cluster number (42). Intactness measured the
extent to which a complex remained assembled at increasing
cluster number by calculating the ratio of the number of
subunits in the same cluster to the total number of subunits
identified (Fig. 3C). All complexes are expected to be grouped
within a cluster at low cluster number, but as cluster number
increases too far, an increasing number of subunits would be
expected to fall into nearby clusters, reducing the “intactness”
of the prediction. As expected, the concatenated SEC and IEX
profiles outperformed SEC and IEX alone because the 20S
proteasome, coatomer, and EIF3 stayed assembled at a
higher number of clusters (supplemental Fig. S3C). The CCT
complex was the exception because it remained fully assem-
bled beyond 600 clusters in SEC only and intactness drops at
�480 clusters in SEC�IEX. This reflects the distinct behaviors
of knowns.

In the clustering result obtained with the concatenated da-
tasets, the intactness and purity responses of the known
complexes were variable. The CCT complex and 20S protea-
some were extremely stable and had an intactness of one until
the dendrogram was cut into �500 clusters (Fig. 3C). The
GRF/14–3-3/GRF subunits had a sharp decrease intactness
near a cluster number of 170. However, this did not neces-
sarily reflect disassembly of GRF subunit containing com-
plexes, because several of the GRFs had multiple peaks on

the IEX column, and a small subset of GRFs (GRF1,6,9,8)
coeluted at a distinct peak location and clustered as a distinct
population of putative heteromeric GRF complexes (supple-
mental Fig. S4A and S4B). These distinct predicted GRF
complexes may have distinct charge distributions or stabili-
ties on the IEX column that allow them to be cleanly sepa-
rated. EIF3 and the coatomer also suffered hits to their intact-
ness at increasing cluster number, indicating that in many
cases the final predictions will have some false negatives
because of a subset of subunits either having a reduced
stability in the complex or a more variable elution profile
compared with other subunits that remained together at
higher cluster numbers.

A purity metric was developed to analyze the effect of
increasing cluster number on the frequency of false positive
prediction. Complexes are intact but false positive are high at
low cluster numbers. The purity increased greatly from 20 to
200 clusters for all complexes (Fig. 3D), but for most of the
known complexes perfect purity could not be attained, point-
ing to the unavoidable problem of chance coelution and false
positives in our prediction. The intactness and purity indexes
suggest the dendrogram be cut between 200 and 500 clusters
(Fig. 3C and 3D). Considering all of the above, the dendro-
gram from cytosolic protein data was cut into 300 clusters
(termed cytosol300) and supplemental Table S2 (cytosolic tab)
provides the protein composition of each cluster. A cluster
number of 300 is a somewhat arbitrary selection. To enable
readers to scan the cytosol clustering more broadly for can-
didate interactors, supplemental Table S3 provides the pro-
tein cluster assignment for dendrograms at cluster numbers
ranging from 20 and 600 at 10 cluster increments.

FIG. 5. Validation of protein complex predictions: identification of unannotated 20S proteasome subunits. A, The dendrogram from
cluster 32 that contains the 20S proteasome. The names of the 20S proteasome subunits are colored in blue, unannotated Ntn hydrolases in
red, and the single likely contaminant in black. B, The Gaussian fitted and normalized SEC and IEX abundance profiles for known 20S
proteasome (top) and the unannotated Ntn hydrolases (bottom) that were in cluster 32.
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The same clustering and data filtering methods described
above were used for the chloroplast localized proteins. The
chloroplast had �400 proteins, and 200 clusters (chloro-
plast200) was chosen because in the distance boxplot the
mean is flat and third quartile approaches zero at �170 clus-
ters (supplemental Fig. S3D). The clustering result for the
chloroplast proteins was useful because the large and small
subunits of RuBisCO, which are known to physically interact
(46), resided within single clusters with perfect purity. Impor-
tantly, the behaviors of the large and small subunit of
RuBisCO validated our method to analyze proteins with mul-
tiple peaks. Both peaks from the large and small subunits
clustered together in two different clusters containing only
these two known subunits. The composition of the predicted
chloroplast200 complexes are in supplemental Table S2, chlo-
roplast tab.

To estimate the false discovery rate a clustering analysis
was performed on the SEC� IEX profiles using the both the
cytosolic and chloroplast data sets. The assumption is that
chloroplast and cytosolic proteins do not physically interact
because of distinct compartmentalization, and any cluster
that contains a mixture of cytosolic and chloroplast proteins
would contain at least one false positive. The percent of
clusters containing a mixture of cytosolic and chloroplast
proteins was calculated at a range of cluster numbers (sup-
plemental Table S4). At a cluster number of 500, which re-
flects the resolution used for the individual cytosolic and
chloroplast datasets, �80% of the clusters were pure con-
taining only cytosolic or chloroplast proteins. This provides an
estimate for the false discovery rate for chance coelution.

Protein Complex Composition Predictions Based on Coe-
lution—The analyses above generated a specific prediction
for 300 cytosolic and 200 chloroplast-localized complexes. At
300 clusters the number of cytosolic proteins in a cluster
ranged from 16 (1 instance) to 1 (90 instances) (Fig. 4A,
supplemental Table S2 column D). There were examples in
which subunits of known complexes were highly enriched
within a single cluster. For example, coatomer is an heteroo-
ligomic protein complex that associates with organelle mem-
branes to promote cargo selection and vesicle trafficking (8).
Coatomer contains seven subunits and we detected 5 of them
here. Orthologs of the alpha-, beta-, and gamma-subunits
showed a high degree of coelution in SEC and IEX separa-
tions and segregated together into cluster 26. The epsilon and
delta (one of its peaks) fell within the nearby cluster 25 due in
part to differences in apparent mass (supplemental Table S2).
The EIF3 complex recruits the mRNA to the 40 S ribosome,
and is required for translation initiation (25, 47) and 6 of its
subunits were grouped into cluster 38 and three other sub-
units clustered into the nearby clusters 39, 40, and 41 (Fig.
4C, supplemental Table S2). The 20S proteasome is a large
complex that degrades proteins (9). This study identified 13
known subunits that all clustered together (Fig. 4C). The GRF
proteins are signaling proteins that can bind to phosphoryl-

ated effector proteins or form mixed hetero- and homo-
dimers, depending on their subcellular localization (32, 48).
Five different GRF isoforms were placed into cluster 208, 3
isoforms in cluster 207, 1 into cluster 206 and 3 isoforms were
placed into clusters 8 and 9 (Fig. 4C; supplemental Table S2).

Clustering the chloroplast-localized proteins produced 121
clusters containing two or more proteins. Most of the chloro-
plast clusters had from 2 to 4 proteins. Five clusters contained
5 or more proteins. The known heteromeric RuBisCO com-
plex, which is responsible for CO2 fixation during photosyn-
thesis (49) was correctly identified (Supplemental Table 2).
The chloroplast-encoded large subunit of RuBisCO and mul-
tiple nuclear-encoded RuBisCo small subunits had multiple
peaks and each was given 2 protein profile entries. The large
and small subunits were assigned to two distinct clusters
(clusters 109 and 172) containing only these proteins. In
plants thioredoxins are known redox regulators (50) and 18
were found in 14 different putative complexes, pointing to
distinct binding partners among the thioredoxins.

We wanted to determine if existing large-scale datasets on
gene coregulation or protein-protein interactions were con-
sistent with our chromatography data and had potential use
to refine our protein complex predictions. First subunits of
known protein complexes were tested for coexpression
across a wide array of microarray and RNAseq experiments
that were conducted using Arabidopsis (51) and human sam-
ples (52). The list of conserved protein complexes common to
both Arabidopsis and humans was published previously (32),
and pairwise correlation coefficients were used to identify the
percent of protein complex subunits that were coexpressed.
Although there were a few examples in which all subunits of a
complex were coexpressed, the vast majority were not (sup-
plemental Fig. S5A). Along similar lines, among the 19 non-
self-interacting pairs of Arabidopsis proteins that were in the
Biogrid database (53) and in our cytosol dataset, there was
not a strong tendency of the protein pairs to coelute on the
SEC or IEX columns (supplemental Fig. S5B). The low degree
of overlap and Biogrid data is somewhat expected because it
is derived using methods that often detect a different array
of physical interactors compared with those found using
affinity-based capture (54, 55). Nonetheless we used the
Biogrid data to test for correlations among these previously
reported interactions and those predicted from our cluster-
ing analysis. Among the 19 protein pairs in Biogrid, 9 had
very similar cluster IDs (cluster IDs that had a difference of
less than or equal to 2, supplemental Table S5). This level of
similarity is not due to chance. When cluster IDs were
randomly drawn for the predicted interactors zero pairs
were matched in over 70% of the simulations (n � 10,000
simulations), and we never observed more than 4 matched
pairs in any of the simulations. These analyses indicate that
there is significant agreement between our clustering pre-
dictions and the Biogrid database.
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The results sections below include a wide array of validation
studies that demonstrate the utility of these predictions. How-
ever, we want to emphasize that this protein complex predic-
tion method is imperfect and contains many false positives
and false negatives. Selecting a cluster number of 300 for the
cytosol is somewhat arbitrary and differentially affects the
purity and intactness of protein complexes (Fig. 3C and 3D).
Parameters like chance coelution of unrelated proteins and
complex disassembly during purification contribute to false
positives and false negatives, respectively. If the method was
perfect and if all subunit stoichiometries were 1:1 (ignores the
frequent case of high subunit stoichiometries, see below),
then one would expect the summed monomeric masses of all
proteins in a cluster (Mcalc) to equal the apparent mass (Mapp)
of the protein measured using SEC. The plot of Mapp versus
Mcalc revealed an overall weak correlation between these two
measurements (Fig. 4D), and only about �25% of the com-
plexes fell near the diagonal with less than a 40% difference
between the Mapp and Mcalc.

Therefore, to facilitate judicious use of the prediction results
we developed a simple classification scheme to categorize
the reliability of the cytosol300 and chloroplast200 predictions.
Clusters and individual proteins were divided into defined
classes based on the number of proteins in the cluster, the
summed mass of proteins in the cluster (Mcalc), and the meas-
ured apparent masses of the individual proteins (Mapp). See
supplemental Table S2, column M, for the classification
scheme and the category definitions. For example, single
protein clusters were defined as “degraded” when the Rapp

(Rapp � Mapp/Mmonomer) � 0.5 or “monomeric” when 0.5 �

Rapp � 1.6. Homo-oligomerization is commonly evolutionary
phenomenon (4), and some solo proteins had a very high Mapp

compared with the cluster Mcalc. Many known homooligomers
were present in the upper left sector of Fig. 4D (see also
below). Thus, solo proteins were classified as “homooli-
gomer” if the protein had an Rapp � 1.6. To predict putative
homooliogomers or proteins with a high subunit stoichiometry
in clusters that might contain a small number of false posi-
tives, proteins in clusters with 2 or 3 members that had an
Mapp � (4* Mcalc) were classified as “possible homo- or
hetero-oligomer/high subunit stoichiometry”. About 30% of
the cytosol300 clusters and 35% of the chloroplast200 clusters
fell into the homomer/heteromer/high subunit stoichiometry
categories.

Another likely reliable prediction class had Mcalc values that
were similar to Mapp of the proteins in the cluster. If a cluster
had 2 or more proteins and Mcalc was within 40% of the
average Mapp (Mapp-avg) of the cluster, then proteins in the
cluster were classified as “putative intact complex.” 15% of
the cytosol300 and 12% of chloroplast200 clusters fell into this
category. Proteins in this cluster type could also correspond
to unstable subunits of large complexes that disassociate
during purification on the IEX. There were examples in which
a subset of proteins of known complexes had multiple peaks

in the IEX and were clustered into a second small cluster
compared with subunits of the intact complex. These proteins
tended to reside in the upper left sector of the graph because
all multiple peak proteins were referenced to a single maximal
SEC peak (as explained above). Any protein for which a
subset of the IEX peaks fell in the upper left quadrant (Mapp �

(4* Mcalc)) was classified as “subcomplex or high subunit
stoichiometry.” Multiple peak proteins in which all peaks had
an Mapp � 1.4* Mcalc were classified as “partial complex/false
negatives”.

False positives because of chance coelution are the most
common source of errors in our predictions, and the least
reliable clusters fell in the extreme lower right sector of Fig.
4D. A cluster containing two or more proteins was flagged for
false positives if Mcalc � 1.4 * Mapp. The Rapp of individual
protein in this cluster type was used to distinguish putative
complex subunits from the false positive. If a protein within
this cluster type had an Rapp � 1.6, it was classified as
“putative complex clustered with false positives”. Predicted
complexes with the highest Mcalc to Mapp ratios are the least
reliable among our cytosol300 and chloroplast200 predictions.
A protein within this cluster type was flagged as “likely false
positive: monomer” if it was expected to be monomeric (Rapp

� 1.6) (e.g. see proteins in cluster 107 of the cytosol300

prediction). Fourteen percent of the cytosol300 and 19% of
chloroplast200 clusters fell into this least reliable category in
which the cluster was comprised entirely of predicted mono-
meric proteins. These metrics can serve as benchmarks for
future complex prediction studies.

Validation of Protein Complex Predictions: Unannotated
Proteasome Subunits—Our dataset appears to contain useful
predictions for hundreds of unannotated proteins and novel
complexes. For example, our analysis of the 20S proteasome
showed that known subunits of the 20S proteasome formed a
nearly pure cluster. The 20S proteasome falls into cluster 34
and contains 16 proteins with 13 being known subunits (Fig.
5A) (9, 56). One protein NODGS, had a profile that was most
dissimilar to the proteasome subunits and was a likely
contaminant. The two additional proteins AT1G7920 and
AT4G31300 were N-terminal (Ntn) hydrolases which are
known proteases. The SEC and IEX profiles showed that the
20S protease and Ntn hydrolase were nearly identical, and
both proteins fell in the middle of the cluster surrounded by
known subunits. (Fig. 5A and 5B). The coelution and homol-
ogy to known subunits provides strong evidence that these
two Ntn hydrolases were indeed unannotated proteasome
subunits showing that 15 of the 16 proteins in cluster 34
belong to the proteasome.

Validation of Protein Complex Predictions: Known Homoo-
ligomers—There was an interesting class of oligomerization
predictions in which Mapp greatly exceeded Mcalc. These be-
haviors are expected for homooligomers and heterooligomers
with high subunit stoichiometries. This sector of the graph is
populated by several known homomers. Examples include
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PYRIDINE BIOSYNTHESIS 1.1 (57–59), Aldolase, (60), Gluta-
mine Synthetase (7). NAP1, which has numerous functions
related to histone complex assembly (61), including shuttling
newly synthesized histone complexes into the nucleus (62).
NAP1 homodimers can assemble into multimeric complexes
including hexamers (63), and similarly sized NAP1 complexes
are consistently identified in Arabidopsis leaf extracts (13, 21).
In the cytosol300 prediction here, NAP1 was flagged as a
predicted homooligomeric hexamer (supplemental Table S2,
column M). This cluster class included phosphofructokinase
(PFK) an important enzyme in central carbon metabolism that
promotes carbon flux into the glycolytic pathway. The verte-
brate PFKL isoform forms filaments of stacked tetramers that
are easily resolved by EM and cluster into distinct puncta in
living cells (64). Our data predict that PHOSPHOFRUCTOKI-
NASE7 forms homooligomers containing 18 subunits. Addi-
tional protein complexes flagged as homooligomer or stoichi-
ometry not 1:1 included: Glutamate decarboxylase a reported
hexamer (65), the reported tetramers S-adenosylmethionine
synthase (66), Aldehyde dehydrogenase (67) and carbonic
anhydrase a known homooctomer (68, 69). The known Arabi-
dopsis hexamer CDC48 was also correctly flagged (70, 71).

Validation of a Predicted tRNA Ligase Clustering Com-
plex—To further validate the method, we conducted an open-
ended profiling experiment in a mutant background in which a
predicted subunit of a novel complex was disrupted by an
insertion mutation. In the ideal case, loss of the subunit would
cause catastrophic complex disassembly (72) or destabiliza-
tion of individual subunits in the absence of the assembled
complex (73). Alternatively, if the deleted subunits are periph-
eral, and of sufficient size to significantly affect radius of the
partially assembled complex, a shift in the apparent mass
could be detected in an SEC profiling experiment (72, 74). In
these scenarios, one would expect true positive interactors to
coelute in the wild type and have an altered oligomerization
state in the mutant. We focused on NUCLEIC ACID-BINDING,
OB-FOLD-LIKE PROTEIN/AT2G40660 because it was a sin-
gle-copy gene, predicted to be in a complex based on the
high ratio of its apparent mass to its monomeric mass (Rapp �

12.8), and it was located in a high confidence cluster with 4
other proteins (two tRNA synthetases (LYSYL-tRNA SYNTHE-
TASE 1 (LYSRS), ISOLEUCINE-tRNA LIGASE (ILERS)), a ri-
bosomal subunit (40S RIBOSOMAL PROTEIN S8–1 (RPS8A)),
tubulin (�-6 TUBULIN (TUBB6) (Fig. 6A). In a previous publi-
cation AT2G40660 was identified as a likely protein complex
subunit with an Rapp of �12 that coeluted with several tRNA
ligases including GLUTAMINYL-tRNA SYNTHETASE and
ISOLEUCINE-tRNA SYNTHETASE (13).

Interestingly protein databases searches with AT2G40660
detected a region of high amino acid sequence conservation
with human Aminoacyl tRNA synthase complex-interacting
multifunctional protein 1 (AIMP1) and yeast tRNA-aminoacy-
lation cofactor ARC1 (ARC1p), two proteins that form a cyto-
solic complex with multiple tRNA ligases (75–77). The region

spanning amino acids 227 to 381 of AT2G40660 had the
greatest amino acid similarity with AIMP1. The protein was
�28 and 30% identical with the putative yeast and human
orthologs, but the similarities were about 62 and 75%, re-
spectively (supplemental Fig. S6). The primary function of
tRNA synthetases occurs in the nucleus and is to charge
tRNAs with the appropriate amino acid (78). A subset of tRNA
ligases form a heteromeric complex with AIMP1/ARC1p in the
cytosol as part of a signaling function independent of tRNA
aminoacylation (79–81). For example, the human AIMP1 pro-
tein is a core subunit of the multi-tRNA synthetase complex
(82) that is involved in glucose homeostasis (83) and inflam-
matory cytokine activity (84). We will refer to AT2G40660 as
AIMP1-like (AIMP1L) for the remainder this article.

SEC-MS profiling was performed on wild-type and homozy-
gous knockout line SALK-220E08 that contains a T-DNA in
the second exon and is predicted to generate a strong loss of
function allele. This study was conducted using a Thermo Q
Exactive High Field mass spectrometer that had improved
sensitivity compared with the AB Sciex 5600. As expected
AIMP1L had a single peak and an apparent mass of �540 kDa
in the wild-type control replicates but was not identified in the
mutant (Fig. 6B, Top-left). We first focused on predicted
AIMP1L-interactors in cluster number 64. ISOLEUCINE-tRNA
LIGASE (IIERS) had an Mapp of 541 kDa in the wild type.
Unexpectedly, in aimp1l ILERS had an increased apparent
mass of 683 kDa, a subtle �1 fraction shift compared with the
corresponding wild-type control (Fig. 6B, bottom-left). A sim-
ilar pattern was observed for RPS8A, which was shifted to a
higher apparent mass in the mutant (Fig. 6B, Top-right). Glu-
tamyl-tRNA ligase (GluRS) was not reproducibly detected in
the original clustering experiment, but it did coelute in a
previous profiling publication (13). In this aimp1l profiling ex-
periment it displayed a pattern like ILERS and RPS8A (Fig.
6C). These subtle differences were not because of random
fluctuations in tRNA ligase elution profiles because five other
tRNA ligases that did not cluster with AIMP1L had elution
profiles that were nearly identical in the wild-type and aimp1l
(Fig. 6D). In the absence of AIMP1L, a subset of tRNA-ligases
may assemble into distinct larger complexes that are inde-
pendent of AIMP1L function. Alternatively, several AIMP1L
complex subunits may dynamically rearrange among multiple
complexes, and in the absence of AIMP1L, they preferentially
interact with other large protein/protein complexes.

The results with LysRS and TUBB6 were less clear. Both
were predicted to interact with AIM1P but in our validation
experiments neither proteins clearly coeluted with AIMP1.
LysRS had an Mapp of �270 kDa and TUBB6 had an Mapp of
�110 kDa (Fig. 6B). However, LysRS and to a lesser degree
TUBB6 displayed evidence for multiple peaks and a tendency
toward a reduced oligomerization state in aimp1l compared
with the wild type. Alanine tRNA ligase (AlaRS) was not pre-
dicted to be a member of the AIMP1L-complex based on our
clustering analysis. However, in this both aimp1l replicates

Predictions of Endogenous Protein Complex Composition

Molecular & Cellular Proteomics 18.8 1599

http://www.mcponline.org/cgi/content/full/RA119.001400/DC1
http://www.mcponline.org/cgi/content/full/RA119.001400/DC1


FIG. 6. Validation of a novel cytosolic tRNA ligase clustering complex in Arabidopsis. Effects of aimp1l on predicted protein complex
subunits based on the cytosol300 clustering result. A, AIMP1L is predicted to be a subunit of a novel cytosolic tRNA ligase complex based on
the composition of cluster 64. B, The raw elution profiles for predicted interactors of AIMP1L. AIMP1L was detected in wild type plants and
not detected protein in aimp1l (GABI-kat-220E08, AT2G40660) extracts (upper left). Profiles of putative AIM1L-complex subunits in wild-type
(light and dark blue profiles) and aimp1l (yellow and orange profiles): Ribosomal protein S8A (RPS8A, AT5G20290), Isoleucine-tRNA
synthetase/ligase (ILERS, AT4G10320), Lysine-tRNA synthetase/ligase (LysRS, AT3G11710) (bottom right), and tubulin Beta-6 (TUB6,
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there was a slight shift of AlaRS to a smaller apparent mass
and a clear secondary peak centered at �150 kDa (Fig. 6C).
Perhaps LysRS and AlaRS complexes are indirectly affected
by the removal of AIMP1L.

Validation of the Protein Complex Predictions: Coimmuno-
precipitation—Another approach to validate protein complex
predictions is CoIP-MS. Antibody-based purification should
identify the same stable protein complexes that we detect
here; however, this is unlikely to be true in all cases as
different antibodies to the same protein can identify widely
varying sets of interacting proteins (85). In a recent publi-
cation, Aryal et al., 2017 performed CoIP analysis to identify
a novel chloroplast-localized complex that contained
NITRILASE1 (NIT1), CHAPERONIN 60 SUBUNIT BETA 2
(CPN60B2) and CHAPERONIN 60 SUBUNIT BETA 1

(CPN60B1). When the chloroplast200 prediction was queried,
NIT1 (cluster 121), was found very close to CPN60B1 and
CPN60B2 in cluster 123 (Fig. 7A). The profiles indicate NIT1,
CPN60B have nearly identical peaks in SEC but, there is a
slight fraction shift in the IEX separation that is driving NIT1
and the CPN proteins into slightly different clusters (Fig. 7B).
This shows the utility of searching nearby clusters for putative
interactors.

Additional CoIP experiments revealed potential artifacts
likely caused by protein complex disassembly during separa-
tion on the IEX column. CoIP experiments were performed in
triplicate using antibodies specific to ACTIN and GFP (to
purify YFP-tagged Glyceraldehyde-3-phosphate-dehydro-
genase (GAPC)) (43) and a no antibody control. Antibody
purified proteins were accepted if they were absent in the

AT5G12250). C, Additional tRNA synthetases with altered profiles that were reproducibly detected only in the aimp1 profile experiment:
Glutamyl-tRNA synthetase (GluRS, AT5G26710). And Alanine tRNA synthetase (AlaRS, AT5G22800). D, The remaining tRNA synthetases that
were detected in the aimp1l profiling experiment but did not have an altered elution profile in the mutant: Leucine tRNA synthetase (LeuRS,
AT1G09620), three Serine tRNA synthetase (SerRS, AT1G11870, AT5G27470 and AT5G6680), and Arginine tRNA synthetase (AT4G26300).

FIG. 7. Coimmunoprecipitation experiments to characterize the chloroplast200 and cytosol300 protein complex predictions. A, The
expanded dendrogram that contains Nitrilase 1 (AT3G44310), CPN60B1 (AT1G55490) and CPN60B2 (AT3G13470) that have been shown to
interact by CoIP analyses. The y axis indicates the tree height and the red lines show were the tree is split when cut at 50 cluster increments.
The dendrogram is color coded to show the complexes that were predicted when the tree was cut at 200 clusters. B, Nitrilase was predicted
to form a complex with CPN60B2 and CPN60B1 by CoIP analysis in a previously published manuscript (21). The top panel shows the SEC and
IEX elution profiles for cluster 121 that contains two proteins, NIT1 and GAPA1 (AT3G26650). The two known interactors, CPN60B1 and
CPN60B2 were in cluster 123 that is close to cluster 121 containing NIT1. The lower panel shows the elution profiles for cluster 122 that falls
near the NIT1 cluster and cluster 123 that contains the known interactors. C, CoIP with an ACTIN antibody identified multiple putative
interactors that coeluted with actin in the SEC experiments (left fractions), but had distinct profiles on the IEX column (right fractions).
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negative control and detected in at least two of the three test
case pull downs. Proteins that were detected in the pull
downs and included in our clustering dataset were analyzed
further. The actin CoIP identified included two actin isoforms
and 10 additional proteins (supplemental Fig. S7A). CoIP of
YFP:GAPC identified the target protein and the ACTIN 2 and
ACTIN 7 isoforms. The actin and GAPC complex was also
identified in the actin CoIP. There was considerable coelution
on the SEC column of actin, GAPC, and many of the addi-
tional actin-interacting proteins identified by CoIP. For exam-
ple, both ACTIN isoforms and six additional proteins coeluted
at �950 kDa (Fig. 7C). GAPC and the actin isoforms also
coeluted on the SEC column (supplemental Fig. S7B). How-
ever, there was very little coelution on the IEX column (Fig. 7C,
supplemental Fig. S7B). We suspect that these actin-contain-
ing complexes are relatively unstable, and perhaps the com-
bination of the TRIS-buffer exchange and high salt elution that
was associated with the IEX separation caused artifactual
disassembly of subsets of protein complexes. Clusters con-
taining this type of false negative would have a relatively small
number of proteins in the cluster, but the individual proteins
would have a large apparent mass.

DISCUSSION

Protein complexes integrate metabolism, transport, and
signal transduction to enable complex behaviors (9, 10, 86–
90). Consequently, large scale datasets that relate to protein
oligomerization are highly desired (14, 22–24, 29, 30). Protein
oligomerization is also dynamic: their binding-partners, as-
sembly status, and localization change over time. Open-
ended proteomic analyses of endogenous protein complexes
are powerful because they provide information on subcellular
partitioning (21) or how protein complexes rearrange in re-
sponse to a signal (31). Obtaining large-scale datasets is
challenging. A single cell type expresses over �10,000 pro-
teins and based on previous protein profiling studies oligo-
merization is widespread (14, 18, 20, 35). In Arabidopsis
leaves more than 1/3 of all proteins are predicted to oligomer-
ize (13, 21, 32). Here we conducted orthogonal separations of
protein mixtures by size and charge to reduce the confound-
ing effect of chance coelution and developed a robust label-
free proteomic profiling and data analysis pipeline to make
hundreds of protein complex composition predictions.

Creation and Partial Validation of a Protein Correlation Pro-
filing Method for Protein Complex Prediction—Our “guilt by
association” method is based on the expected coelution of
subunits of stable protein complexes. The parallel size- and
charge-based separations generated highly reproducible elu-
tion profiles with peaks distributed widely across all column
fractions (Fig. 3A). Although there is coverage cost with con-
catenation of the SEC and IEX profile data, it decreased noise
and generated dendrograms with an increased resolving
power (Fig. 3B). Orthogonal separations enabled us to provide

a highly useful dataset on predicted protein complex compo-
sitions in leaf cells.

Validation experiments showed that many clusters were
highly enriched for subunits of known protein complexes
(Figs. 3–5). Subunits of the 20S proteasome core particle and
the RuBisCO complex (at two different assembly states, clus-
ters 109 and 172 in the chloroplast dendrogram) were pre-
dicted with near perfect accuracy. Unannotated proteases
with high sequence similarity to proteasome subunits were
assigned as proteasome-associated proteins based on this
analysis (Fig. 5). We do not claim that the predictions are
perfect. The chloroplast interacting protein pair Nitrilase and
CPN-family chaperones were in proximity in the chloroplast
dendrogram, but not in the same cluster. For this reason, data
users who are testing for candidate interactors of a protein of
interest are referred to supplemental Table S3, which provides
protein groupings at a range of cluster numbers. There are
also many instances of false positives because of chance
coelution and false negatives because of inadequate protein
coverage or noise in the profile data (Fig. 4D). Complex insta-
bility during high salt elution from the IEX likely disrupted
actin-containing complexes and may have revealed the rela-
tive instability of GRF1, GRF6, and GRF9 subunits. Therefore,
metrics for the reliability and type of each cluster were pro-
vided for data users in supplemental Table S2, column M).

Discovery of a Novel tRNA Ligase Clustering Complex—Our
validation studies using a AIMP1L mutant identifies true- and
false-positive subunits of a novel aminoacyl tRNA synthetase
containing complex. AIMP1L has weak homology with a ver-
tebrate ARS complex subunit and was clustered with two
class I tRNA ligases, the ribosomal protein RPS8A, and
TUBB6. Removal of AIMP1L caused unexpected behaviors of
predicted subunits: RPS8A, ILERS, and GLURS (a tRNA li-
gase that was reproducibly detected in the profiles aimp1 with
the Thermo QE but not in the clustering analysis dataset) had
subtle increases in apparent mass in the mutant. The pre-
dicted interactors LYSRS and TUBB6 coeluted in the SEC
column in the clustering dataset, but did not coelute in the
mutant profiling experiment, suggesting they are false posi-
tives or more labile subunits. However, the oligomerization
states of LYSRS and ALARS (another tRNA ligase that was
reproducibly detected in the profiles aimp1 with the Thermo
QE) were altered in aimp1l (Fig. 6B and 6C). These tRNA
ligases may be indirectly influenced by loss of AIMP1L and
physically interact with proteins that have altered abundance
or protein binding activities in aimp1l. This altered elution
pattern in aimp1l was not observed with 5 other tRNA ligases
that did not coelute with AIMP1L (Fig. 6D). The data are
pointing to a broad AIMP1L-dependent protein interaction
network involving many proteins protein translation. Although
the aimp1l plant has no obvious whole-plant phenotype, this
profiling analysis is a new type of phenotyping tool that can be
used to develop hypotheses about gene function.
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Useful Predictions of Self-interaction—Homo-oligomeriza-
tion is a common method of enzyme regulation (3, 91) and has
a strong influence on the evolution and connectivity of protein
interaction networks (92). The combined use of our profiling
clustering result and experimentally determined apparent
masses allowed us to identify 75 cytosolic and 69 chloroplast
localized proteins that are predicted to either form higher
order homooligomers or assemble into complexes with a high
subunit stoichiometry. This list of predicted self-interactors is
riddled with proteins that have previously been shown to form
homomers in nonplant species. Some proteins had an ex-
tremely high Rapp. For example, the PHOSPHOFRUCTOKI-
NASE7 (PFK7) had an Rapp of 18. The vertebrate PFK-L or-
tholog has a very high degree of polymerization, and forms
filaments at the �100 nm spatial scale. The oligomerization of
PFK7 likely has a structural importance in addition to its
enzymatic function. The homomer classification also flagged
NAP1 as a cytosolic homo-hexamer that may control the flux of
newly synthesized histones into the nucleus. Glucosinolate pro-
duction is an important form of plant chemical defense against
herbivory. Based on the ability of PYK10-binding protein 1
(PYKBP1) to sediment the glucosinolate hydrolysis activity of
PYK10 in vitro, PYK10BP1 was hypothesized to oligomerize
(93). In our analysis, PYK10BP1 fell into its own cluster and had
an extremely high Rapp value of �16. Our data predicts that
PYK10BP1 exists as a stable 16 subunit homo-oligomer under
normal growth conditions. Perhaps in response to stress-de-
pendent signal, PYK10BP1 clusters and activates PYK10. Our
data also have relevance the biology of the dehydrin/COR pro-
teins that have a known importance in plant abiotic stress
response but unclear modes of action. COR family proteins
have long been known to form complexes (94), and COR47 can
homodimerize (95). Our data show that under nonstressed lab-
oratory conditions the cytosolic pool of COR47 exists as a
higher order oligomer (Rapp � 7). Perhaps the oligomerization
state and/or binding partners of COR47 change in response to
environmental stress. These selected examples were chosen to
illustrate how this dataset can be used to better understand the
evolution and importance of self-interaction in a wide array of
physiological contexts.

Conclusions and Future Perspectives—Here we predict the
composition of hundreds of novel protein complexes from Ara-
bidopsis leaves. The endogenous protein correlation profiling
method requires no gene cloning or tagging and can be applied
to any organism with an accurate proteome. The response of
putative AIMP1L-containing protein complexes to subunit re-
moval was analyzed (Fig. 6B and 6C). This demonstrates the
utility of this method to analyze the dynamics of systems of
protein complexes in response to mutation, changing environ-
mental conditions, or developmental programs. We hope that
these protein complex predictions will be used by the research
community to test hypotheses and provide a more complete
assessment of the reliability of the dataset. Certainly, there is
room for improvement. The IEX separation needs to be opti-

mized to eliminate the buffer exchange, and better coverage will
come from the continued use of the Thermo QE instrument.
Additional orthogonal separations and separations done in se-
ries will help to reduce the primary technical challenge of
chance coelution and occurrences of false positives. Efficient
cell fractionation and the analysis of organelles will also de-
crease sample complexity and increase the coverage and ac-
curacy of protein complex predictions. Our mass spec data,
data filtering scripts (https://github.com/dlchenstat/Protein-
ComplexPredict), and final results (supplemental Tables S1–S3)
are all publicly available, with the hope that these data and this
method gain wide use to analyze the systems-level behaviors of
endogenous protein complexes.
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