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Transforming electronic health 
record polysomnographic data 
into the Observational Medical 
Outcome Partnership’s Common 
Data Model: a pilot feasibility study
Jeong‑Whun Kim1,2, Seok Kim3, Borim Ryu3, Wongeun Song3, Ho‑Young Lee3 & 
Sooyoung Yoo3* 

Well-defined large-volume polysomnographic (PSG) data can identify subgroups and predict outcomes 
of obstructive sleep apnea (OSA). However, current PSG data are scattered across numerous sleep 
laboratories and have different formats in the electronic health record (EHR). Hence, this study 
aimed to convert EHR PSG into a standardized data format—the Observational Medical Outcome 
Partnership (OMOP) common data model (CDM). We extracted the PSG data of a university hospital 
for the period from 2004 to 2019. We designed and implemented an extract–transform–load (ETL) 
process to transform PSG data into the OMOP CDM format and verified the data quality through 
expert evaluation. We converted the data of 11,797 sleep studies into CDM and added 632,841 
measurements and 9,535 observations to the existing CDM database. Among 86 PSG parameters, 20 
were mapped to CDM standard vocabulary and 66 could not be mapped; thus, new custom standard 
concepts were created. We validated the conversion and usefulness of PSG data through patient-level 
prediction analyses for the CDM data. We believe that this study represents the first CDM conversion 
of PSG. In the future, CDM transformation will enable network research in sleep medicine and will 
contribute to presenting more relevant clinical evidence.

Obstructive sleep apnea (OSA) is an significant risk factor in several major health conditions, such as 
cardiovascular1–4, neurovascular5,6, and metabolic diseases7,8. OSA is diagnosed on the basis of certain crucial 
parameters, including the apnea–hypopnea index (AHI) of polysomnography (PSG). PSG is a standard diag-
nostic sleep test for OSA, and its results hold significant clinical implications for various major diseases. For 
example, severe OSA with AHI > 30 is known to be correlated with the development of strokes and incident 
hypertension5,9. Although large-scale prospective cohort studies can be used to empirically prove such important 
clinical observations, they suffer from the limitations of long follow-up periods and high costs. On the other 
hand, retrospective studies can only establish statistical associations between the risks of major conditions and 
PSG results rather than a definitive causal relationship. Furthermore, PSG is a whole-night test, and the capac-
ity for PSG tests per sleep center is thus limited. However, multi-center collaborative studies can be used to 
conduct more PSGs, and well-defined large-volume PSG databases have the potential to corroborate the valid-
ity of conjectured correlations. The analysis of a wide range of electronic health record (EHR) data, including 
medical conditions, drug exposures, procedures, and measurements, in conjunction with PSG data, and their 
rapid verification across multiple institutions may enable the procurement of crucial pieces of robust scientific 
evidence through enhancements in analytic power.

However, as the primary goal of EHR is medical application, rather than research, the reuse of EHR data for 
academic purposes necessitates the mapping of clinical observations to standard vocabularies10. To this end, 
Observational Health Data Sciences and Informatics (OHDSI), an international collaborative initiative, has 
created and applied an open-source standard data format and analytic solutions to diverse health and medical 
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databases across the world11. The Observational Medical Outcome Partnership’s (OMOP) common data model 
(CDM), which is utilized by OHDSI as a standard data format, serves as a guide for the standardization of het-
erogeneous representations of healthcare data obtained from disparate sources. Conversion of health and medical 
databases into the CDM format is expected to enable interdisciplinary collaborative large-scale analyses. Such 
large-scale analyses using open-source analytic tools based on standardized datasets are, in turn, expected to 
improve the speed and efficiency of population-level estimation and patient-level prediction, thereby enhancing 
the reliability of clinical decision-making11,12.

To the best of our knowledge, measurements obtained via PSG are yet to be transformed into the CDM format. 
Linking the diverse data obtained from PSG with the extensive EHR database in a structured CDM format is 
expected to facilitate multi-center studies and strengthen general analytic power. In this study, we aimed to con-
vert EHR PSG data into the standardized OMOP CDM data format and conduct a pilot feasibility test. Through 
a pilot feasibility study, we attempted to confirm the possibility of developing a predictive model using existing 
CDM data and additional PSG data, and to verify the usefulness of the integrated data.

Methods
Study population for CDM conversion.  This study included patients who visited the Sleep Center at 
Seoul National University Bundang Hospital (SNUBH), located in the metropolitan area of Seoul in South 
Korea, and had undergone PSG between February 2004 and June 2019.

Data source.  OMOP CDM data obtained from SNUBH were used in this study. In particular, the data com-
prised de-identified EHR data based on OMOP CDM version 5.3.1 and accumulated over a period of 16 years—
from the opening of SNUBH with the full EHR system in May 2003, till June 2019. The EHR data of more than 
2 million patients, including patient demographics, diagnosis, chief complaints, drug exposures, test orders/
results, vital signs, surgeries, family histories, and past medical histories, were converted to CDM.

This study was performed in accordance with the relevant guidelines and regulations of the SNUBH Insti-
tutional Review Board (IRB) and was approved by the SNUBH IRB. As it is an observational study and the data 
source was de-identified, this study was approved based on waivers of informed consent or exemptions by the 
SNUBH IRB (IRB No: X-2002–592-904).

Polysomnographic parameters.  We considered all PSGs performed at the Sleep Center of SNUBH as 
target data to be converted into OMOP CDM, including full-night PSGs, split-night PSGs, PSGs for continuous 
positive airway pressure (CPAP) titration, and multiple sleep latency tests (MSLTs). In the case of split-night 
PSGs, the values of the parameters represented only the diagnostic portions in this study. No home sleep apnea 
tests were included because they are not popular in South Korea. The PSG parameters to be transformed into 
OMOP CDM included information related to sleep architecture, respiratory activity, positions during sleep, 
blood oxygen saturation, and limb movement.

We conducted PSGs using an Embla N 7000 (Embla, Reykjavik, Iceland) recording system equipped with 
standard electrodes and sensors, in the presence of a sleep technician. The entire PSG retinue consisted of elec-
troencephalography, electrooculography, echocardiography, submental and limb electromyography, chest and 
abdominal plethysmography, nasal pressure manometry, oronasal thermistor, pulse oximetry, and a snoring 
sensor. Apnea was defined as a pause in the respiratory airflow lasting at least 10 s, and hypopnea was defined 
as a reduction in the airflow by 50% or more lasting at least 10 s, or the accompaniment of airflow reduction by 
arousal or an oxygen desaturation by 4% or more13. The PSG data were reviewed and scored by sleep experts 
using the Embla RemLogic PSG Software (Embla, ON, Canada). The study report from the Embla RemLogic PSG 
Software has the following parameter (variable) categories: patient information; sleep summary; summary graph; 
sleep information; arousal statistics; autonomic arousal (plethysmogram) statistics; apnea/hypopnea statistics; 
apnea-desaturation relation; Cheyne Stokes breathing statistics; breath statistics; snoring statistics; flattening 
statistics; respiratory mechanic instability statistics; SpO2 statistics; desaturation statistics; heart rate statistics; 
cardiac events; bruxism; rapid eye movement sleep behavior disorder information; rhythmic movement disorder 
information; periodic limb movement statistics; and position statistics. Among them, the sleep experts at our 
sleep center selected the PSG parameters that are commonly employed in the literature to make available in the 
PSG summary report of our EHR. The selected parameters were automatically exported and imported into our 
EHR in a structured format.

Strategy to convert PSG data into OMOP CDM.  We designed and implemented the following extract–
transform–load (ETL) process to transform the PSG data into the OMOP CDM format.

Despite being reported in a structured form, the EHR PSG results considered in this study had been revised 
approximately 11 times. Hence, we extracted the data corresponding to each revised form and integrated them 
within the CDM format via standardization. The procedural information for PSG order itself had already been 
converted into the CDM format. Thus, in this study, we linked the extracted PSG results and the corresponding 
existing orders in the CDM to connect the PSG procedures with their corresponding results.

The PSG parameters were manually mapped by sleep domain experts (J.-W. Kim and S.-W- Cho) to standard 
concepts within the Logical Observation Identifiers Names and Codes (LOINC) or Systematized Nomenclature 
of Medicine–Clinical Terms (SNOMED CT) vocabularies corresponding to the measurement and observation 
domains. Non-mapped parameters were added to the concept, concept_ancestor, and concept_relationship tables 
to be used as new custom standard concepts (please see Supplementary Table S1 for the concept mapping 
information in the case of PSG and Supplementary Table S2 for the concept definitions). More than 2 billion 
digits were assigned to the concept_id of the new custom concepts. In the concept_ancestor table, the newly 
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added concepts served as their own ancestors and descendants. In the concept_relationship table, the mapping 
information between source and standard concepts was added. Additionally, we described the bidirectional 
relationship between PSG and its parameters in the table using the concepts of ‘Panel contains’ and ‘Contained 
in panel (LOINC)’ relationships.

The extracted PSG data were transformed and loaded into measurement and observation tables with stand-
ard concepts. Observation data were linked to the corresponding PSG procedures via the observation_event_id 
and obs_event_field_concept_id fields. In order to link measurements with corresponding procedures, we used 
the new modifier_of_event_id and modifier_of_field_concept_id fields that have been proposed by the OHDSI 
Oncology Working Group14. The procedure_occurrence, measurement, and observation tables were linked to the 
person and visit_occurrence tables based on their foreign keys. The CDM tables associated with the PSG data 
are depicted in Fig. 1.

After completing the ETL, we assessed the PSG data quality via exploratory data analysis and developed data 
quality check rules for data cleaning (please see Supplementary Table S3 for the detailed cleaning rules and the 
number of records filtered by the rules). Finally, the cleaned PSG data integrated into the existing CDM were 
utilized for a feasibility test.

Pilot feasibility test using open‑source OHDSI analytic tools.  We conducted a pilot feasibility test 
using only full-night PSG tests of patients 18 years or older. The feasibility test was designed to develop and 
validate a model to predict cardio-neuro-metabolic disease within a target population between a period of 1 day 
and 1095 days from the target cohort start date of the PSG test. A cardio-neuro-metabolic disease was defined as 
any condition involving International Classification of Disease, Tenth Revision (ICD-10) codes corresponding 
to the comorbidities listed in Supplementary Table S4. We included any occurrence of the defied ICD-10 codes 
without constraints on the frequency.

In the population setting for the patient-level prediction, varying minimum lookback periods of 30 days, 
90 days, and 180 days were utilized for the prior observation periods of patients from the target population. 
Subjects without time-at-risk of 1094 days were also removed. Patients who had experienced prior outcomes 
were also not considered in this study.

Among the preexisting CDM data, we utilized multiple covariates, such as gender, 5-year age group, Ana-
tomical Therapeutic Chemical (ATC) drug group, SNOMED CT condition group, procedure, measurement 
value, observation, visit concept count, the CHA2DS2-VASc (congestive heart failure, arterial hypertension, 
age > 75 years, diabetes mellitus, stroke/transient ischemic attack, vascular disease, age 65–74 years, sex category) 
score, diabetes complications severity index (DCSI), and the Charlson comorbidity score. Two different covariate 
settings were tested to determine which PSG parameters could be selected during the cardio-neuro-metabolic 
disease prediction. One setting (PSG-only covariates) used only gender, age group, and PSG parameters, and the 
other (all covariates) used all CDM covariates, including the PSG parameters described above as covariates. The 
observation time windows of the covariates for short, medium, and long terms were set as prior 7 days, 30 days, 
and 180 days before the cohort start date, respectively.

Three different machine learning models—Lasso Logistic Regression (Lasso), Gradient Boosting Machine 
(GBM), and Random Forest (RF)—were developed using 25% of the total data for training and 75% for testing. 

Figure 1.   Conversion of polysomnography into the Observational Medical Outcomes Partnership (OMOP) 
Common Data Model (CDM) tables.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:7013  | https://doi.org/10.1038/s41598-021-86564-w

www.nature.com/scientificreports/

Hyper-parameter training was performed using five-fold cross-validation on the training set. PatientLevelPre-
diction R package15 version 4.0.5 was used for this purpose.

To evaluate the models, model discrimination was assessed using the area under the receiver operating 
characteristic curve (AUC).

Results
Conversion results of PSG parameters into OMOP CDM concepts.  We converted data from a total 
of 11,392 tests corresponding to 11,797 sleep studies into the OMOP CDM format. These included 7,191 full-
night PSGs, 2,725 split-night PSGs, 1,474 CPAP titration PSGs, and 407 MSLTs. Among the PSG test results 
stored in EHR, the conversion target parameters converted into CDM are presented in Table 1. These included 
7 pertaining to body measurements, 7 to sleep summaries, 6 to sleep stages, 16 to respiratory events, 4 to apnea 
or hypopnea duration, 8 to sleep position, 5 to arousals, 2 to limb movement, 5 to snoring, 8 to oxygen statistics, 
1 to continuous positive airway pressure, 2 to questionnaires, 11 to MSLT, 1 to apnea level manometry test, and 
3 to Friedman staging. A total of 85 PSG parameter concepts were converted to the measurement domain and 
one to the observation domain (Waist/hip ratio). Moreover, 20 (23.3%) PSG codes were mapped to the standard 
OHDSI vocabulary including LOINC and SNOMED CT, but the remaining 66 (76.7%) could not be mapped 
and were added as new custom standard concepts.

Characteristics of PSG data.  The overall characteristics of the total sleep studies that were converted into 
OMOP CDM are presented in Table 2. Out of an aggregate of 11,392 sleep tests, 8363 (73.4%) tests were con-
ducted on male patients and 3029 (26.6%) on female patients. There was an average of 1.2 tests per person. Tests 
of patients aged 40–49 years, 50–59 years, and 60–69 years accounted for approximately 65% of the total number 
of tests. The number of sleep studies conducted each year exhibited a progressive increment. The prevalence of 
AHI < 5, mild OSA (5 ≤ AHI < 15), moderate OSA (15 ≤ AHI < 30) and severe OSA (30 ≤ AHI) was 28.5%, 23.8%, 
19.3% and 28.4%, respectively. The basic statistics of the associated PSG parameters are provided in Supplemen-
tary Table  S5.

Performance of the prediction models.  Corresponding to the best performance setting of each predic-
tion models, the number of people eligible for inclusion into the target population, the outcome count, and the 

Table 1.   Polysomnographic parameters included in the Observational Medical Outcomes Partnership 
(OMOP) Common Data Model (CDM) transformation.

Category Polysomnographic parameters

Body measurement Body height (cm), Body weight (Kg), Body mass index (BMI), Neck circumference (cm), Waist circum-
ference (cm), Hip circumference (cm), Waist/hip ratio

Sleep summary
Sleep efficiency (SE) (%), Sleep latency (SL) (min), Sleep period time (SPT) (min), Total sleep time (TST) 
(min), Total time analyzed (Time In bed, TIB) (min), Wake time after sleep onset (WASO) (min), REM 
latency from sleep onset

Sleep stage % stage 1 Nonrapid eye movement (NREM),% stage 2 NREM,% stage 3 NREM,% stage REM, Time spent 
during REM (min)

Respiratory events

Respiratory disturbance index (RDI), Apnea hypopnea index (AHI) (/h), Apnea index (AI) (/h), Central 
apnea index (/h), Mixed apnea index (/h), Obstructive apnea index (/h), Hypopnea index (HI) (/h), 
Hypopnea Index with oxygen desaturation (/h), Hypopnea Index without oxygen desaturation (/h), AHI 
during supine (/h), AHI during left lateral (/h), AHI during right lateral (/h), AHI during prone (/h), 
AHI during NREM (/h), AHI during REM (/h), Respiratory effort-related arousal (RERA)

Duration of apnea or hypopnea Longest apnea duration (second), Mean apnea duration (second), Mean hypopnea duration (second), 
Mean total apnea and hypopnea duration (second)

Sleep position
Time spent during Supine position (min), % Time spent during Supine position (%), Time spent during 
Left Lateral position (min), % Time spent during Left Lateral position (%), Time spent during Right Lat-
eral position (min), % Time spent during Right Lateral position (%), Time spent during Prone position 
(min), % Time spent during Prone position (%)

Arousal Number of awakenings, Respiratory arousal, Spontaneous arousal, LM with arousals (/h), Periodic limb 
movement (PLM) arousal

Limb movement Limb movement index (/h), Periodic limb movement index (PLMI)

Snoring Average snoring episode duration (min), Longest snoring episode (min), Number of snoring episodes, 
Snoring percent time (%), Snoring time (min)

Oxygen statistics
%Time of saturation < 60%, %Time of saturation < 70%, %Time of saturation < 80%, %Time of satura-
tion < 90%, Waking oxygen saturation (%), Average oxygen saturation during sleep (%), Lowest oxygen 
saturation (%), Oxygen desaturation index (ODI)

CPAP pressure Titrated pressure (cmH2O)

Questionnaire Epworth sleepiness scale, Pittsburgh sleep quality index

Multiple sleep latency test
REM latency #1 (min), REM latency #2 (min), REM latency #3 (min), REM latency #4 (min), REM 
latency #5 (min), Sleep latency #1 (min), Sleep latency #2 (min), Sleep latency #3 (min), Sleep latency #4 
(min), Sleep latency #5 (min), Mean sleep latency (min)

Apnea level manometry test % Retroglossal obstruction

Friedman staging Tonsil grade, Mallampati grade, Friedman stage
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number of people lost due to each inclusion step are illustrated in Fig. 2. The target population comprising 5581 
full-night PSG tests of patients 18 years or older was reduced to a population comprising 2555 tests of 2542 
patients. The outcome rate of cardio-neuro-metabolic disease was observed to be 11.1%.

The AUC performance of the prediction feasibility test based on CDM data achieved an 0.751(0.693–0.810) 
for the RF model with all covariates. The performance results corresponding to each set of configurations are 
listed in Table 3. All three models—RF, GBM, and Lasso—performed better when all parameters, such as condi-
tion, drug, measurement, and comorbidity score, were utilized as CDM data along with PSG, rather than only 
the PSG parameters.

The top 20 covariates selected from the RF are presented in Table 4. Among them, 11 were PSG parameters, 
for example, AHI during right lateral (/h), central apnea index (/h), waking oxygen saturation (%), and snor-
ing time (min). The top 20 covariates selected from the other models are included in Supplementary Table S6.

Discussion
To the best of our knowledge, this study represents the first attempt to convert EHR PSG data into ODHSI OMOP 
CDM, a standard format for health and medical data. Through this study, we successfully converted more than 
11,000 PSGs stored in a tertiary hospital EHR into the OMOP CDM version 5.3.1 format. However, we were able 

Table 2.   Demographic characteristics of total sleep tests that were converted into OMOP CDM. The sleep 
tests from February 2004 to June 2019 were extracted, transformed, and loaded into the OMOP CDM. *The 
prevalence of OSA severity levels were calculated based on Apnea Hypopnea Index (AHI) for only records 
with AHI values.

Characteristics Number of records: n (%) Number of persons: n

Total 11,392 9577

Gender

Male 8363 (73.4) 6829

Female 3029 (26.6) 2748

Age group

 <  = 9 205 (1.8) 190

10 s 385 (3.4) 368

20 s 565 (5.0) 528

30 s 1229 (10.8) 1063

40 s 2230 (19.6) 1833

50 s 2849 (25.0) 2355

60 s 2348 (20.6) 2016

70 s 1226 (10.8) 1065

80 s 346 (3.0) 313

90 s 9 (0.1) 8

Year of the sleep study

2004 319 (2.8) 288

2005 458 (4) 398

2006 546 (4.8) 495

2007 702 (6.2) 600

2008 639 (5.6) 547

2009 605 (5.3) 528

2010 604 (5.3) 523

2011 647 (5.7) 549

2012 677 (5.9) 582

2013 685 (6) 600

2014 860 (7.5) 751

2015 1014 (8.9) 862

2016 1067 (9.4) 972

2017 1023 (9) 958

2018 1035 (9.1) 1010

2019 511 (4.5) 508

OSA severity levels* 11,250

AHI < 5 3209 (28.5) 3156

Mild OSA (5 ≤ AHI < 15), 2681 (23.8) 2622

Moderate OSA (15 ≤ AHI < 30) 2167 (19.3) 2091

Severe OSA (AHI30) 3193 (28.5) 3001
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to map only approximately 23% of the 86 parameters present within the PSG data to the existing OMOP CDM 
standard vocabulary, and new custom standard concept names had to be created for the remaining 77% of the 
parameters. The method used to create the new custom standard concept can be employed when other sites add 
non-mapping PSG parameters that are not reported in this study.

Figure 2.   The attrition for the model development at the best performance setting of prediction.

Table 3.   Prediction model performance for test data set. All covariates setting used all OMOP CDM variables 
including polysomnography parameter concepts, and PSG only covariates used only gender, age group, and 
polysomnography parameter concepts for developing and training the prediction model. AUC​ area under the 
receiver operating characteristic curve, AUPRC area under the precision recall curve.

Covariate setting Model Target size (Test) Outcome count (Test) Outcome rate (%) AUC​ AUPRC

All covariates

Random forest 639 71 11.11 0.751 0.289

Gradient boosting 
machine 483 56 11.59 0.700 0.250

Lasso Logistic Regression 640 71 11.09 0.672 0.212

PSG only covariates

Random forest 638 71 11.13 0.654 0.213

Gradient boosting 
machine 437 50 11.44 0.630 0.170

Lasso Logistic Regression 482 56 11.62 0.598 0.164
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The most significant advantage of the standardization of EHR data into the CDM format is the speed and 
efficiency of large-scale analysis afforded to researchers and clinicians using the open-source analysis tools pro-
vided by ODHSI10,12. Furthermore, due to the inapplicability of OMOP CDM to PSG parameters till date, CDM 
studies using PSG and MSLT test results, which are the most important tests in sleep medicine, are yet to be 
conducted. In this context, conversion of PSG results into the CDM format also enables utilization of OHDSI’s 
open-source analytical solutions in clinical studies involving PSG results. In addition, the OMOP CDM format 
has already been used to standardize a comprehensive collection of EHR data, including diagnostic informa-
tion, specimen test results, imaging test information, procedure and intervention information, drug exposures, 
past medical histories, and family histories. Therefore, the standardization procedure attempted in this study 
enables researchers to conduct robust and scalable analyses involving PSG results in conjunction with pre-
CDM-converted large-scale EHR data. Collaborative research across a growing number of sites participating in 
the standardized CDM network is expected to lead to higher performance in population-level estimation and 
patient-level prediction models that leverage sleep study parameters.

In this study, the performance of the pilot feasibility test in terms of patient-level prediction for cardio-
neuro-metabolic disease exhibited a significant improvement when the entire EHR data along with PSG was 
used, rather than solely the PSG data. This suggests the feasibility of utilizing all EHR data in the OMOP CDM 
format via CDM conversion of PSG data.

OSA is a broad-spectrum disease with several different subgroups or phenotypes, and each OSA phenotype is 
likely to be manifested with different levels of severity, both clinically and objectively16. Previous one-size-fits-all 
approaches based on apnea–hypopnea index suffered from insufficient consideration of these diverse phenotypic 
subtypes of OSA due to the imperfection of the apnea–hypopnea index as a diagnostic metric with respect to 
OSA-related symptoms and outcomes17. Several studies have demonstrated that each OSA phenotype exhibits 
different characteristics and varying risks of disease outcomes16,18. The most important data included in these 
studies were various metrics of PSG, including all the PSG results, which enabled the classification of OSA into 
various phenotypes via the phenotyping technique. One study that attempted a structured, data-driven approach 

Table 4.   Top 20 predictors selected from random forest model. The polysomnography parameters are 
indicated in bold.

No Covariate name Importance Covariate mean with outcome Covariate mean with no outcome

1 drug_era group during day -7 through 0 days relative to index: Synthetic antispas-
modics, amides with tertiary amines 0.008 0.021 0.001

2 measurement value during day -180 through 0 days relative to index: Triglyceride 
[Mass/volume] in Serum or Plasma (milligram per deciliter) 0.008 35.158 13.156

3 measurement value during day -180 through 0 days relative to index: Systolic blood 
pressure (millimeter mercury column) 0.007 43.961 24.646

4 measurement value during day -30 through 0 days relative to index: AHI during 
right lateral (/h) (per hour) 0.006 11.496 7.281

5 measurement value during day -30 through 0 days relative to index: Gamma glutamyl 
transferase [Enzymatic activity/volume] in Serum or Plasma (unit per liter) 0.006 5.236 1.530

6 measurement value during day -180 through 0 days relative to index: Diastolic blood 
pressure (millimeter mercury column) 0.006 25.845 14.697

7 drug_era group during day -7 through 0 days relative to index: tiropramide 0.006 0.021 0.001

8 measurement value during day -180 through 0 days relative to index: AHI during 
right lateral (/h) (per hour) 0.006 11.496 7.281

9 measurement value during day -180 through 0 days relative to index: Central 
apnea index (/h) (per hour) 0.006 1.040 0.394

10 measurement value during day -7 through 0 days relative to index: AHI during 
right lateral (/h) (per hour) 0.005 11.496 7.281

11 measurement value during day -7 through 0 days relative to index: Gamma glutamyl 
transferase [Enzymatic activity/volume] in Serum or Plasma (unit per liter) 0.005 2.923 0.726

12 measurement value during day -30 through 0 days relative to index: Waking 
oxygen saturation (%) (percent) 0.005 74.268 84.735

13 measurement value during day -7 through 0 days relative to index: Central apnea 
index (/h) (per hour) 0.005 1.040 0.394

14 measurement value during day -30 through 0 days relative to index: Central apnea 
index (/h) (per hour) 0.005 1.040 0.394

15 measurement value during day -7 through 0 days relative to index: Snoring time 
(min) (minute) 0.005 111.030 100.081

16 measurement value during day -7 through 0 days relative to index: AHI during left 
lateral (/h) (per hour) 0.004 11.716 7.616

17 measurement value during day -180 through 0 days relative to index: Respiratory 
arousal (per hour) 0.004 22.177 18.561

18 measurement value during day -7 through 0 days relative to index: Waking oxygen 
saturation (%) (percent) 0.004 74.268 84.735

19 drug_era group during day -30 through 0 days relative to index: tiropramide 0.004 0.021 0.002

20 drug_era group during day -180 through 0 days relative to index: tiropramide 0.004 0.028 0.004
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based on multiple PSG features of approximately 2,000 OSA patients was able to identify seven subgroups (phe-
notypes). The aforementioned study also revealed that a unique phenotype that may have been missed during 
conventional OSA severity classification based on a single metric—apnea hypopnea index—could account for 
the risk of cardiovascular outcome more effectively19. In our previous study, we also identified four clusters based 
on various PSG features and there was a significant difference in disease outcome among the clusters, and such 
a difference could not be found in the standard classification of OSA based only on AHI severity20. Moreover, 
these characteristic phenotypes may exhibit different patterns depending on race, country, or individual. There-
fore, to improve the ability to predict adverse OSA outcomes for a population or an individual, simply having a 
large number of PSGs is not sufficient—it is necessary to acquire PSGs across various data sources. Therefore, 
it is advantageous to use standardized data such as OMOP CDM to increase the reproducibility and statistical 
significance of the analyses. The conversion of data into the OMOP CDM format enables ATLAS, OHDSI’s open-
source analytic solution, to generate queries that can set the aforementioned OSA phenotypes as target cohorts 
and queries that can set OSA complications to be predicted as the outcome cohort. This enables verification of 
the reproducibility of outcome predictions of OSA phenotyping through analysis of the dataset including PSG 
with the same queries in multiple sleep centers where PSG-CDM standardization has been completed. In addition 
to the analysis of large-scale PSG data, the clinical relevance of the OSA phenotypes across various populations 
by region and race will be able to be also verified.

With the increase in CDM conversion of EHR data across medical institutions, research based on CDM-
format datasets is expected to be pursued in various fields. However, unlike the CDM conversion of data such as 
clinical diagnosis results, laboratory sample test results, and drug exposure data, the CDM conversion of medi-
cal data based on patient-generated signals, including PSG, is still insufficient. Therefore, till date, CDM-based 
research has been actively conducted in fields where conversion to the pre-existing standard vocabulary is feasi-
ble. Domains where CDM research is most active include pharmacovigilance21–23 and pharmacoepidemiology24. 
For example, a study assessing anti-seizure drug-related adverse reactions in 1344 target epilepsy cohorts deter-
mined that the detection rate of the adverse drug reaction based on CDM-format data was comparable to 
previously published results obtained using traditional data analysis techniques21. In addition, it is possible to 
implement various designs of research by constructing a target cohort corresponding to a study entry popula-
tion and an outcome cohort corresponding to a disease outcome population25,26. Examples include a prognostic 
model validation study predicting hemorrhagic transformation of acute ischemic stroke within a CDM dataset 
of more than 600,000 patients via the OHDSI international network25, and a survival analysis study using 115 
variables in 346 patients diagnosed with intrahepatic cholangiocarcinoma26.

Despite the significant implications, the present study has certain limitations. First, the rate of correspondence 
between ODHSI’s standard OMOP CDM concepts and PSG parameters was as low as approximately 20%. This 
can be attributed to the fact that the pre-existing OMOP CDM standard vocabulary does not reflect all of the 
approximately 80 PSG variables considered in this study. The custom standard vocabulary developed to address 
this limitation in this study is expected to contribute to future studies that utilize PSG parameters in CDM-based 
EHR studies. When creating the custom concepts, we made it easy to find all PSG parameters by defining the 
relationship to the PSG order. For concepts that may have varying definitions, the definition of the concept is pro-
vided as metadata. For concepts (e.g., %Time of saturation < 60%, %Time of saturation < 70%) in which multiple 
criteria can exist, a concept was created in a way that has individual concept_ids. Since the MEASUREMENT table 
does not have a modifier attribute, it would be the best practice to create individual concepts for them. By doing 
this, the meaning of new concepts can be clarified. As the basic PSG parameters of the PSG recording systems of 
the various vendors are similar, we think other institutions will also be able to apply the new concept proposed 
in this study. In addition, we look forward to adding the new concepts to OHDSI’s standard vocabulary. Second, 
in South Korea, insurance for CPAP began in July 2018; before then, it had been recorded in a different form 
of EHR rather than an order. Thus, in this study, only CPAP orders after July 2018 were converted to CDM and 
can be used as predictors for the pilot prediction models. There could be an issue where information on orders 
for CPAP, which may be an important variable in predicting cardio-neuro-metabolic disease, is not complete. 
However, as the purpose of this study was only to demonstrate the pilot feasibility of the prediction model using 
CDM including PSG data, predictors should be considered more elaborately when developing a prediction model 
in the future. Third, different sleep centers represent PSG databases in EHRs in different ways. Many centers 
store PSG results in EHR as an image file, or simply record OSA severity in a report format. Therefore, significant 
implementation effort and time is required to extract, transform, and load the PSG results into the CDM format. 
Furthermore, different levels of digitization of PSG data in different hospitals may cause concerns regarding the 
different levels of CDM conversion from PSG parameters. However, with the increase in CDM studies including 
PSG parameters, the electronic representation of PSG data in the EHR system is expected to be facilitated across 
hospitals. Finally, conversion of data into the CDM format is time-consuming, requiring a substantial amount 
of resources, in addition to the fundamental requirement of collecting native source data. The need to code 
subsets of data manually may limit conversion efforts. However, once the native data are converted to the CDM 
format, EHR systems in the network will be able to use the same queries to identify cohorts. Thus, conversion 
to CDM is expected to minimize the effort required to develop cohorts and analyze results across multiple sites.

The harmonization across different sites requires collaborative efforts from multidisciplinary experts, includ-
ing clinical domain experts, terminology experts, and engineers from various sites. When other sites try to map 
their own PSG data, efforts should be made to use and propose the same vocabulary and the same concept as 
much as possible by using the mapping result proposed in this study or by participating in the OHDSI com-
munity. As the standard terminology for PSG data has not yet been established internationally, if a specific 
ontology for sleep study can be proposed as OHDSI vocabulary by reviewing previous efforts, such as the Sleep 
Domain Ontology and the National Sleep Research Resource, it is expected to be helpful in the conversion and 
expansion of CDM by other sites.
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Conclusions
The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is a standard data 
format and has been applied to various EHR databases. However, its application to PSG data has not been 
attempted till date. To the best of our knowledge, this study represents the first attempt to transform PSG data 
into the OMOP CDM format. Well-defined large-volume OMOP CDM databases of PSG data can potentially 
enable the identification of clinically relevant OSA phenotypes, estimation of disease outcomes at the population 
level and prediction of outcomes at the patient-level. We expect the CDM mapping and CDM custom vocabulary 
of the PSG proposed in this study to contribute to the CDM conversion of PSG databases and future studies 
leveraging such databases.

Data availability
CDM data are designed to support a distributed research network. Thus, access to the data is restricted on internal 
private networks. Therefore, the data are not publicly available.
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