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Abstract

Background: Identification of tumor suppressor genes (TSGs) silenced by CpG methylation uncovers the molecular
mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common in multiple
tumors including nasopharyngeal carcinoma (NPC). OPCML, located at 11q25, is one of the downregulated genes we
identified through digital expression subtraction.

Methodology/Principal Findings: Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common
tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML
was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast,
cervix, prostate), lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma) and primary
tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and
genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is
stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression
of OPCML led to significant inhibition of both anchorage-dependent and -independent growth of carcinoma cells with
endogenous silencing.

Conclusions/Significance: Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is
frequently inactivated by methylation in multiple malignancies.
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Introduction

Epigenetic silencing of tumor suppressor genes (TSGs) is

frequently involved in tumor development and progression [1].

Aberrant methylation of promoter CpG islands (CGI) represents a

major mechanism of this epigenetic inactivation, which leads to

the binding of transcription repressors, compressed chromatin,

and transcription silencing [2]. Identification of candidate TSGs

silenced by promoter methylation thus uncovers the epigenetic

mechanism of carcinogenesis and also identifies new epigenetic

tumor markers for early cancer detection [3].

Nasopharyngeal carcinoma (NPC) is a prevalent tumor in

Southern China and Southeast Asia, particularly in the Cantonese

population [4]. Although virtually all NPC has been shown to be

strongly associated with Epstein-Barr virus (EBV) infection [5,6], the

molecular mechanism of NPC pathogenesis is still poorly elucidated

[4]. Searches for putative TSGs have identified only few candidates,

with tumor-specific promoter methylation, such as BLU and
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RASSF1A at 3p21 [7,8], CADM1/TSLC1 at 11q23.1 [9]; THY1/

CD90 at 11q22.3 [10], CDH1 at 16q22.1 [11], RASAL1 [12],

ADAMTS18 and CDH13 at 16q23 [13,14]. These limited findings

suggest that additional candidate TSGs are yet to be identified for this

tumor.

We previously used a new strategy to search for candidate TSGs

genome-wide in NPC, through combining Differential Gene

Expression Displayer (DGED) analysis with reported loss of

heterozygosity (LOH) data of NPC (Liu & Tao, manuscript in

preparation). This strategy revealed a number of putative TSGs

that were down-regulated in NPC and also located at LOH loci.

One of the in silico identified genes is OPCML (opioid binding

protein/cell adhesion molecule-like gene), also known as OBCAM

(opioid binding cell adhesion molecule), belonging to the IgLON

(OPCML, LSAMP, NEGR1 and HNT) family of glycosylpho-

sphatidylinositol (GPI)-anchored cell adhesion molecules that are

highly expressed in the nervous system [15–18] and involved in

cell adhesion and cell-cell recognition [19]. Located at 11q25,

OPCML was the first IgLON member linked to tumorigenesis. It

was initially identified as a TSG for epithelial ovarian cancer,

being frequently inactivated by hemizygous deletion and promoter

methylation [20]. More recent studies also demonstrated that

OPCML is highly methylated in lung adenocarcinoma [21] and

down-regulated in gastric and brain carcinomas [22,23], however

no study has been reported for NPC and other tumors yet.

We thus systematically studied its alteration in a series of

common tumors. As alternative splicing is a feature of OPCML

[23] and other IgLONs (e.g. LSAMP) [24], we first studied its

alternative splicing. We then examined its epigenetic inactivation

in NPC and multiple other tumors which have not been studied

for this gene, including esophageal, lung, gastric, hepatocellular,

colorectal, breast, cervical and prostate carcinomas, as well as non-

Hodgkin and Hodgkin lymphomas. We further found that OPCML

is a stress- and p53-responsive gene; however, its stress response is

epigenetically disrupted when the promoter becomes methylated.

Ectopic expression of OPCML in tumor cell lines with endogenous

silencing led to strong inhibition of cell colony formation,

demonstrating that OPCML acts as a broad tumor suppressor.

Results

Identification of novel splicing variants of OPCML
OPCML contains 7 exons and is transcribed from telomere to

centromere (Fig. 1A). Among the four IgLON family members,

OPCML shares the highest homology to HNT that lies approxi-

mately 80 kb centromeric to OPCML in the opposite orientation.

Two alternative splice transcripts of OPCML, variant 1 (v1)

(NM_002545) and variant 2 (v2) (NM_001012393), were previ-

ously identified in human, which differ only in their 59 exons

(Fig. 1B) but encode an identical mature protein [23].

We determined the transcription start sites of OPCML using 59-

Rapid Amplification of cDNA Ends (59-RACE) in human brain

and testis RNA. We obtained four PCR products of different sizes

(Fig. 1C). Sequence analysis of the major PCR product

(EU562296) indicated it as the v2 variant. The 59 end of v2 was

found to be shorter (,110-bp downstream) than the published

data, but its transcription start site matched exactly the DBTSS

prediction (DataBase of Transcriptional Start Sites, http://dbtss.

hgc.jp/). Three minor splice forms were also identified, designated

v4 (EU562298), v5 (EU562299), and v6 (EU562300) (Fig. 1B and

1C left panel). Our 59-RACE gel electrophoresis failed to reveal a

PCR band for the major transcript variant v1 in brain and testis

tissues, probably due to the presence of a too large exon 1 (,1-kb)

for v1, which would result in low amplification efficiency. Thus, we

performed further RT-PCR using the 59-RACE product of brain

and testis as template and primers specific to v1 (v1F/R4 and

v1F0/R4; Fig. 1C right panel), to check whether v1 was expressed

in normal tissues. This analysis did confirm the expression of v1

(EU562295) and identified another alternatively spliced variant v3

(EU562297) which is widely expressed in adult tissues (Fig. 1D).

Further analysis using primers specific to the common exons (exon

2 and 3) of OPCML variants in cell lines without both v1 and v2

transcripts revealed the presence of even more unidentified,

alternative promoter usage (Fig. 1F).

Broad expression of OPCML-v1 and v2 major variants in
normal tissues

Previously, OPCML was shown to be strongly expressed in brain

and normal ovarian epithelia [20]. We further assessed its

expression in 33 normal human adult and fetal tissues by semi-

quantitative PCR with specific primers targeting the v1, v2, or

common exons (exon 2 and 3) (Fig. 1B), respectively. OPCML-v1

was widely expressed in all normal adult and fetal tissues except for

placenta and peripheral blood mononuclear cells (PBMC), though

at varying levels (highly expressed in brain, kidney, spleen,

stomach, trachea, testis, cervix, ovary and prostate, and weakly

in lung, breast, and bone marrow) (Fig. 1E). Compared to v1,

OPCML-v2 displayed a more tissue-specific expression pattern in

adult tissues, with expression absent or barely detectable in kidney,

spleen, pancreas, breast, testis, lung, colon, liver, testis and bone

marrow. In contrast to its expression in adult tissues, OPCML-v2

was expressed at moderate to high levels in all fetal tissues except

for placenta. These results suggest that both v1 and v2 are likely to

have important functions in embryonic development.

Silencing of OPCML by CpG methylation in tumor cell
lines

We identified OPCML as a down-regulated gene through in silico

subtraction. We further validated its expression in a large

collection of carcinoma and lymphoma cell lines by semi-

quantitative RT-PCR. It was found that OPCML-v1 expression

was dramatically reduced or completely silenced in multiple

carcinoma cell lines of nasopharynx, esophagus, breast, cervix,

stomach, lung, colon, liver and prostate, as well as in virtually all

lymphoma cell lines examined (Fig. 2C and Figure S1), but readily

detected in glioma cell lines (Fig. 2D). In contrast, its expression

was readily detected in most non-tumor cell lines, including

normal mammary (HMEC, HMEpC) and prostate (PrEC-6)

epithelial cell line, and immortalized but non-transformed

epithelial cell lines (nasopharyngeal, NP69; esophageal, NE1,

NE3 and Het-1A; prostate, MLCSV40). Thus, the downregulation

of OPCML-v1 appeared to be tumor-specific. Notably, expression

of OPCML-v2 remained undetectable in virtually all cell lines

evaluated, including normal cell lines. Given its limited tissue

expression pattern and the fact that v2 promoter is not a CpG

island with very few CpG sites, the mechanism of OPCML-v2

silencing is not pursued further in the current study.

As methylation of promoter CGI is a well-recognized epigenetic

mechanism of TSGs silencing [2], we thus examined the potential

promoter regions of the 2 major variants (v1 and v2). The

OPCML-v1 (NM_002545) and v2 (NM_001012393) sequence

upstream of their exon 1 was retrieved from the NCBI database

and analyzed using promoterinspector (http://www.genomatix.

de) and CpG Island Searcher (http://ccnt.hsc.usc.edu/cpgis-

lands2). This analysis predicted a promoter for OPCML-v1,

located within a typical CGI spanning the published transcription

start site of v1, which was also confirmed by our 59-RACE analysis

Methylation of OPCML
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Figure 1. Identification of novel splicing variants of OPCML and its expression in normal human tissues. (A) Genomic organization of the
11q25 locus with the two known genes OPCML and HNT. Transcriptional orientations are shown by curved arrows. (B) Different promoter usage and
alternative splicing of OPCML. Alternative mRNA transcripts are shown aligned from 59 to 39 on a virtual genome. The 59-end of OPCML-v1 assembled
by ECgene (Genome Annotation for Alternative Splicing, http://genome.ewha.ac.kr/ECgene/) was adapted to this alignment. (C) Left panel:
determination of transcription start sites of OPCML transcripts by 59-RACE. Right panel: expression of OPCML-v1 and v3 in brain and testis by semi-
quantitative RT-PCR using 59-RACE product as the template. Primer pair v1F/R4 amplifies one band that is specific to v1. Primer pair v1F0/R4 amplifies
two bands corresponding to v1 and v3, respectively. (D) Expression of OPCML-v1 and v3 in adult tissues by semi-quantitative RT-PCR. Primer pair
v1F0/R4 amplifies two bands corresponding to v1 and v3, respectively. The specific and non-specific bands have been confirmed by direct
sequencing. (E) Expression of OPCML-v1 and v2 in human normal adult and fetal tissues. Primer pair v1F/R4, v2F/R4 and F3/R2 are specific to the v1-,
v2-transcripts, and common exons (exon 2 and 3) of OPCML , respectively. Sk.M., skeletal muscle. (F) Possible transcription of OPCML from other
unidentified alternative promoters. Expression of OPCML in normal and tumor cell lines was analyzed by semi-quantitative RT-PCR using primers (F3/
R2) specific to common exons (exon 2 and 3) of OPCML. Expression of OPCML-v1 or v2 is indicated as ‘‘+’’, while downregulation or silencing is
indicated as ‘‘2’’. OPCML-v1 promoter methylation status in each cell line is also shown. M, methylated; U, unmethylated. Transcription of OPCML
from unknown alternative promoters was found in some tumor cell lines (underlined) where the OPCML-v1 promoter is methylated and silenced and
v2 expression is also silenced.
doi:10.1371/journal.pone.0002990.g001

Methylation of OPCML
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(Fig. 2A). We did not find any obvious CGI or predicted promoter

in the region upstream of the exon 1 of v2, indicating that either

the v2 promoter is not a typical one or the published 59-end

sequence of v2 is not complete yet. Thus, we focused on the role of

promoter CGI methylation in the silencing of OPCML-v1. We first

validated that our methylation-specific PCR (MSP) was specific,

which did not give any non-specific signal for the unbisulfate DNA

(Fig. 2B) and revealed the methylation of OPCML-v1 in silenced

placenta tissue (Figure S2). Next, v1 promoter methylation was

detected in most tumor cell lines with downregulated or silenced

expression (6/6 nasopharyngeal, 15/17 esophageal, 5/5 lung, 17/

17 gastric, 11/11 colorectal, 6/13 hepatocellular, 9/10 breast, 8/8

cervical and 2/3 prostate carcinoma cell lines, and 20/21

lymphoma cell lines) (Fig. 2C, Figure S1 and Table 1), while no

Figure 2. Epigenetic inactivation of OPCML in multiple tumor cell lines. (A) Schematic structure of the v1 (NM_002545) CGI, with its exon 1,
predicted promoter region, MSP region and BGS region indicated. Each short vertical line represents one CpG site. The v2 promoter is also shown. (B)
Validation of the specificity of the MSP system. No signal was detected using the unbisulfited DNA from several tumor cell lines. (C) Representative
analyses of OPCML v1 and v2 (NM_001012393) expression by semi-quantitative RT-PCR and methylation status of v1-CGI by MSP in tumor cell lines
and normal controls. M, methylated; U, unmethylated. Immortalized normal epithelial cell lines (NE1, NE3, Het-1A, NP69, CCD 841, MLCSV40) and
normal epithelial cell lines (HMEC, HMEpC and PrEC-6) with underlined names were used as normal controls. RC170N/h and RC165N/h are
telomerase-immortalized benign prostate epithelial cell lines, RC92a/h and RC58T/h/SA#4 are telomerase-immortalized prostate tumor derived cell
lines. (D) Expression and methylation of OPCML in glioma cell lines.
doi:10.1371/journal.pone.0002990.g002

Methylation of OPCML
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methylation was detected in the eight normal epithelial cell lines,

demonstrating that v1 promoter methylation is well correlated

with its expression status (Fig. 2C).

To further confirm the MSP results and examine the

methylation status of the v1 CGI in more detail, we performed

high-resolution bisulfite genome sequencing (BGS) analysis of 90

CpG sites within the island, spanning almost the entire predicted

promoter. The BGS results were consistent with the MSP analysis,

with all the promoter alleles extensively methylated in silenced cell

lines and only scattered methylated CpG sites detected in non-

tumor cell lines (Fig. 3). These results thus revealed a strong

correlation between OPCML-v1 promoter methylation and its

transcriptional silencing in tumor cell lines.

Pharmacologic and genetic demethylation restored
OPCML-v1 expression

To determine whether methylation directly mediates OPCML

silencing, carcinoma and lymphoma cell lines (MB231, Hep3B,

HepG2, SNU398, SW480 and L1236) were treated with the DNA

methyltransferase inhibitor 5-aza-29-deoxycytidine (Aza), together

with or without histone deacetylase inhibitor Trichostatin A

(TSA). The treatment resulted in the restoration of OPCML-v1

expression in all tumor cell lines (Fig. 4A). OPCML-v1 could also

be induced in the colorectal cancer cell line HCT116 which is

completely methylated for this gene, by genetic demethylation

through double knock-out of both DNA methyltransferases

DNMT1 and DNMT3B (DKO cell line) [25] (Fig. 4B). Concom-

itantly, the v1 promoter alleles were almost completely demeth-

ylated in DKO cells as confirmed by high-resolution BGS analysis

(Fig. 4C), suggesting that the maintenance of OPCML methylation

is mediated by DNMT1 and DNMT3B together, like other bona-fide

TSGs that we and others have examined [12,13,26]. Interestingly,

OPCML-v2 could not be activated in any drug treated cell line or

DKO cell line (Fig. 4A, 4B), suggesting that the expression of

OPCML-v2, being tissue-specific, is controlled by other intrinsic

mechanism(s), and that its silencing in multiple carcinoma cell lines

is controlled by methylation-independent mechanism or, less

likely, that its upregulation level is below the limit of detection.

OPCML downregulation was not due to genetic deletion
The downregulation of OPCML in multiple tumor cell lines

might also result from genetic deletion, as it resides in the

frequently deleted 11q25 locus. Hemizygous deletion of OPCML

was also often detected in epithelial ovarian cancer [20]. We thus

performed multiplex differential genomic DNA PCR to detect

OPCML deletion for a region spanning the frequently deleted

marker D11S4085 in epithelial ovarian cancer. No homozygous

deletion was detected in any silenced tumor cell line (Fig. 5).

Furthermore, our high-resolution 1-Mb array comparative

genomic hybridization (aCGH) analysis of NPC and ESCC cell

lines [12,26,27] revealed the hemizygous deletion of OPCML in

only 2 out of 15 cell lines (data not shown). Thus, downregulation

of OPCML appears not to be due to genetic deletion, but rather

predominantly to epigenetic silencing.

Frequent methylation of OPCML in multiple primary
tumors

We further investigated the OPCML-v1 promoter methylation in

a large collection of primary tumors, some with corresponding

normal tissues as controls (Fig. 6A and Table 1). OPCML-v1

methylation was detected in 98% (42/43) of NPC, 66% (21/32) of

esophageal, 91% (10/11) of breast, 64% (7/11) of gastric, 94%

(17/18) of colorectal, 57% (4/7) of hepatocellular and 88% (7/8)

of cervical carcinomas, as well as in 100% (10/10) of Burkitt

lymphoma and 89% (8/9) of nasal lymphoma. Methylation was

also detected with low frequency in paired surgical marginal tissues

from patients with esophageal carcinoma at the rate of 16% (5/

32), and with breast carcinoma at the rate of 25% (1/4), which

might be due to the presence of small number of tumor cells

disseminated into the adjacent non-tumorious region or an early

tumor in the adjacent normal regions. Basically no methylation

was detected in normal epithelial tissues (nasopharynx, esophagus

Table 1. Summary of OPCML methylation in cell lines and
primary tumors.

Samples
Promoter
methylation (%)

Carcinoma cell lines

Nasopharyngeal 5/6 (83%)

Esophageal 15/17 (88%)

Lung 5/5 (100%)

Gastric 16/17 (94%)

Colorectal 11/11 (100%)

Hepatocellular 6/13 (46%)

Breast 9/10 (90%)

Cervical 8/10 (80%)

Prostate 2/3 (67%)

Lymphoma cell lines

Hodgkin’s lymphoma (HL) 6/6 (100%)

Burkitt lymphoma (BL) 6/6 (100%)

Diffuse large B-cell lymphoma (DLBCL) 5/5 (100%)

T-cell lymphoma (TL) 1/2 (50%)

NK/T-cell lymphoma (NL) 2/2 (100%)

Primary tumors

Nasopharyngeal Ca 42/43 (98%)

Esophageal Ca 21/32 (66%)

Hepatocellular Ca 4/7(57%)

Gastric Ca 7/11 (64%)

Colorectal Ca 17/18 (94%)

Breast Ca 10/11 (91%)

Cervical Ca 7/8 (88%)

Prostate Ca 0/5

Burkitt lymphoma 10/10 (100%)

Nasal lymphoma 8/9 (89%)

Immortalized normal epithelial cell lines

NP69, NE1, NE3, Het-1A, MLCSV40 0/5

Normal prostate epithelial cells (PrEC-6) 0/1

Normal tissues

Normal nasopharynx tissues 3(weak)/9 (33%)

Normal esophageal epithelial tissues 2(weak)/7 (29%)

Normal breast epithelial tissues 1/14 (7%)

Surgical-margin esophageal tissue from
esophageal Ca patients

5/32 (16%)

Surgical-margin breast tissue from breast Ca patients 1/4 (25%)

doi:10.1371/journal.pone.0002990.t001

Methylation of OPCML
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and breast) except for very weak methylation in three nasopha-

ryngeal, two esophageal and one breast epithelial tissues (Fig. 6A).

These results further demonstrated that methylation of OPCML-v1

promoter is frequent in multiple tumors. In contrast, no

methylation was detected in all five prostate cancer samples

(Fig. 6B).

Figure 3. High-resolution methylation analysis of the OPCML-v1 promoter by BGS. A region spanning the promoter with 90 CpG sites was
analyzed. Each CpG site is shown at the top row as an individual number. Dense methylation of the v1-CGI was found in ESCC (EC18, EC109) and NPC
(C666-1, CNE2, HK1) cell lines, but not in normal esophageal (NE1, NE3) and nasopharyngeal epithelial (NP69) cell lines. Five to 8 colonies of cloned
BGS-PCR products from each bisulfite-treated DNA sample were sequenced and each is shown as an individual row, representing a single allele of the
CGI analyzed. One circle indicates one CpG site. Dark filled or open circles represent methylated or unmethylated CpG sites, respectively. D indicates
possible variation of a CpG site to the CpA or CpT dinucleotides. The MSP region in this study and the BGS region studied in the previous report [20]
are indicated in frames. The rightmost column is the MSP result of each sample.
doi:10.1371/journal.pone.0002990.g003

Figure 4. Restorations of OPCML-v1 expression by demethylation. (A) Pharmacological demethylation by Aza (A) and TSA (T) induced the
expression of OPCML-v1 but not v2. OPCML expression before and after drug treatment was determined by RT-PCR. (B) Genetic demethylation of the
OPCML-v1 CGI also activated its expression. OPCML-v1 expression in HCT116 cells and HCT116 with double knockout of DNMT1 and DNMT 3B (DKO)
are shown. (C) Detailed BGS analysis confirmed the demethylation of the OPCML-v1 CGI in DKO cells.
doi:10.1371/journal.pone.0002990.g004

Methylation of OPCML
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Promoter methylation disrupted the stress response of
OPCML-v1

Examination of the OPCML promoter revealed multiple HSF and

p53 binding elements (MatInspector, http://genomatix.de), indi-

cating that it is a stress- and p53-responsive gene (Fig. 7A). We thus

inspected the response of OPCML to environmental stress stimuli.

We found that the expression of OPCML-v1 was dramatically

elevated in cell lines with an unmethylated promoter, after exposure

to various stresses, such as heat shock, UV irradiation and H2O2

treatment. On the contrary, this response was significantly

decreased or abolished in cell lines with a methylated promoter

(Fig. 7B). Interestingly, OPCML-v2 was not activated in any stress-

treated cell line, indicating that it is not stress-responsive, probably

due to its tissue-specific expression feature.

p53 could induce OPCML expression in the H1299 cell line with

a partially methylated promoter, in a dosage-dependent manner

(Fig. 7C). Taken together, these results demonstrated that OPCML

is a stress-responsive and p53-regulated gene but its stress response

is impaired by promoter methylation.

Ectopic expression of OPCML-v1 inhibited tumor cell
clonogenicity

The frequent silencing of OPCML-v1 in multiple tumor cell lines

and primary tumors but not normal epithelial tissues indicates that

OPCML-v1 is likely a tumor suppressor. We thus sought to

establish whether ectopic expression of OPCML-v1 could inhibit

tumor cell clonogenicity. A mammalian expression vector

encoding full-length OPCML-v1 was transfected into colorectal

Figure 5. Analysis of homozygous deletion of OPCML in multiple carcinoma cell lines and normal controls. The abundance of OPCML
relative to GAPDH was determined by multiplex differential genomic DNA PCR. The expression of OPCML in each sample is also shown. +, normal
expression; 2, downregulated/silenced.
doi:10.1371/journal.pone.0002990.g005

Figure 6. OPCML-v1 was also methylated in different primary tumors. (A) Frequent methylation of the OPCML-v1 CGI in multiple primary
tumors as analyzed by MSP. M, methylated; U, unmethylated. Representative results are shown. T, tumors; N, paired non-tumor tissues. Good quality
of bisulfited DNA samples of normal NPx (NPx1-4) has been confirmed by Q-MSP for beta-actin [44]. (B) In contrast, no methylation was detected in
prostate tumors. EsCa, esophageal carcinoma; HCC, hepatocellular carcinoma; GsCa, gastric carcinoma; BrCa, breast carcinoma; CxCa, cervical
carcinoma.
doi:10.1371/journal.pone.0002990.g006

Methylation of OPCML
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(HCT116), esophageal (KYSE510) and prostate (PC3) carcinoma

cell lines which had completely methylated and silenced

endogeous OPCML-v1 promoter (Fig. 2C). The colony formation

efficiencies of transfected cell line were evaluated by monolayer

and soft agar culture. Ectopic expression of OPCML-v1

significantly inhibited the anchorage-dependent growth of three

cell lines (down to 30%–60% of vector controls) (Fig. 8A and 8C).

Meanwhile, a significant reduction of colony formation efficiencies

was observed in anchorage-independent growth of HCT116 cells

(down to 30% of vector control) (Fig. 8B and 8C). Thus, OPCML-

v1 indeed has growth inhibitory activities in tumor cells and can

function as a tumor suppressor.

Discussion

We used a novel approach of combining DGED screening for

down-regulated genes with reported LOH data of NPC to search

for silenced candidate TSGs genome-wide in NPC and identified

OPCML. OPCML is frequently silenced by promoter methylation

rather than genetic deletion in NPC, as well as multiple other

carcinomas and lymphomas. We further showed that OPCML is a

stress-responsive and p53-regulated gene, with the response

abrogated when the promoter becomes methylated. In addition,

ectopic expression of OPCML in carcinoma cells lacking its

expression led to dramatic anchorage-dependent and –indepen-

dent growth inhibition. Thus, our results demonstrate that OPCML

is a broad functional tumor suppressor that is epigenetically

silenced in multiple tumors.

OPCML belongs to the IgLON family of immunoglobulin (Ig)

domain containing glycosylphosphatidylinositol (GPI)-anchored

cell adhesion molecules, which includes OPCML, LSAMP,

NEGR1 and HNT. The IgLON proteins are highly conserved

between species and are typically composed of three Ig domains

tethered to the surface of cell membrane by anchoring of their

hydrophobic tails to GPI. Limited knowledge about the functions

of IgLONs mainly derives from studies in rat and chick brain, the

tissues where they are primarily expressed [17,28,29]. In those

studies, IgLONs have been suggested to play an important role in

cell adhesion and cell-cell recognition, through both homo- and

hetero-philic interactions within the family [19]. Recently, it has

been proposed that IgLONs function mainly as heterodimers

called Diglons [30]. As a cell adhesion molecule, OPCML

comprises several protein-protein interaction domains, such as

three ‘C2’ like Ig domains [31] which are more appropriately

classified as ‘I’ set Ig domains [20], commonly found in cell-

surface-adhesion and receptor molecules [32]. Through these

domains, OPCML may bind directly to growth promoting or

inhibitory molecules and modulate their functions in tumor cells.

Among the IgLON family, OPCML was the first member reported

to possess tumor suppressor functions in epithelial ovarian cancer,

being frequently silenced genetically and epigenetically at the early

step of ovarian carcinogenesis [20]. This was followed by another

report that another IgLON, LSAMP, is also a TSG for renal clear

cell carcinoma [33]. Our present study further verifies that

OPCML can function as a broad TSG and is frequently inactivated

epigenetically in multiple carcinomas and lymphomas, including

NPC, esophageal, lung, gastric, hepatocellular, colorectal, breast,

cervical and prostate carcinomas. OPCML probably functions as a

tumor suppressor through interacting with other IgLONs to form

heterodimeric complex [30] involved in signal transduction. Loss

of OPCML reduces the intercellular adhesion and heterodimeric

complex formation and thus impairs the corresponding signaling

pathways, thereby promoting the progress of carcinogenesis.

OPCML shares the highest homology to HNT among the four

IgLON family members. Notably, the coding region in exon 1 of

OPCML-v1 and HNT is identical, and so is the exon 2 except for only

several bases. The first Ig domains of these two proteins share 92%

identity, while the second and third Ig domains share 70% and 66%

Figure 7. The OPCML-v1 promoter is stress- and p53-responsive. (A) Locations of transcription factors (HSF, p53, Sp1, E2F, STAT) binding sites
in the promoter are indicated. (B) Up-regulation of OPCML-v1 in response to stress treatments is disrupted in tumor cell lines with a methylated
promoter. Normal (NE3, HEK293, NE1) and tumor cell lines (Rael, CNE1, C666-1, HK1) were exposed to 42uC heat shock (HS), UV irradiation, or H2O2

treatments. OPCML-v1 promoter methylation status in each cell line is shown at the bottom. M, methylated; U, unmethylated. (C) H1299 cells were
transfected with different amounts of pcDNA3.1+/TP53 (gift from Dr. Bert Vogelstein) [27]. Expression of OPCML-v1 and v2 was analyzed by semi-
quantitative RT-PCR. p53 induced a dosage-dependent upregulation of OPCML-v1.
doi:10.1371/journal.pone.0002990.g007
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identity, respectively. This raises the possibility that OPCML and HNT

may originate from the same ancestor by gene conversion during

evolution. Thus, primers must be cautiously designed for these two

genes to avoid cross-amplification with PCR-based techniques.

Our results also reveal that OPCML transcripts v1 and v2 have

different tissue expression patterns. Whereas OPCML-v1 was

widely expressed in normal adult tissues, OPCML-v2 showed a

more tissue-specific expression profile, being highly expressed in

few tissues including brain. Previously, a genome-wide searching

for the neuron specific silencer REST/NRSF binding sites (RE1/

NRSE) revealed that there were three NRSE located at intron 1 of

OPCML-v2 (http://bioinformatics.leeds.ac.uk/group/online/

RE1db/re1db_home.htm), suggesting that v2 may be a more

neuron specific transcript. We also identified other novel isoforms

of OPCML (v3, v4, v5, v6), derived from alternative splicing or

promoter usages. Using primers specific to the common exons of

OPCML transcripts, we found the expression of OPCML in several

tumor cell lines (Hep3B, H292, SW480, L1236), where the

OPCML-v1 and v2 were totally silenced (Fig. 1F), indicating

transcription of OPCML from alternative unknown promoters.

Our present study mainly focused on the expression and functional

analysis of transcript variant 1, whereas the mechanism of variant

2 silencing was not pursued further. Further studies are needed to

characterize these novel splicing variants, their promoter usages

and possible biologic functions.

Epigenetic gene silencing is associated with the onset and

progression of various cancers [2]. The frequent, predominant

epigenetic inactivation of OPCML in multiple malignancies points

to the importance of this gene in tumorigenesis. OPCML is a stress-

and p53-responsive gene, but this response was often epigeneti-

cally impaired by promoter methylation. We speculate that

epigenetic silencing of OPCML would impair the cellular protective

response to environmental stresses in normal cells, thus promoting

the development of cancers. As promoter methylation of OPCML

was pharmacologically and genetically reversible, pharmacologic

demethylation therapy will restore its response to stress and p53.

The role of OPCML in DNA damage repair, apoptosis and cell

cycle arrest with respect to stress response remains to be further

investigated. We also noticed that in some cell lines (like HCC),

OPMCL-v1 was silenced without promoter methylation detected

by MSP. It could be that for some cell lines, the methylation is not

evenly distributed through the CGI (like HepG2 in Fig. 3) and is

thus missed by MSP analysis, or additional alternative mechanism

such as histone modification is involved.

In summary, we found that the expression of OPCML-v1

(NM_002545), a major transcript of this TSG, is frequently

silenced or down-regulated in multiple tumors. This inactivation is

due to its promoter methylation, which further impairs its response

to environmental stresses. We further demonstrated that OPCML

acts as a broad tumor suppressor for multiple tumor types. The

high incidence of epigenetic inactivation of OPCML in NPC and

esophageal carcinoma, both prevalent in our locality, indicates

that OPCML methylation could be an epigenetic biomarker for the

molecular diagnosis of these tumors.

Figure 8. Ectopic expression of OPCML-v1 inhibits tumor cell growth. The effect of ectopic OPCML-v1 expression on carcinoma cell
clonogenicity was investigated by monolayer colony formation assay (A) and soft agar assay (B). Cells were transfected with pcDNA3.1+/OPCML-v1 or
control vector, and selected with G418. (C) Quantitative analyses of colony formation. The numbers of G418-resistant colonies in each vector-
transfected control were set to 100%, while OPCML-v1 expressed cells were presented as mean6SD. Three independent experiments were
performed in triplicate. The asterisk indicated statistical significant difference (p,0.01).
doi:10.1371/journal.pone.0002990.g008
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Materials and Methods

Cell lines, tumor and normal tissue samples
A series of tumor cell lines were studied, including nasopha-

ryngeal-NPC, esophageal, lung, gastric, colorectal, hepatocellular,

breast, cervical and prostate carcinomas, glioma, Hodgkin and

non-Hodgkin lymphomas, including Burkitt lymphoma (BL),

diffuse large B-cell lymphoma (DLBCL), T-cell lymphoma (TL)

and NK/T-cell lymphoma (NL) [12,13,26]. NP69, an SV40 T-

antigen-immortalized nasopharyngeal epithelial cell line with

many features of normal nasopharyngeal epithelial cells was used

as a ‘normal’ control for NPC [34]. Three immortalized normal

esophageal epithelial cell lines (NE1, NE3, Het-1A) [26,35] were

used as ‘normal’ controls for esophageal carcinoma. Colon

HCT116 cell lines with double knock-out of DNA methyltrans-

ferases (DNMTs): HCT116 DNMT12/2 DNMT3B2/2 (DKO)

cells (gifts from Dr Bert Vogelstein, Johns Hopkins) were used [25].

Total RNA and DNA were extracted from cell pellets using TRI

Reagent (Molecular Research Centre, Cincinnati, OH) as

reported previously [36]. Cell lines were treated with Aza (Sigma,

St. Louis, MO) and TSA as described previously [26].

Human normal adult and fetal tissue RNA samples were

purchased commercially (Stratagene, La Jolla, CA, USA or Millipore

Chemicon, Billerica, MA, USA) [26]. Human normal tissue DNA

samples were purchased from BioChain Institute (Hayward, CA).

DNA samples of normal esophageal epithelial tissues were described

previously [37,38]. DNA samples from various primary carcinomas

and their corresponding surgical marginal normal tissues (N), were

described previously [7,12,27,36,39–43].

Digital expression subtraction
We searched for downregulated genes genome-wide through

Differential Gene Expression Displayer (DGED) analysis (cDNA

DGED and SAGE DGED) (http://cgap.nci.nih.gov). This

analysis identified a number of downregulated genes in tumors.

The candidate gene list was further filtered with the reported loss

of heterozygosity (LOH) data of NPC. Genes located at published

LOH regions in NPC were extracted using UCSC genome

database (http://genome.ucsc.edu).

59-Rapid Amplification of cDNA Ends (59-RACE)
We determined the OPCML transcription start site using 59-

RACE version 2.0 (Invitrogen). Briefly, the first-strand cDNA was

synthesized from brain RNA using primer OPCML-DxR, 59-

TCCAGGTACTCATCCTCACT. Homopolymeric tails were

then added to the 39ends with terminal deoxynucleotidyl

transferase. PCR was done using Abridged Anchor Primer and

a second gene-specific primer OPCML-R2, 59-CTGCCAATAG-

CAAGACACAG. The RACE product was enriched by ream-

plifying with the Abridged Universal Amplification Primer and

OPCML-R, 59-TATGGACCACTTGTCATTCC, cloned and

sequenced.

Semi-quantitative RT-PCR analysis
Reverse transcription-PCR (RT-PCR) was performed for 36 or

37 cycles with hot-start, using AmpliTaq Gold DNA Polymerase

(Applied Biosystems, Foster City, CA) and GAPDH as a control

[36]. RT-PCR primers were designed to span introns to prevent

amplification of genomic DNA. Primer sequences are provided in

Table S1.

Bisulfite treatment and promoter methylation analysis
Bisulfite modification of DNA, methylation-specific PCR (MSP)

and bisulfite genomic sequencing (BGS) were carried out as

previously described [26,36]. Both MSP and BGS were performed

for 40 cycles using AmpliTaq Gold with hot-start. MSP primers

were tested first for not amplifying any unbisulfited DNA. For

BGS, the PCR products were cloned into pCR4-TOPO

(Invitrogen, Carlsbad, CA), with 5–8 colonies randomly chosen

and sequenced. Primer sequences are shown in Table S1.

Stress treatments
Heat shock was done as previously described [7], except for an

incubation at 42uC for 1 hour with recovery at 37uC for 2 hours. For

UV treatment, medium was removed and the flask was turned upside

down to face the light source in a UV cross-linker (Amersham

Biosciences, Piscataway, NJ). Cells were irradiated for a dose of 70 J/

m2. After irradiation, fresh medium was added, and the cells were

recovered at 37uC for 1 hour and then harvested. For H2O2

treatment, cells were exposed to 0.5 mM of H2O2 for 1 hour and

then harvested.

Deletion analysis of OPCML by multiplex PCR
Homozygous deletion of OPCML was examined using

multiplex genomic DNA PCR as previously described [7]. Primer

sequences are shown in Table S1. The final concentration of

OPCML and GAPDH primers is 0.4 mM and 0.2 mM, respectively.

PCR products were analyzed on 1.8% agarose gels.

Colony formation assays
The full-length OPCML-v1 ORF was subcloned from the

pcDNA3.1 Zeo/OPCML plasmid [20] into pcDNA3.1(+) to

generate pcDNA3.1+/OPCML-v1. HCT-116, KYSE510 and PC3

cells were seeded at 16105/well in a 12-well plate and allowed to

grow for 24h. Cells were then transiently transfected with 0.5 mg of

pcDNA3.1+/OPCML-v1 or pcDNA 3.1 vector alone, using

Fugene6.0 (Roche, Switzerland). For colony formation assay using

monolayer culture, cells were collected and plated in a 6-well plate

48h post-transfection, and selected for 1 to 2 weeks with G418

(0.4mg/ml). Surviving colonies ($50 cells/colony) were counted

after staining with Gentian Voilet (ICM Pharma, Singapore). For

colony formation assay using soft agar culture, at 48h post-

transfection, cells were suspended in RPMI 1640 containing 0.35%

agar, 10% fetal bovine serum and 0.4 mg/ml G418 and layered on

RPMI containing 0.5% agar, 10% fetal bovine serum and G418 in

a 6-well plate. Colonies were photographed at day 20 post-

transfection. All the experiments were performed in triplicate wells

for three times. Data were presented as relative colony formation

ability6SD. Statistical analysis was carried out by Student’s t-test,

p,0.01 was considered as statistically significant difference.

Supporting Information

Table S1 PCR primers used in this study.

Found at: doi:10.1371/journal.pone.0002990.s001 (0.07 MB

DOC)

Figure S1 Expression and methylation of OPCML in Hodgkin

and non-Hodgkin lymphoma cell lines.

Found at: doi:10.1371/journal.pone.0002990.s002 (0.17 MB TIF)

Figure S2 Methylation status of the OPCML-v1 in multiple

normal adult and fetal tissues as analyzed by MSP.

Found at: doi:10.1371/journal.pone.0002990.s003 (0.11 MB TIF)
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