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ABSTRACT

Aptamers are short single-stranded RNA/DNA
molecules that bind to specific target molecules. Ap-
tamers with high binding-affinity and target speci-
ficity are identified using an in vitro procedure called
high throughput systematic evolution of ligands by
exponential enrichment (HT-SELEX). However, the
development of aptamer affinity reagents takes a
considerable amount of time and is costly because
HT-SELEX produces a large dataset of candidate se-
quences, some of which have insufficient binding-
affinity. Here, we present RNA aptamer Ranker (Rap-
tRanker), a novel in silico method for identifying high
binding-affinity aptamers from HT-SELEX data by
scoring and ranking. RaptRanker analyzes HT-SELEX
data by evaluating the nucleotide sequence and sec-
ondary structure simultaneously, and by ranking ac-
cording to scores reflecting local structure and se-
quence frequencies. To evaluate the performance
of RaptRanker, we performed two new HT-SELEX
experiments, and evaluated binding affinities of a
part of sequences that include aptamers with low
binding-affinity. In both datasets, the performance
of RaptRanker was superior to Frequency, Enrich-
ment and MPBind. We also confirmed that the con-
sideration of secondary structures is effective in HT-
SELEX data analysis, and that RaptRanker success-
fully predicted the essential subsequence motifs in
each identified sequence.

INTRODUCTION

Aptamers are chemically-synthesized short single-stranded
RNA/DNA molecules that can bind various targets with
high binding affinity and specificity. Aptamers have mainly

two characteristics that distinguish them from other nu-
cleic acid drugs. First, aptamers recognize the tertiary struc-
ture of target molecules, while other oligonucleotide drugs
target mRNA molecules through their primary structures
only. Second, aptamers can target extracellular molecules
as well as intracellular molecules. Unlike other nucleic acid
drugs, aptamers can be generated against various types of
target molecules such as transcription factors (1–4), pro-
teins and their complexes (5), small organic molecules (6,7),
viruses (8) and cells (9–11). Moreover, aptamer production
by chemical synthesis offers easy manufacturing, batch-to-
batch reproducibility, and long shelf life. Considering these
features, aptamers show potential as replacements of an-
tibodies in analytical, diagnostic and therapeutic applica-
tions.

Aptamers bind their targets by forming tertiary struc-
tures that provide spatial complementarity (12). There-
fore, it is important to consider the structural features
(e.g. RNA secondary structures) of aptamers when pre-
dicting their binding properties. The information regarding
the secondary structure is utilized in aptamer development
strategies such as motif definition and strategic truncation
(13), in silico screening to reduce initial pool size (14), and
searching the sequence space for potent aptamers (15,16).
Although a variety of software is available for predicting
secondary structures of aptamers (e.g. (17,18)), only few an-
alyze secondary structure information for the calculation of
binding potentials of RNA aptamers.

Recently, aptamers with high binding-affinities were iden-
tified using HT-SELEX method (1,19,20). HT-SELEX is
an in vitro experimental method that improves the con-
ventional SELEX method (21,22) by including next gen-
eration sequencing (NGS) technology so that a larger
amount of nucleotide sequence information can be pro-
cessed. In (HT-)SELEX procedures, the aptamers with high
binding-affinities are enriched by repeating the ‘Amplify
only sequences that bind target’ procedure, starting with
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Figure 1. Diagram of HT-SELEX method. HT-SELEX method identi-
fies high binding-affinity aptamers by performing repeated rounds of a
five-step procedure. 1. Addition of the target molecule to the RNA/DNA
pool and incubation. 2. Partitioning of the target molecule-RNA/DNA
complex and unbound RNA/DNA. 3. Removal of unbound RNA/DNA.
4. Elusion of target-bound RNA/DNA. 5. Amplification of selected
RNA/DNA.

large amounts of random RNA/DNA sequences. First, an
RNA/DNA pool with 1012 to 1015 random nucleotide se-
quences called round 0 pool (0R pool) or initial pool is gen-
erated. Then, high binding-affinity aptamers are identified
by performing repeated rounds of a five-step procedure as
shown in Figure 1. In HT-SELEX method, aptamers ob-
tained in not only the final round but also in some of the
previous rounds including the 0R pool are sequenced. Since
a vast number of sequences are generated by HT-SELEX
(23–25), an efficient candidate selection method is required
to reduce the number of non-binding clones, decrease ex-
periment time, and minimize material cost.

There have been some previous in silico studies to identify
the high binding-affinity sequences from HT-SELEX data
by various analyses. Frequency, Enrichment (26), and MP-
Bind (27) were developed to achieve this purpose by scor-
ing and ranking the candidate sequences. Frequency calcu-
lates the frequency of appearance for each sequence. En-
richment calculates transition of frequency between con-
secutive rounds for each candidate sequence. MPBind per-
forms statistical analysis based on changes in relative fre-
quencies of all k-mer units. However, none of them includes
aptamer structure data in their analyses. In contrast, Ap-
taTRACE (13) traces the transition of secondary structure
between HT-SELEX rounds for each k-mer and predicts
the binding motif independent of frequency data. How-
ever, AptaTRACE does not provide a ranking for the can-
didates. APTANI2 (28) ranks candidates and identifies rel-
evant structural motifs through the calculation of a score
that considers secondary structures of aptamers. However,
the score focuses on structural stability rather than struc-
tural similarity. In addition, APTANI2 uses only one round
of HT-SELEX as its input.

Another challenge in software development is that there
are only a few public HT-SELEX datasets. In aptamer-
related research, only the aptamers that show high binding-
affinity are reported; research reports rarely disclose the
complete (HT-)SELEX data generated throughout the se-
lection process. In many cases, even when the sequence data
is made available, only the data from the final round is
shared and the data generated in intermediate rounds of
HT-SELEX procedure is not available. It should also be
noted that there is little information about the candidate se-
quences that turn out to lack binding activity. This data of
‘aptamers with low binding-affinity’ is highly valuable for
evaluating the performances of in silico HT-SELEX analy-
sis methods.

Here we present RNA aptamer Ranker (RaptRanker), a
novel in silico method for identifying high binding-affinity
aptamers from HT-SELEX data by scoring and ranking.
RaptRanker determines unique sequences from all HT-
SELEX rounds and clusters all subsequences of unique se-
quences by similarity based on both nucleotide sequence
and secondary structure features. Then, RaptRanker iden-
tifies high binding-affinity aptamers by calculating the aver-
age motif enrichment (AME), which is a score assigned to
each unique sequence based on frequency of subsequence
clusters. We performed two new HT-SELEX experiments
and evaluated sequence sets that include aptamers with low
binding-affinity using surface plasmon resonance (SPR) as-
say. In both HT-SELEX dataset analyses, performance of
RaptRanker was superior to Frequency, Enrichment and
MPBind.

MATERIALS AND METHODS

RaptRanker clusters the subsequences of unique sequences
based on similarity in both nucleotide sequence and sec-
ondary structure. Then, RaptRanker assigns a score for
each subsequence and each unique sequence using the clus-
ter data. Finally, RaptRanker ranks all unique sequences by
score (Figure 2). Importantly, the score calculated by Rap-
tRanker reflects particular characteristics of aptamers and
SELEX experiment, such as nucleotide sequence similarity,
secondary structure similarity, and frequency information.

Specifically, RaptRanker identifies high binding-affinity
aptamers through the five steps shown in Figure 2: (i) im-
port of the sequence data from FASTA or FASTQ input file,
(ii) determination of unique sequences by removing dupli-
cates and computation of sequence-structure profiles (SSPs)
representing nucleotide sequence and secondary structure
features as predicted by CapR (17), (iii) derivation of subse-
quences sequentially from all unique sequences, and genera-
tion of sub-sequence-structure profiles (SSSPs) representing
nucleotide sequence and secondary structure features for
each subsequence, (iv) enumeration of all subsequence pairs
matched based on similarity in sub-sequence-structure pro-
files using SketchSort (29) and clustering of subsequences
by constructing minimum spanning forest (MSF) from all
similar subsequence pairs and (v) calculation of the scores
and ranking unique sequences.

The details of each step are described in the following sec-
tions (see Supplementary Table S1 for notations utilized be-
low).
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Figure 2. An illustration of RaptRanker algorithm. First, RaptRanker determines the sequences to be analyzed from all the input FASTA/FASTQ files
of HT-SELEX experiments by filtering. Second, RaptRanker extracts unique sequences by removing duplicates, and computes sequence-structure pro-
files (SSPs) which represents both sequence and structure information. Third, RaptRanker determines subsequences of unique sequences, and constructs
subsequence-structure profile (SSSP) by decomposing SSPs. Forth, RaptRanker clusters subsequences (from all the rounds) by constructing Minimum
Spanning Forest (MSF), based on similar pairs of SSSPs calculated by SketchSort. Finally, sequence scores are computed based on clustering. Each cluster
obtained by RaptRanker can be regarded as a motif because it is a collection of similar subsequences of nucleotide sequence and secondary structure.

Filtering

RaptRanker determines sequences to be analyzed by two-
step filtering. First, only the sequences whose primer-
binding region is the same as the design are extracted. Then,
the random regions whose length is within the user-defined
limits are extracted. The sequences (i.e. the set of random
regions) that pass the filtering criteria are subjected to fur-
ther analyses.

In the first filtering, the sequences from FASTA or
FASTQ files are imported and only the sequences whose
primer binding regions exactly matches the design are ex-
tracted. Both ends of sequences obtained from the SE-
LEX experiment include fixed nucleotide sequences neces-
sary for amplification by PCR method. These sequences are
called forward primer binding region (5′ end) and reverse
primer binding region (3′ end). RaptRanker extracts only
the sequences whose both forward and reverse primer bind-
ing regions exactly match the user-defined parameters for-
ward primer and reverse primer.

In the second filtering, the random regions whose
lengths are between the upper and lower limits are ex-
tracted. RaptRanker uses the user-defined parameters min-
imum length and maximum length, and extracts only the
random regions whose lengths l are minimum length ≤ l ≤
maximum length.

Removal of duplicates and computation of sequence-structure
profiles (SSPs)

Removal of duplicates. RaptRanker determines the unique
sequences by removing duplicates present in the imported
sequence dataset in advance to reduce the calculation cost.
First, for each round, count the appearance of each se-
quence and remove duplicates with radix sort (30). After
that, summarize the results of each round, and remove du-
plicates with radix sort again. This result is the unique
sequences from all inputted HT-SELEX data, and each
unique sequence has the frequency information on each
round.

In the following, let S be the set of all unique sequences,
and let s be a unique sequence in S.

Computation of sequence-structure profiles (SSPs). For
each unique sequence s( ∈ S), RaptRanker computes
sequence-structure profile (SSP) that represents nucleotide
sequence and secondary structure features as predicted
by CapR (17). SSP consists of a sequence profile (4 ×
unique sequence length) representing the nucleotide se-
quence and a secondary structure profile (6 × unique
sequence length) representing the secondary structure
(Figure 3A).
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Figure 3. (A) Diagram of sequence-structure profile (SSP). SSP is com-
puted for each unique sequence, and consists of a sequence profile (4 ×
unique sequence length) representing the nucleotide sequence and a sec-
ondary structure profile (6 × unique sequence length) representing the
secondary structure. The sequence profile is a matrix computed by con-
verting the nucleotide sequence of each unique sequence into a one-hot
vector using a real value d ∈ R. The secondary structure profile is a matrix
computed by converting the data obtained from CapR. (B) An example
image of RNA secondary structure. The dashed lines represent base pairs.
The secondary structure features predicted by CapR are classified into six
types (bulge, exterior, hairpin, internal, multibranch, stem).

The secondary structure is predicted for each unique se-
quence that includes a part of primer binding regions in ad-
dition to the random region. In this way, CapR can include
the effect of the primer binding region on the secondary
structure in the analysis. RaptRanker uses user-defined pa-
rameters add forward primer and add reverse primer in ad-
dition to and separate from parameters for filtering (Sup-
plementary Tables S2 and S3).

Sequence profile is a (4 × unique sequence length) matrix
representing the nucleotide sequence information of each
unique sequence s(∈S). The sequence profile is computed
by converting the nucleotide sequence data into a one-hot
vector using a real value d ∈ R as A = [d, 0, 0, 0]T, G = [0,
d, 0, 0]T, C = [0, 0, d, 0]T, U = [0, 0, 0, d]T (Figure 3A). The
real value d is a user-defined parameter weight represent-
ing the weight of the sequence information in subsequent
clustering. If the value of d is large, the sequence informa-
tion becomes more emphasized than the secondary struc-
ture information, and therefore more strict matching of the
nucleotide sequences between entries is required to be clus-
tered together.

Secondary structure profile is a (6 × unique sequence
length) matrix representing the secondary structure infor-
mation of each unique sequence s(∈S). Secondary structure
profile is computed by converting the data obtained from
CapR (17) into a matrix (Figure 3A). CapR is a software
which calculates the probability of each base of RNA se-
quence being a part of a specific type of secondary struc-
ture. Secondary structure features predicted by CapR are
classified into six types (Bulge, Exterior, Hairpin, Internal,
Multibranch, Stem) (Figure 3B). Since the output of CapR
is a probability value, the sum of six rows in each column of
the secondary structure profile is 1.0.

Figure 4. Diagram of determination of sub-sequence-structure profile
(SSSP) in case of wide = 10. Each subsequence p(∈P) is indexed individ-
ually and contains the index information of the unique sequence it was
obtained from, its original position on the corresponding sequence, and
SSSP. In this example, the nucleotide sequence of p1 and p20 are identical
(‘CGUUCACACU’), but they are treated separately.

Determination of subsequences and computation of sub-
sequence-structure profiles (SSSPs)

Determination of subsequences. RaptRanker determines
the list of subsequences. Subsequences are determined by
cutting out a fragment from a unique sequence s(∈S), and
repeating this process, each time shifting the location of the
fragment by one base. Each subsequence is indexed indi-
vidually, and contains the index information of unique se-
quence it was obtained from. Each subsequence also con-
tains its original position on the corresponding sequence.
Even if the nucleotide sequences are identical, they are dis-
tinguished by this information and treated separately. Rap-
tRanker includes a user-defined parameter wide as window
length.

In the following, let P be the set of all subsequences, and
let p be a subsequence. In addition, let Ds be the set of sub-
sequences generated from unique sequence s. In this case,
∪s ∈ SDs = P holds. Also, since each subsequence p( ∈ P)
is treated separately, Ds ∩ Ds ′ = ∅ holds for any set of two
unique sequences s, s

′
( ∈ S).

Computation of sub-sequence-structure profiles (SSSPs).
For each subsequence p( ∈ P), RaptRanker computes sub-
sequence-structure profile (SSSP) representing nucleotide
sequence and secondary structure features of the subse-
quence by dividing SSPs into sub-profiles of a fixed length
(Figure 4).

Clustering subsequences

Enumeration of all similar subsequence pairs. RaptRanker
enumerates all similar subsequence pairs based on SSSP
similarity using SketchSort (29). SketchSort is a software
that can enumerate similar pairs in a large number of
high dimensional vectors rapidly and approximately. Rap-
tRanker converts each SSSP into a row vector to be pro-
vided as an input to SketchSort. SketchSort requires two
parameters; an upper limit of cosine distance between vec-
tors cosdist, and an upper limit of the expectation value for
false negatives missing ratio.
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Clustering of all subsequences. RaptRanker clusters all
subsequences by constructing a MSF from all similar subse-
quence pairs. MSF can be calculated efficiently by Kruskal’s
algorithm (31) and UnionFind (Appendix ‘Calculation of
Minimum Spanning Forest’ B).

Since each MST from MSF becomes a cluster, clusters do
not overlap each other in, i.e. a subsequence does not belong
to more than one cluster.

In the following, let C be the set of clusters, and let C be
a cluster. In this case, since each cluster C is a set of sub-
sequences and P is the set of all subsequences, ∪C∈CC = P
holds. Also, since clusters do not overlap each other, C∩C

′

= ∅ holds for any set of two clusters C, C′(∈ C).

Calculation of score

RaptRanker calculates average motif enrichment (AME),
a score for predicting binding affinity, for each unique se-
quence s(∈S) based on the clustering results through three
steps. (i) Calculation of subsequence frequency for each
subsequence p(∈P). (ii) Calculation of motif frequency and
motif enrichment for each cluster C(∈ C), and define motif
enrichment of each cluster C(∈ C) as the score of each sub-
sequence in that cluster p(∈C). (iii) Calculation of AME for
each unique sequence s(∈ S) based on motif enrichment of
subsequences p( ∈ Ds).

Calculation of subsequence frequency. Subsequence fre-
quency is calculated for each subsequence p(∈P) and for
each round. It is calculated by dividing the number of oc-
currences of each subsequence by the total number of occur-
rences of subsequences. Subsequence frequency of a subse-
quence p at round x is

subsequence frequencyx(p) = countx(p)∑
p′∈P countx(p′)

(1)

where countx(p) is the occurrence of the subsequence p at
round x.

Calculation of motif frequency and motif enrichment. Mo-
tif frequency is calculated for each cluster C(∈ C) and for
each round. Motif frequency is the sum of the subsequence
frequencies of subsequences in a cluster. Motif frequency of
a cluster C at round x is

motif frequencyx(C)

=
∑

p∈C

subsequence frequencyx(p). (2)

Then, RaptRanker calculates motif enrichment for each
cluster C(∈ C) and for each round. Motif enrichment is cal-
culated for a specific round by dividing the motif frequency
in that round by the motif frequency in the previous round.
Motif enrichment of a cluster C at round x is

motif enrichmentx(C) = motif frequencyx(C)
motif frequencyx−1(C)

(3)

for motif frequencyx−1(C) 	= 0 and round x is not the first
round; the score is undefined otherwise.

RaptRanker defines motif enrichment of each cluster C(∈
C) as the score of each subsequence in that cluster p( ∈ C).

motif enrichmentx(p) = motif enrichmentx(C) (4)

where p ∈ C.

Calculation of Average Motif Enrichment (AME). AME
is calculated for each unique sequence s( ∈ S) and for each
round. AME is the average of the motif enrichment values
of subsequences from a unique sequence. The AME of a
unique sequence s at round x is defined as

AMEx(s) =
∑

p∈Ds
motif enrichmentx(p)

|Ds | . (5)

The score is undefined for the first round.

Newly acquired experimental data in this study

Because the number of existing datasets is not sufficient
for evaluating our method, we performed two new HT-
SELEX experiments, and selected evaluation sequence sets
that include aptamers with low binding-affinity as deter-
mined by surface plasmon resonance (SPR) assay. The tar-
get molecules of HT-SELEX experiments were human re-
combinant transglutaminase 2 (TG2; Cat. No. 4376-TG)
and human recombinant integrin alpha V beta 3 (�V�3;
Cat. No. 3050-AV). In the following, we refer the data
from TG2 experiment as Data1, and the data from �V�3
experiment as Data2. The sequence data are available on
DRA009383 and DRA009384, and evaluation of sequence
sets in each dataset are shown in Supplementary Tables S4
and S5.

TG2 and �V�3 were purchased from R&D systems. Z-
Gln-Gly (Cat. No. C6154) and Hydroxylamine hydrochlo-
ride (Cat. No. 169417) were obtained from Sigma-Aldrich.
All other buffers and chemicals were of special grade.

HT-SELEX. Selection of aptamers was followed by
a previously-reported SELEX method (32) with some
modifications. The sequence of the first template for
Data1 and Data2 were 5′-TCACACTAGCACGCATAGG
--30N-- CATCTGACCTCTCTCCTGCTCCC-3′
and 5′-GAGGATCCATGTATGCGCACATA --40N-
- CTTCTGGTCGAAGTTCTCCC-3′, respectively. The
following primers were used. Data1-Forward, 5′-
TAATACGACTCACTATAGGGAGCAGGAGAGAGGTCAGATG-
3′; Data1-Reverse, 5′-TCACACTAGCACGCATAGG-3′;
Data2-Forward, 5′- CGGAATTCTAATACGACTCACT
ATAGGGAGAACTTCGACCAGAA-3′; Data2-Reverse, 5′-
GAGGATCCATGTATGCGCACATA-3′. The oligonucleotide
libraries containing 2′-fluoro-pyrimidine nucleotides were
prepared by transcription using a mutant T7 RNA poly-
merase. The binding buffer used for selection contained
145 mM NaCl, 5.4 mM KCl, 5 mM MgCl2, 0.05% Tween20,
and 20 mM Tris–HCl (pH 7.6). For Data2 SELEX, 1 mM
MnCl2 was used instead of MgCl2. The recombinant
proteins were immobilized on NHS-activated Sepharose
(17-0906-01, GE Healthcare) and bound nucleotides were
released with 6 M Urea. After selection, nucleotide pools
were sequenced using an Ion PGM Hi-Q View Sequencing
Kit (A30044, Thermo Fisher Scientific).
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Surface plasmon resonance (SPR) assay. The SPR assays
were performed essentially as described previously using the
Biacore T200 instrument (GE Healthcare) (32). Aptamers
were prepared in 16-merpoly(A)-tailed form by in vitro
transcription. A 5′-biotinylated dT16 oligomer was bound
to the surface of the streptavidin sensor chip (BR100531,
GE Healthcare) of active and reference flow cells. The
poly(A)-tailed RNA was immobilized to the active flow cell
by complementary hybridization to the dT16 oligomer. The
recombinant protein in the binding buffer was injected to
both flow cells of the sensor chip. Data was obtained by sub-
tracting the reference flow cell data from the active flow cell
data. Maximum response after injection was used for deter-
mination of true binding clone. Experimental parameters,
including material concentrations, flow rate, contact time,
and criteria of true binding clone were optimized for each
target (see Table 1). To regenerate the sensor chip, bound
material was completely removed by injecting 6 M urea.
The detailed results are shown in Supplementary Figures
S1a and S2c.

Transglutaminase assay. Inhibitory activities of aptamers
in Data1 was assessed by following procedures. Forty
microliter of reaction mixture comprising 200 ng TG2,
50 mM Z-Gln-Gly, 100 mM hydroxylamine, 10 mM DTT,
10 mM CaCl2, and different concentrations of aptamer (0–
1000 nM) in SELEX buffer was used in the assay. After in-
cubation at 37◦C for 3 h, 160 �l of assay reagent (370 mM
FeCl3, 200 mM trichloroacetate, 670 mM HCl) was added
and the solution was centrifuged for 2 min at 20 000 × g.
The supernatant was transferred to a microplate, and the
resulting color was measured at 525 nm. IC50 value was cal-
culated by XLfit.

RESULTS AND DISCUSSION

We used data from rounds 0 to 4 on Data1, and 3 to 6
on Data2 as input for analysis. Data1 comprises data from
rounds 0 to 8, but we did not include data from 5 to 8 in
the analysis because we confirmed that the sequences eval-
uated as False were significantly amplified those rounds (see
the Supplementary material, Section ‘Analysis with ROC
curves’, for the details).

In the following, we used the parameters (wide=10,
weight=0.5, cosdist=0.001, missing ratio=0.00001) on Rap-
tRanker for both data. Other data-specific parameters (re-
lated to filtering) are listed in Supplementary Tables S2 and
S3.

Comparison of performances for the identification of high
binding-affinity aptamer

To assess the performance of high binding-affinity aptamer
identification, we compared ‘True Positive Rate (TPR)
when False Positive Rate (FPR) is 0’ metrics of two HT-
SELEX datasets. This evaluation metrics corresponds to
the rise of the ROC curve, and it considers the practical use
that the binding-affinity is experimentally confirmed only
for high scoring sequences (details are on section ‘Evalu-
ation metrics of binding affinity prediction performance’).
Among the existing methods, Frequency and Enrichment

Table 1. Parameters of surface plasmon resonance (SPR) assay

Dataset Aptamer Recombinant Flow rate Contact Criteria for
(nM) protein (nM) (�l/min) time (s) True (RU)

Data1 300 300 20 60 >25
Data2 100 100 30 60 >25

Table 2. Result of the performance comparison for the identification of
high binding-affinity aptamers

Methods Data1 4R TPR Data2 6R TPR

RaptRanker 0.524 0.361
Enrichment 0.238 0.333
Frequency 0.143 0.194
MPBind 0.000 0.250

We compared the performance of high binding-affinity aptamers identify-
ing on two HT-SELEX datasets. The evaluation metrics is ‘True Positive
Rate (TPR) when False Positive Rate (FPR) is 0’. We compared at 4R and
6R, the last round of inputs for each dataset. For each dataset, the highest
values are shown in bold.

were re-implemented and calculated by RaptRanker (Ap-
pendix ‘Calculating of Frequency and Enrichment’D).

We compared each approach in the final round of
both datasets. RaptRanker showed the highest TPR in
both datasets. So, RaptRanker identified the high binding-
affinity aptamers with the highest performance among all
three methods tested (Table 2). Here, the result of MPBind
in Data1 was 0.0. MPBind is a method that can use control-
round (SELEX round without adding target molecules) in-
formation. However, in this case, control-round informa-
tion is not available in both data sets. This may be have
caused the low performance of MPBind.

Validation of the effectiveness of analyzing both sequence and
secondary structure

We validated the effectiveness of considering both nu-
cleotide sequence and secondary structure. We compared
binding-affinity prediction performances in a manner sim-
ilar to that explained in the previous section. We included
three types of analyses; first one is the analysis based on se-
quence similarity only, second one on secondary structure
similarity only, and the last one on both parameters.

For analyses relying on sequence similarity only, we cal-
culated Average K-mer Enrichment (AKE) in a similar way
we calculated Average Motif Enrichment (AME) based on
RaptRanker’s clustering (Appendix ‘Calculation of Average
K-mer Enrichment (AKE)’H); AKE is calculated based on
k-mer, which is a set of subsequences with matching nu-
cleotide sequences, while AME is calculated based on clus-
ter RaptRanker clusters. Here, we calculated AKE for 10-
mer because we set wide = 10 in RaptRanker.

As a method considering only secondary structure sim-
ilarity, we calculated AME with weight = 0.0. By setting
the parameter weight = 0.0, RaptRanker clusters the subse-
quences based on secondary structures similarity only. The
AME calculated based on this clustering can be regarded as
a score that predicts binding-affinity using secondary struc-
ture similarity only.

We evaluated the performances of each approach using
the data from the final rounds of both datasets. Data gen-
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Table 3. Result of validation of the effectiveness

Methods Data1 4R TPR Data2 6R TPR

Both 0.524 0.361
sequence only 0.333 0.361
structure only 0.524 0.250

We compared binding-affinity prediction performances in three types of
analyses; first one is the analysis based on sequence similarity only, sec-
ond one on secondary structure similarity only, and the last one on both
parameters. The evaluation metric was is ‘True Positive Rate (TPR) when
False Positive Rate (FPR) is 0’. We used data from rounds 4 and 6, the
last round data from Data1 and Data2, respectively. For each dataset, the
highest values are shown in bold.

Table 4. Truncated sequences

Dataset Truncated sequence

Data1 GGCAGAUGAACGAGAGAUGGUAGCC
Data2 GGGCUGUGUCUACGUCCGGAUUGGGGACCUGCACGG

erated by the method of analyzing similarities in both se-
quence and structural features showed the highest TPR in
both datasets (Table 3). In Data1, the analysis based on
‘structure similarity only’ and the analysis based on ‘both
similarities’ showed the same TPR values. In contrast, in
Data2, the analysis based on ‘sequence similarity only’ and
the analysis based on both similarities showed the same
TPR values. These results suggest that there are several
types of HT-SELEX data, and that both sequence simi-
larity and structure similarity should be considered in HT-
SELEX data analysis. These results also suggest that Rap-
tRanker is particularly useful in cases where the existing
methods based on sequence similarity only cannot provide
sufficient identification performance.

Prediction of binding motifs in identified sequences

We acquired the truncated sequences from both datasets,
and compared the truncated sequences with the binding
motifs predicted by RaptRanker.

Truncation of sequences. For both Data1 and Data2, we
generated several truncated forms of candidate aptamers
according to Transglutaminase assay and SPR assay (Sup-
plementary Figures S3 and S4). Minimal active sequences
were defined as 25 nt and 36 nt (Table 4). In addition, for
Data2, we synthesized a series of single nucleotide deletion
mutants of aptamers to predict binding motifs (Supplemen-
tary Figure S5). As a result, we estimated that ‘UACGU--
CUG’ is a binding motif .

Binding motif prediction with RaptRanker. The highest
scoring subsequence from the sequence identified by Rap-
tRanker can be regarded as the binding motif. Since Rap-
tRanker calculates motif enrichmentx(p) for each sub-
sequence p(∈Ds) from each unique sequence s(∈S), the
cluster C to which the highest scoring subsequence be-
longs p (the cluster C holds C�p where the p holds
maxp∈Ds motif enrichmentx(p)) can be regarded as the
binding motif of the unique sequence s. Here, we selected
the unique sequences with true binding-affinity (Table 5).

Table 5. The unique sequences for binding motif prediction

Dataset Sequence (random region only)

Data1 AACGAGAGAUGGUAGGCCUUUGAUGAUGCU
Data2 GCUGUGUCUACGUCCGGAUUGGGGACCUGCACGGCCCA

UG

We selected the unique sequences exhibiting true binding-affinity and con-
taining the binding motifs predicted by in vitro experiments.

Figure 5. We compared the truncated sequences and the binding motifs
predicted by RaptRanker. Black dots in truncated sequences show the nu-
cleotide sequences that are identical to binding motifs predicted with Rap-
tRanker. H, S, I and B indicate hairpin, stem, internal loop and bulge loop,
respectively (cf. Figure 3B).

Comparison of motifs predicted by RaptRanker with
experimentally-determined truncated sequences. We com-
pared the truncated sequences and the binding motifs pre-
dicted by RaptRanker. In both datasets, the binding motifs
predicted by RaptRanker were found to be parts of the trun-
cated sequences (Figure 5A and B). This result suggests that
RaptRanker can predict the essential subsequence in each
identified sequence. This information can be used for the
optimization of identified sequences.

In addition, for Data2, we compared experimentally-
determined motifs to the motifs predicted by RaptRanker,
and found them to be similar (Figure 5 A). However, short
and discontinuous motifs such as those shown in Figure 5
A may affect the binding-affinity prediction performance
of RaptRanker negatively because such discontinuous mo-
tifs are recognized as two different motifs in RaptRanker.
Moreover, short motifs are harder to detect when the ac-
tual motif length is shorter than the value of wide in Rap-
tRanker. Considering these shortcomings, it is conceivable
that the binding affinity prediction performance of Rap-
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Figure 6. (A) In the case of clustering subsequences from all rounds simultaneously, the clustering is not affected by differences among rounds even if
‘Subsequences from sequences not observed in some rounds’ are present. (B) In the case of clustering subsequences on each round, it is necessary to follow
individual clusters across rounds. In this case, cluster fragmentation or integration may occur between rounds.

Figure 7. Transition of motif frequency across rounds. In each subfigure, horizontal axis and vertical axis show round number and motif frequencies,
respectively. The motifs are predicted by RaptRanker. RaptRanker can track the transition of motif frequency by clustering subsequences from all rounds
simultaneously.

tRanker in Data2 did not improve as much as in Data1 due
to presence of discontinuous and short motifs.

Further discussion

Significance of clustering all subsequences simultaneously.
RaptRanker enables the computation of motif enrichment
by clustering all subsequences obtained in all rounds simul-
taneously. That is, RaptRanker takes advantage of data gen-
erated in multiple rounds of HT-SELEX by clustering all
subsequences at once.

In the case of clustering all subsequences at once, cluster-
ing is not affected differences among rounds even if ‘Sub-
sequences from sequences not observed in some rounds’
are present. RaptRanker determines all unique sequences
S from all rounds, and clusters all their subsequences P. In
this case, those subsequences only affect the calculation of
motif frequency and motif enrichment (Figure 6A).

In contrast, in the case of clustering subsequences on each
round, it is necessary to follow individual clusters through
rounds. Cluster fragmentation or integration may occur be-
tween rounds in some cases. Such events make cluster map-
ping and computation of motif enrichment difficult (Figure
6B).

Since RaptRanker clusters all subsequences from all
rounds simultaneously, it can track the transition of mo-

tif frequency and compute motif enrichment. As an exam-
ple, we visualized the transition of motif frequency for the
motifs shown in Figure 5A and B (Figure 7). The motif on
Data1 is not observed in rounds 0 to 2, but it was highly
enriched between rounds 3 and 4 (Figure 7A). In contrast,
the motif in Data2 was enriched smoothly between rounds
3 and 6 (Figure 7B).

Evaluation metrics of binding affinity prediction perfor-
mance. We used TPR when FPR is 0 as the metric for
evaluation of binding-affinity prediction performance. This
metric is based on the approach of ROC enrichment (33).
ROC enrichment is used for evaluation of protein-ligand
virtual screening and calculated by dividing TPR by FPR.
According to Jain and Nicholls, ROC enrichment should be
reported in four points of FPR = {0.5%, 1.0%, 2.0%, 5.0%}
(34). However, since there are few negative aptamers in both
datasets, the FPR is 7.1% (Data1) and 8.3% (Data2) when
False = 1. So, we used the TPR when FPR is 0 as an alter-
native metric.

Analysis with ROC curves. The analysis using ROC curve
is another way for evaluating binding affinity prediction
performance. For the data analysis in section ‘Compari-
son of performances for the identification of high binding-
affinity aptamer’, the ROC curves for data from rounds 0 to
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4 in Data1 are shown in Supplementary Figure S6 and the
ROC curves for Data2 are shown in Supplementary Figure
S7, respectively. ROC curves corresponding to analysis in
section ‘Validation of the effectiveness of analyzing both se-
quence and secondary structure’ are shown in Supplemen-
tary Figure S8. In addition, the ROC curves for data for
rounds 0 to 8 in Data1 are shown in Supplementary Figure
S9.

Here, ROC curves for data from rounds 0 to 3 in Data1
and round 3 in Data2 are not shown because they were not
informative. In these rounds, AME and Enrichment scores
were undefined because these scores calculate relative in-
crease of frequency compared to the previous round (Equa-
tion 5 and Equation S2) and in these instances either no pre-
vious round was present or the sequence was not observed
in the previous rounds (Supplementary Tables S6 and S7).
In other words, unless a sequence is observed in successive
rounds, AME and Enrichment scores are undefined and
the ROC curve is almost a diagonal line. For the same rea-
son, AME and Enrichment values for round 4 data in both
Data1 and Data 2 were undefined for some sequences (Sup-
plementary Figures S6a and S7a).

Besides, since the ROC curves obtained for analysis with
RaptRanker and all the existing methods were below the
diagonal line for data from rounds 5 to 8 in Data1, we
only used data from rounds 0 to 4 for analysis. We also
confirmed significant amplification of the unique sequences
whose binding-affinity is False data from rounds 5 to 8 in
Data1. Frequency, Enrichment, MPBind, and RaptRanker
take frequency information into account, so if the False se-
quences were amplified significantly in the experiment, they
are ranked higher. The amplification of the False sequences
in Data1, rounds 5–8 might be caused by some experimental
errors.

Compare sequence score definitions. As AME is defined as
the average motif enrichment of the subsequences from each
unique sequence, we can consider best motif enrichment
(BME) as the maximum value of motif enrichment. BME
of a unique sequence s at round x is

BMEx(s) = max
p∈Ds

motif enrichmentx(p). (6)

AME assesses the conservation of features over a wider
range, whereas BME assesses the conservation of features
locally. Since AME is the average, ‘unique sequences whose
nucleotide sequence and secondary structure are conserved
as a whole’ receive higher scores. In contrast, since BME
takes the maximum value, ‘unique sequences whose nu-
cleotide sequence and secondary are conserved in a specific
part’ receive higher scores.

We compared AME and BME for the data from the
final rounds in both datasets. AME showed higher TPR
than BME in Data1 (Table 6). The ROC curve is shown in
Supplementary Figure S10. These results indicate that the
dataset to be analysed highly influences the score obtained
by either AME or BME. However, AME is more convenient
than BME in identifying high-binding affinity sequences be-
cause multiple unique sequences that share the same high-
score motif have the same BME scores.

Table 6. Result of sequence score definitions comparisons

Methods
Data1 4R

TPR
Data2 6R

TPR

Average motif enrichment (AME) 0.524 0.361
Best motif enrichment (BME) 0.667 0.250

We compared AME and BME in for the data from the final rounds in
datasets. For each dataset, the highest values are shown in bold.

Effect of parameters. We examined the effects changing
the values of wide, weight and cosdist on the performance.
We used the parameters (wide = 10, weight = 0.5, cosdist =
0.001, missing ratio = 0.00001) on RaptRanker for both
data. and observed that wide, weight and cosdist greatly
affected the clustering result. Since the clustering of Rap-
tRanker uses SketchSort, which is an approximation algo-
rithm, we measured the TPR when FPR is 0 for each combi-
nation of parameters three times and calculated the average.

The parameters used in this study showed high TPR on
average for both datasets, and no significant change in the
results was observed when parameters were modified in a
range (Supplementary Tables S8 and S9).

Future works. RaptRanker calculates scores for each
round and each unique sequence. As a result, RaptRanker,
just like the existing methods, cannot detect bad rounds
(such as rounds 5–8 in Data1). Since RaptRanker uses data
from all rounds as the input, we are planning to realize iden-
tification of high binding-affinity aptamers in the presence
of bad rounds.

In the clustering method of RaptRanker, features of sub-
sequences are transformed into sub-sequence-structure pro-
files (SSSPs), which are clustered using SketchSort and
MSF. Since SSSPs need only a matrix of real values, vari-
ous extensions are possible. For example, RaptRanker can
identify DNA aptamers by using DNA secondary structure
prediction software instead of CapR. Alternatively, Rap-
tRanker can add new features like G-quadruplex (35) by
adding new rows to SSSPs. Generally, this clustering tech-
nique can be applied to identification of nucleic acid motifs
not only in aptamers but also in non-coding RNAs and/or
messenger RNAs. In particular, compared to general k-mer
analysis, it is more effective in searching long motifs.

In this study, conventional secondary structures were uti-
lized; however, by considering tertiary structures, which
play more important roles in target recognition, in the Rap-
tRanker algorithm, its accuracy could be improved. There
are many studies about tertiary structure predictions of
RNAs (36–38), and our future work includes the develop-
ment of an efficient method to incorporate tertiary structure
information into RaptRanker.

CONCLUSION

We developed RaptRanker, a novel in silico method for iden-
tifying high binding-affinity aptamers from HT-SELEX
data based on local sequence and structural information.
RaptRanker determines unique sequences by analyzing
data obtained in all HT-SELEX rounds, and clusters all
subsequences of unique sequences based on similarity in
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both nucleotide sequence and secondary structure features.
Then, RaptRanker identifies high binding-affinity aptamers
by calculating AME, which is a score for each unique se-
quence based on inclusion of clusters.

To evaluate the performance of RaptRanker in identify-
ing high binding-affinity aptamers, we performed two new
HT-SELEX experiments, and evaluated sequence sets that
include aptamers with low binding-affinity as detected by
surface plasmon resonance (SPR) assay. The sequence data
which includes the intermediate rounds and evaluation se-
quence sets are freely available, which will be useful in future
aptamer researches.

In both HT-SELEX datasets, RaptRanker showed the
best performance in identifying high binding-affinity se-
quences among all methods tested: Frequency, Enrichment,
and MPBind. Moreover, we confirmed the effectiveness of
including both nucleotide sequence and secondary structure
data in HT-SELEX analysis by examining the identifica-
tion accuracy of different approaches based on similarity
in (i) nucleotide sequence only, (i) secondary structure only,
or (iii) both parameters. In addition, we confirmed that
RaptRanker correctly predicts the essential subsequence in
each identified sequence. RaptRanker is particularly use-
ful when the existing methods analyzing sequence similarity
only cannot provide sufficient identification.

DATA AVAILABILITY

An implementation of the proposed method, Rap-
tRanker, is available on GitHub https://github.com/
hmdlab/RaptRanker.

The two newly acquired HT-SELEX data is available on
DRA009383 and DRA009384.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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