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Recent studies have identified certain non-coding RNAs (ncRNAs) as

biomarkers of disease progression. Glioma is the most common primary

intracranial cancer, with high mortality. Here, we developed a prognostic

signature for prediction of overall survival (OS) of glioma patients by ana-

lyzing ncRNA expression profiles. We downloaded gene expression profiles

of glioma patients along with their clinical information from the Gene

Expression Omnibus and extracted ncRNA expression profiles via a

microarray annotation file. Correlations between ncRNAs and glioma

patients’ OS were first evaluated through univariate Cox regression analysis

and a permutation test, followed by random survival forest analysis for

further screening of valuable ncRNA signatures. Prognostic signatures

could be established as a risk score formula by including ncRNA signature

expression values weighted by their estimated regression coefficients.

Patients could be divided into high risk and low risk subgroups by using

the median risk score as cutoff. As a result, glioma patients with a high

risk score tended to have shorter OS than those with low risk scores, which

was confirmed by analyzing another set of glioma patients in an indepen-

dent dataset. Additionally, gene set enrichment analysis showed significant

enrichment of cancer development-related biological processes and path-

ways. Our study may provide further insights into the evaluation of glioma

patients’ prognosis.

Glioma is the most prevalent primary brain malignant

tumor. The tumor originates from the glial cells and

develops into a heterogeneous tumor in the central

nervous system (CNS) [1,2]. Gliomas can be divided

into four different grades according to their severity

defined by the World Health Organization, with grades

I and II, pilocytic astrocytoma and diffuse astrocy-

toma, constituting low-grade gliomas, and grades III

and IV, anaplastic astrocytoma and glioblastoma, con-

stituting high-grade gliomas [3,4]. The occurrence rate

of gliomas was 6–7 cases per 100 000 worldwide, and

60% of gliomas in adults were anaplastic astrocytoma

and glioblastoma malignant tumors. The average

overall survival (OS) of these patients was less than

15–20 months [5–7]. Although significant advances

have been achieved in diagnostic and therapeutic

methods, the elevated incidence of glioma requires that

more attention be paid to early diagnosis and progno-

sis supervision [6]. To improve the diagnostic accuracy

and meaningful survival, histopathological features of

Abbreviations

CNS, central nervous system; EGFR, epidermal growth factor receptor; GEO, Gene Expression Omnibus; GO, gene ontology; GSEA, gene

set enrichment analysis; HR, hazard ratio; KEGG, Kyoto Encyclopedia of Genes and Genomes; MGMT, O6-methylguanin-DNA

methyltransferase; ncRNA, non-coding RNA; OS, overall survival; PON2, paraoxonase 2; qRT-PCR, quantitative real-time PCR; USP46,

ubiquitin specific peptidase 46.

682 FEBS Open Bio 9 (2019) 682–692 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

mailto:


glioma patients can be investigated to illustrate glioma

pathogenesis.

As an authentic reflection of body characteristics,

biomarkers can be measured easily and their changes

in vivo can provide disease information for early devel-

opment and prognosis and even the grades and subtypes

differentiating cancers [8–12]. Some glioma biomarkers

have been found to have significant functions. Genome-

wide sequencing in glioblastoma patients revealed a

mutation of the IDH gene that was more prevalent in

patients with secondary glioblastoma, and which can be

regarded as a potential biomarker to predict glioblas-

toma development [13,14]. Adachi-Hayama et al. [15]

reported that the level of anti-filamin C antibody in low-

grade glioma was significantly higher than in high-grade

glioma patients and healthy control, suggesting that the

anti-filamin C antibody could be regarded as a potential

serum biomarker for the early diagnosis of different

grades of glioma. Circulating microRNAs were also

studied for their potential diagnostic role for glioma.

Aberrant serum miR-451 levels in glioma patients were

observed, and down-regulation of miR-451 was tightly

associated with a lower survival rate in glioblastoma

patients, suggested that miR-451 could act as a poten-

tial circulating indicator for the prognosis of glioma

patients [16].

Considering the complex heterogeneous nature and

transitivity of cancer, a single biomarker is not

enough, owing to insufficient sensitivity and specificity,

for early diagnosis and accurate prediction of progno-

sis, and additional biomarkers should therefore be fur-

ther explored. Non-coding RNAs (ncRNAs) are a type

of functional RNA without a protein-coding role that

can regulate biochemical processes in vivo [17]. Accu-

mulated evidence has shown that ncRNAs play an

important role in cancer development, progression and

metastasis [18–21], and they have been proposed as

promising diagnostic and prognostic biomarkers in

cancer [22–26]. It has been revealed that the abnormal

expression of ncRNA appears to be involved in CNS

cancers such as glioblastoma tumors, and such

ncRNAs include HOTAIR [27], MALAT1 [28] and

HIF1A-AS2 [29]. Although an immune-related long

non-coding RNA has been used as an independent

prognostic marker [30], the clinical implication of

ncRNA signatures for glioma patients requires further

research.

In this study, genome-wide expression profiles based

on a gene microarray of 80 glioma samples were

obtained from the Gene Expression Omnibus (GEO),

and the expression profiles of ncRNAs were extracted

and analyzed for their associations with glioma OS.

Besides this, random survival forest analysis identified

a prognostic signature that is the weighted composi-

tion of expression values of three ncRNAs, namely

LOC441179, PON2 and USP46-AS1, that could accu-

rately separate glioma samples with longer OS from

those with shorter OS. This study should be helpful

for prediction of glioma prognosis of specific patients

and selection of a suitable therapeutic method.

Materials and methods

Study population

Glioma patients’ gene expression profiles along with their

clinical information in this study were obtained from the

GEO. GSE7696 [31], which contains 80 glioma samples

and four normal controls, was used as the training set for

assessment of associations between ncRNA and patients’

OS. Further, we downloaded another dataset, GSE43378

[32], which is composed of 50 glioma samples, as the vali-

dation set. Both the datasets were profiled based on the

Affymetrix HG-U133 Plus 2.0 Array (Affymetrix, Wal-

tham, MA USA).

Dataset preprocessing

Raw CEL files were imported into R programming soft-

ware, and background correction and normalization were

performed by using the AFFY bioconductor package [33].

Only probes that were annotated as ‘non-coding’ were

retained, and average expression values were adopted for

ncRNAs that were annotated by multi probes, which gener-

ated a total of 10 641 probes that annotated 8567 ncRNAs.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed by

using GSEA version 3 software [34]. We used

‘C5.All.v6.1.symbols.gmt’ and ‘C2.CP.v6.1.symbols.gmt’ as

gene sets, which represent canonical gene ontology (GO)

terms and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways, respectively. The numbers of permuta-

tion was set to 1000, and permutation P < 0.05 was consid-

ered as statistically significant. The EnrichmentMap plug-in

of CYTOSCAPE software [35,36] was then applied for visual-

ization of significantly enriched functions.

RNA extraction and qRT-PCR

Quantitative real-time PCR (qRT-PCR) was used to exam-

ine the expression of LOC441179, PON2 and USP46-AS1

in glioma cells. Total RNAs were extracted from the

glioma cells and control cells with TRIzol reagent

(TaKaRa, Dalian, China) according to the manufacturer’s

instructions. cDNA synthesis was performed with Prime-

ScriptTM RT reagent Kit with gDNA Eraser (TaKaRa)
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according to the manufacturer’s instructions. The primers

specific of each ncRNA were designed using the PRIMER

PREMIER 5.0 program (PREMIER Biosoft, Palo Alto, CA,

USA) according to the sequences obtained from NCBI

(Table 1). The b-actin gene was chosen as the reference for

internal standardization. The qRT-PCR amplification was

performed on an ABI 7500 real-time PCR system (Applied

Biosystems, Waltham, MA, USA) at 95 °C for 10 s, fol-

lowed by 40 cycles of 95 °C for 5 s, 60 °C for 15 s, 72 °C
for 35 s. Reaction of each sample was performed in triplicate.

At the end of each reaction, dissociation analysis was per-

formed to confirm the amplification specificity. The expres-

sion levels of LOC441179, PON2 and USP46-AS1 relative to

that of the b-actin gene in glioma cells and control cells were

calculated by the comparative CT method (2�DDCT ).

Statistical analysis

Associations between ncRNAs and glioma patients’ OS

were assessed by using univariate Cox regression analysis

along with a permutation test. The RSF method was then

applied for further screening of valuable ncRNA signatures

with the RANDOMFOREST R package. A prognostic signature

could be established by including valuable ncRNAs’ expres-

sion values weighted by their multivariate Cox regression

coefficients. Patients were divided into low risk and high

risk subgroups according to the median risk score that was

obtained based on the prognostic signature. The Kaplan–
Meier method along with the log-rank test was adopted for

evaluation of differences in OS between patients with low

risk and high risk score. All of the statistical analysis was

conducted through R version 3.4.3 with P < 0.05 considered

as statistically significant.

Results

ncRNA signatures

Figure 1 illustrates the workflow for identification and

evaluation of a prognostic signature. As shown, glioma

patients in the training set, i.e. GSE7696, were ran-

domly divided into two groups, and both of them were

used for identifying ncRNAs significantly associated

with glioma OS. As a result, a total of 374 and 519

ncRNAs were found to be significantly related to

glioma OS by univariate Cox regression analysis in the

two groups. We found 24 overlaps between the two

lists of ncRNAs, and three ncRNA signatures, namely

USP46-AS1, PON2 and LOC441179, as shown in

Table 2, remained after subjecting the 24 overlaps to

the random survival forest model and were used for

the establishment of a prognostic signature. Of those

three ncRNAs, a higher expression value of

LOC441179 (Fig. 2A) and PON2 (Fig. 2B) indicated

shorter glioma OS, which corresponded to their posi-

tive estimated coefficients, while patients with a higher

USP46-AS1 (Fig. 2C) expression value tended to have

longer OS, which was consistent with its negative esti-

mated coefficient.

Prognostic signature

We established the prognostic signature as a risk score

formula by subjecting the three ncRNA expression val-

ues to multivariate Cox regression analysis in the

training set as follows: risk score = �3.1563 9 expres-

sion level of USP46-AS1 + 0.3846 9 expression level

of PON2 + 0.4144 9 expression level of LOC441179.

The risk score of samples in the training set was calcu-

lated and ranked in ascending order. Figure 3A shows

the distribution of the risk score. Figure 3B illustrated

that patients with lower risk score have better OS than

those with higher risk score. Expression values of both

PON2 and LOC441179 were higher in patients with

high risk score than in those with low risk score, while

patients with high risk score tended to express a low

USP46-AS1 level (Fig. 3C).

Stratification analysis

Glioma patients in the training set as well as in the vali-

dation set were classified into high-risk and low-risk

subgroups by using their median risk scores as cutoff.

We used the Kaplan–Meier method along with the log-

rank test to assess differences in OS between high and

low risk score. As a result, patients with a high risk

score tend to have shorter OS time than those with a

Table 1. Primers used for real-time PCR analysis.

LncRNAs Primers (50–30) Amplicon size (bp)

LOC441179 50-GCATAGCCCTACTTCTCCAAACCAC-30 179

50-TGTTCTCATTTCTTCTTTTGACCTC-30

PON2 50-TCCAAATGAAGTTAAAGTGGTAGCA-30 169

50-ATCCAGCTCAAGTACCTTCAACTGA-30

USP46-AS1 50-CATTTGATTCCCTGCCTCTTTCTAT-30 214

50-AACATTTCGGTAAGTCATCTGGGCA-30
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low risk score in the training set as shown in Fig. 4A.

Additionally, analysis of glioma patients in the valida-

tion set also confirmed this result (Fig. 4B), which

should support the reliability of the prognostic signa-

ture in glioma patient OS prediction. Further, we down-

loaded the expression profiles of The Cancer Genome

Atlas GBM project along with their clinical information

and tested the performance of the risk score in predict-

ing their OS. As a result, a total of 153 glioma patients

out of 617 samples were found to be with expression

value and complete clinical information. As expected,

the 76 samples with higher risk score had poorer

Fig. 1. Workflow of the study.

Table 2. Gene signatures obtained through RSF method. CI, confidence interval.

Gene symbol Alignment Hazard ratio 95% CI P

USP46-AS1 chr4:53527057–53527665 1.32 0.0022–0.8097 0.0321

PON2 chr4:1160722–1166597 0.81 0.3001–1.5439 0.0042

LOC441179 chr6:168198474–168198927 0.76 0.9303–2.4619 0.0018
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prognosis than those with lower risk score (P = 0.043,

hazard ratio (HR) = 0.832, Fig. S1).

To test whether differences exist in patients’ clinical

and pathological characteristics between the high-risk

and low-risk groups, we compared their age, gender,

treatment and O6-methylguanin-DNA methyltrans-

ferase (MGMT) status. None of these characteristics

was significantly different (age: P = 0.731, t-test; gen-

der: P = 1; treatment: P = 0.627; MGMT status:

P = 0.311, chi-square test). With multivariate analysis

when taking age, gender, treatment and MGMT status

into consideration along with risk score, treatment was

shown to have a significant influence on the risk score

prediction power (P = 2.0 9 10�6). Therefore it would

be better to take the treatment status or method into

consideration when available in glioma OS prediction.

Gene set enrichment analysis

Glioma samples in the training set were grouped by

their risk score by using median risk score as the cut-

off, and their gene expression profiles were imported

into GSEA software for screening biological processes

and pathways associated with the prognostic signature.

Figure 5A illustrates the visualization of significantly

enriched biological processes that grouped by their

related genes. Significantly up-regulated pathways in

samples with high risk score are shown in Fig. 5B. Sig-

nificant enrichment of cancer-related processes or

pathways could be observed, such as p53 signaling

pathway, cell mortality, cell cycle and so on.

Expression of LOC441179, PON2 and USP46-AS1

in glioma cells

qRT-PCR was performed to investigate the expression

of LOC441179, PON2 and USP46-AS1 in glioma cells

compared to control cells. As shown in the Fig. 6, the

relative expression of LOC441179 and PON2 in

glioma cells was significantly higher than in control

cells (P < 0.05). However, the relative expression of

USP46-AS1 in glioma cells was markedly decreased

compared to the control cells (P < 0.05).

Discussion

As the most frequent primary malignant tumor in the

CNS, glioma causes abundant mortality in children

and adults throughout the world. Traditional surgical

treatment and chemoradiotherapy are difficult to con-

duct because of diffuse brain infiltration [37], and early

diagnosis is also difficult to achieve. In this study, we

analyzed ncRNA expression profiles of 80 glioma sam-

ples from GEO and identified a ncRNA-based prog-

nostic signature composed of the weighted expressions

of USP46-AS1, PON2 and LOC441179; based on this,

glioma samples could be divided into high- and low-

risk groups with significantly different OS. Kaplan–
Meier analysis indicated that the patients with lower

expression of LOC441179 and PON2 had a higher sur-

vival rate than patients with higher expression of

LOC441179 and PON2; on the contrary, the down-

regulated expression of USP46-AS1 was significantly

associated with a higher survival rate. Paraoxonase 2

(PON2) is an intracellular protein that belongs to the

endogenous free-radical scavenging enzyme system

[38]. In agreement with our finding, overexpression of

PON2 is observed in solid cancers derived from liver,

prostate, kidney, pancreas and thymus [39]. The

glioma cell line GBM expressed a higher PON2 pro-

tein level compared with normal brain tissue, provid-

ing support for the importance of PON2 for cancer

cell survival. Ubiquitin specific peptidase 46 (USP46)

belongs to a large family of cysteine proteases that

function as deubiquitinating enzymes and are highly

expressed in brain [40].

Fig. 2. Kaplan–Meier curve analysis of glioma patients’ OS stratified by the expression values of LOC441179, PON2 and USP46-AS1.
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Survival rate is an important indicator of prognosis

after treatment, and the significant association of sur-

vival rate with the expression levels of USP46-AS1,

PON2 and LOC441179 suggests that those three

ncRNAs should be important indicators for prognosis

prediction for glioma patients. Functional studies of

ncRNAs are comparatively scant. Previous studies

have demonstrated that prognostic ncRNAs tend to be

clustered significantly in immune-related GO biological

processes and four KEGG biological pathways [41].

Therefore, we performed a comprehensive functional

study for the feasibility of diagnostic or prognostic

roles of ncRNAs in gliomas.

Through GO enrichment analysis of differentially

expressed ncRNAs, three related physiological pro-

cesses were obtained, involving mRNA processing,

gene expression regulation, and cell adhesion and

stress response. Up-regulation of ncRNAs was fre-

quently observed in the mRNA processing and gene

expression regulation processes, which indicated that

many ncRNAs may act as post-transcriptional regula-

tors participating in mRNA processing and protein

Fig. 3. Distribution of risk score, OS and

expression profiles of the three ncRNA

signatures in the training set.

(A) Distribution of glioma patients’ risk

score. (B) Distribution of OS time and

status of glioma patients. (C) Heatmap

representing expression profiles of the

three ncRNA signatures in glioma patient

samples with rows and columns

representing ncRNA and samples,

respectively. Black dashed line indicates

the median risk score.

687FEBS Open Bio 9 (2019) 682–692 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

J. Xian et al. ncRNA prognostic signature for glioma



expression processes, such as pre-mRNA splicing,

mRNA turnover and mRNA translation in glioma

[42]. Cell adhesion is an important process in tumor

cell migration and invasion, and decreased cell adhe-

sion promotes tumor cell migration. During invasion,

cell adhesion is necessary for tumor cells to interact

with the extracellular matrix [43,44]. Down-regulated

ncRNAs in the process of cell adhesion may affect the

cell adhesive force, and thereby promote the invasion

and migration of glioma cells.

KEGG pathway enrichment analysis of the differen-

tially expressed ncRNAs was conducted in the high- and

low-risk groups, and five significantly enriched path-

ways were obtained in the high-risk group, including

glioma, the p53 signaling pathway, ubiquitin-mediated

proteolysis, cell cycle and chronic myeloid leukemia.

The p53 signaling pathway plays an important role in

tumorigenesis. Lin et al. [45] reported that p53 expres-

sion was positively correlated with brain glioma, and an

elevated expression of p53 was observed in high-grade

compared with low-grade glioma. A meta-analysis of

the expression and prognostic significance of glioma

patients conducted by Jin et al. [46] reported that p53

positively correlated with the glioma grades and signifi-

cantly associated with 1-, 3- and 5-year OS. This sug-

gested a tight correlation of the p53 signaling pathway

with the grading and prognosis of glioma. The ubiqui-

tin–proteasome system functions in the degradation of

damaged proteins in cells [47]. Epidermal growth factor

receptor (EGFR) gene mutations are positively corre-

lated with glioblastoma, and Schmidt et al. [48] reported

that ubiquitin-mediated protease degradation of mutant

EGFR prevented the recycling of EGFR back to the cell

surface. Eukaryotic elongation factor-2 (eEF-2) kinase

was found to be overexpressed in glioma cells and could

promote protein translation and cell proliferation, and

the ubiquitin–proteasome system could regulate the crit-

ical expression of genes for cell survival and prolifera-

tion by eEF-2 kinase degradation [49]. The cell cycle is

tightly regulated by various signaling pathways in mam-

malian cells, and disorder of the cell cycle leads to the

continuous activation of cell proliferation in many

malignant tumors, included glioma [50]. Abundant stud-

ies showed that miRNAs could regulate the cell cycle

through interacting with the target genes in glioma.

Dong et al. reported that overexpressed miR-21 pro-

moted the tumor progression of gliomas through

inhibiting the expression of p53 in tumor cells, and

down-regulated miR-21 led to proliferation repression

and cell cycle arrest in glioma cells [51]. In addition,

miRNA-128 could influence the stability of the cyclin-

dependent kinase 1–cyclin B complex by targeting pro-

tein WEE1 to regulate the G2/M transition in malignant

glioma [52,53]. KEGG pathway analysis also indicated

the association of chronic myeloid leukemia and glioma,

and this was in accordance with previous research show-

ing that somatic non-synonymous coding mutations in

patients with myeloid cell leukemia-1 could accelerate

the progression of glioma by enhancing the stability of

tumor cells [54].

In summary, as glioma is the most prevalent tumor

in the CNS, exploration of new diagnostic methods

Fig. 4. Kaplan–Meier curve analysis of glioma patients’ OS stratified by risk score in the training and validation sets.
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and useful biomarkers is urgently needed. In this

study, we explored the association between ncRNA

expression and glioma OS, and obtained a prognostic

signature containing three ncRNAs, including USP46-

AS1, PON2 and LOC441179, based on which we

could accurately separate glioma patients with better

prognosis from those with a worse prognosis. This

should be helpful for the selection of suitable treat-

ments and improvement in prognosis of glioma

patients.

Fig. 5. Gene set enrichment analysis of gene expression profiles in the training set with samples stratified by their risk scores.

(A) Visualization of significantly enriched biological process terms that grouped in terms of their shared genes. Blue and red node indicates

down- and up-regulated terms in samples with high risk score, respectively, and edge indicates at least one shared gene between two

terms. (B) Significantly up-regulated KEGG pathways in glioma samples with high risk score.
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Meier survival analysis along with log-rank test was

applied for comparing overall survival between the
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