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Abstract

Background: Dengue (DEN) is a serious cause of mortality and morbidity in the world including
Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is
Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV) that evolves
rapidly increasing its variability due to the absence of a repair mechanism that leads to
approximately one mutational event per genome replication; which results in enhancement of viral
adaptation, including the escape from host immune responses. Additionally, recombination may
play a role in driving the evolution of DENV, which may potentially affect virulence and cause host
tropism changes. Recombination in DENV has not been described in Mexican strains, neither has
been described the relevance in virus evolution in an endemic state such as Oaxaca where the four
serotypes of DENYV are circulating.

Results: To study whether there are isolates from Oaxaca having recombination, we obtained the
sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6,
one clone of the C(g))-prM-E-NS1 499 structural genes, and 10 clones of the E gene from the isolate
MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with
two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05
isolates sequenced in this study were recombinant viruses that incorporate the genome sequence
from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely
MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence
from the American genotype.

Conclusions: This is the first report of recombination in DENV-2 in Mexico. Given such a
recombinant activity new genomic combinations were produced, this could play a significant role
in the DENV evolution and must be considered as a potentially important mechanism generating
genetic variation in this virus with serious implications for the vaccines and drugs formulation as
occurs for other viruses like poliovirus, influenza and HIV.
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Background

DEN is a serious cause of mortality and morbidity in the
tropical and subtropical regions that infects fifty million
people every year; approximately 500,000 of them are
hospitalized and 5% to 15% of them die, which is a dra-
matic data [1]. Positive-sense RNA viruses evolve rapidly,
[2-4] allowing the virus population to quickly adapt to
new environments and escape from host anti-viral
responses. One of the principal causes of genetic diversity
in DENV is the error-prone replication with RNA-depend-
ent RNA polymerase (RdRp), [5] so that one genomic
mutation occurs in nearly every cycle of virus replication.
RNA virus, such as DENV populations at a particular
region, may also rapidly change due to periodic selective
sweeps|6], by the introduction of foreign strains of virus
[7-9,2], and due to intra-serotypic recombination [10-14].
However, there has been considerable debate about
whether recombination occurs in DENV [15] and the rel-
evance of any recombination to the development of live-
attenuated flavivirus vaccines [16,17]. Besides, there is a
number of reasons for believing that recombination can
occur in DENV and this process is being described with
increasing frequency in DENV-1 [13,18] and other mem-
bers of the family Flaviviridae [19-22]. The recombination
in DENV was reported in the structural genes region and
particularly in E gene sequence through the use of the
BOOTSCAN, DIVERSE PLOTS, and LARD software [14].

The co-circulation of multiple DENV populations
increases the opportunities for a mosquito vector to ingest
several variants by feeding on a number of diverse infected
hosts, or for a host to be infected by vectors infected with
distinct DENV variants. These conditions exist in Mexico,
the Caribbean Area and South-East Asia [23]. This is sup-
ported by the fact that there are many reports of multiple
serotypes of DENV from single hosts [3,23-25]. Further-
more, it is likely that mixed infections with different gen-
otypes of the same serotype may also occur where they co-
circulate [26,27].

Oaxaca, Mexico is one of the states where DENV is
endemic and serotypes -1, -2 and -3 of DENV are co-circu-
lating [23]. DENV-2 was reported as the serotype with
higher frequency compared with DENV-1, -3 or -4. Six
partial sequences of the genes encoding proteins: capsid
(C), pre-membrane-membrane (prM-M), envelop (E),
and non-structural 1 (NS1) represented as Cy;)-prM-E-
NS1 5400y from six different isolates of DENV-2 from the
Oaxaca outbreaks 2005-2006 were obtained. In addition,
the RT-PCR products of C(g;)-prM-E-NS1,49)and E genes
obtained from the MEX_OAX_1656_05 isolate were
cloned and sequenced.

MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates
displayed recombination in the prM-E and E-NS1 genes
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and the parental strains were the Asian/American and
Cosmopolitan genotypes. In addition, the E gene
sequences from the clone 7 (MEX_OAX_1656_05_C07)
showed recombination between the nucleotides 906 to
1047 and the parental strains were Asian/American and
American genotypes.

Results

To determine recombinant sequences in DENV-2, the
nucleotide sequences of the partial C4;)-prM-E-NS1 5440,
genome from six isolates and 90 representative sequences
of the different genotypes were aligned and analyzed by
RDP3 and GARD. In addition, the RT-PCR product of the
partial ~ C(g;)-prM-E-NS1 40y genome from  the
MEX_OAX_1656_05 isolate was cloned in pGEM-3Z. The
sequences of 9 clones were aligned with all of the above
sequences (Figure 1A). We also sequenced 10 clones of
the E structural gene from the isolate MEX_OAX_1656_05
and aligned with 180 representative sequences containing
different genotypes by the programs mentioned above
(Figure 1B).

The first task in this phylogenetic analysis was to deter-
mine the best model of nucleotide substitution for DENV-
2 virus sequence evolution. This assignment was under-
taken using the Model Selection test from DataMonkey
online server [28,29], which compares 201 models of
DNA substitution. Our results demonstrated that the best
model was TrN93 [30]. Accordingly, the most complex
general time-reversible value was the best fit to the data
(relative substitution rates of A«>C = 0.057, A&G = 1,
AT = 0.057, CoG = 0.057, CoT = 1, and GoT =
0.057); the Ln likelihood = -4550.59; parameter count =
38; and AIC = 9177.19. Finally, the estimated base com-
position was A = 0.340, C = 0.278, G = 0.225, and T =
0.157.

Our analysis with RDP3 showed that the sequences of iso-
late MEX _OAX_1038_05 and MEX_OAX 1656_05
present statistical evidence of recombinants for GENE-
COV (P-Val = 2.467 x 10-2), BOOTSCAN (P-Val = 4.289 x
10-5), MAXCHI (P-Val = 1.438 x 10-5), CHIMERA (P-Val =
3.790 x 10-3), SISCAN (P-Val = 1.108 x 10-), and 3SEQ
(P-Val = 4.478 x 104), in two regions (Figure 2): the first
breakpoints were located in 499nt and 512nt respectively;
the second breakpoints were located in 868nt and 826nt
respectively, and the third breakpoint was located in
2239nt in both recombinants (Figure 2A, 2B respectively).
In addition, the analysis with GARD confirmed the break-
points and recombination data for maximum likelihood.
This analysis displayed the same site for the three break-
points in both isolates: the first, second and third break-
points were located in the nucleotides 498, 828 and 2226,
respectively (Figure 2C). The recombinant regions were
the intersection of prM-M structural gene to intersection
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Experimental strategy. A) The flow chart shows the experimental strategy that we followed to detect the recombinants in
DENV-2 isolates. The C(c,,)-prM-E-NS | (2400) region from the MEX_OAX_14946_06; MEX_OAX_1020_06;
MEX_OAX_739_05; MEX_OAX_1733_05; MEX_OAX_1038_05 and MEX_OAX_1656_05 isolates and the clone
MEX_OAX_1656_05 were amplified and sequenced. All sequences were analyzed with RDP3 and GARD software to detect
the recombinants. The analysis in silico displayed the recombinants and one parental strain. B) The E protein gene from
MEX_OAX_1656_05 was cloned in TOPO TAV4 to detect possible recombinants and/or the parental sequences. One paren-

tal sequence was detected in addition to one recombinant.

of M-E structural genes and the second recombinant
region started in the intersection of E-NS1 genes (Figure
2D). Interestingly, we found that the parental major strain
was the non-recombinant clone MEX_OAX_1656_05_
C241 (obtained from the MEX_OAX_1656_05 isolate)
and the minor parental strain was the Cosmopolitan gen-
otype strain INDI_GWL_102_01 (accession number
DQ448235).

The ML tree constructed with our sequence of structural
gene C-prtM from nucleotide 1-497 from the
MEX_OAX_1038_05 and MEX_OAX 1656_05 isolates
clustered with the Asian/American genotype (Figure 3A);
the analysis of the region from nucleotides 498-828 of the
isolates MEX_OAX_1038_05 and MEX OAX 1656_05
moved to the Cosmopolitan genotype (Figure 3B) and
when the region from the nucleotides 828-2222 was ana-
lyzed the two strains clustered again with the Asian/Amer-
ican genotype (Figure 3C). Finally, when the region
corresponding to nucleotides 2223-2310 was analyzed

the isolates clustered with the Cosmopolitan genotype
(Figure 3D).

To determine the nucleotides involved in these recom-
binants, the C4;)-prM-E-NS1 ,,4,) sequences of the clone
MEX_OAX_1656_05_C241, recombinants sequences
MEX_OAX_1038_05, MEX_OAX_1656_05 and the Cos-
mopolitan strain INDI_GWL_102_01 were analyzed. The
changes in the recombinant isolates are labeled with a
black dot (Figure 4). This analysis showed no evidence of
recombination in the recombinant strain
MEX_OAX_1656_05.

Like other RNA viruses, DENV undergoes low fidelity rep-
lication [31], resulting in virus pools of mutants. There-
fore, to determine if one of the parental strains and/or a
recombinant sequence is present in these pools, the RT-
PCR product of the E protein gene from the recombinant
strain, MEX_OAX_1656_05 was cloned and analyzed
(Figure 1B). We obtained 10 E protein gene clones that
were studied using the RDP3 software and it was deter-
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Figure 2

Recombination plots of structural gene regions from MEX_OAX_1038_05 and MEX_OAX_1656_05 sequences.
A) BOOTSCAN plot analysis of the Cq)-prM-E-NS| ;44 gene sequences from the MEX_OAX_1038_05 isolate and the
parental strains INDI_GWL102_01 and MEX_OAX_1656_05_C241. The first breakpoint is located in the nucleotide 499, the
second breakpoint is located in the nucleotide 868 and the third breakpoint is located in the nucleotide 2239; B) BOOTSCAN
plot analysis of the Cq,,-prM-E-NSI 400 gene sequences from the MEX_OAX_1656_05 isolate and the parental strains
INDI_GWLI102_01 and MEX_OAX_1656_05_C241. The first breakpoint is located in the nucleotide 512; the second break-
point is located in the nucleotide 826 and the third breakpoint is located in the nucleotide 2239; C) The breakpoint plots of
sequences of isolates MEX_OAX_1038_05 and MEX_OAX_1656_05 determined by GARD displayed the first breakpoint in
the nucleotide 498, the second breakpoint in the nucleotide 828nt and the third breakpoint in the nucleotide 2226; D) Repre-
sentation of recombinant regions in the genome of DENV. The nucleotide number is determined for the first nucleotide of our
sequence corresponding to the nucleotide 91 starting with the coding region in the C gene.
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mined that the sequence of clone
MEX_OAX_1656_05_C07 presents statistical evidence of
recombination by GENECOV (P-Val = 7.356 x 107),
BOOTSCAN (P-Val = 1.378 x 105), MAXCHI (P-Val =
1.764 x 103), CHIMERA (P-Val = 1.392 x 10-4) and 3SEQ
(P-Val = 4.478 x 104). The E protein gene of said clones
contains two breakpoints. The first breakpoint was
located in the nucleotide 906 of the coding region for pro-
tein E; the second breakpoint was located in the nucle-
otide 1047 of the same gene (Figure 5A, Figure 6). GARD
analysis confirmed that this clone is recombinant display-
ing the first breakpoint in the nucleotide 906 and the sec-
ond breakpoint in the nucleotide1047 (Figure 5B). The
constructed ML trees showed that the
MEX_OAX_1656_05_C07 clone clustered in the Asian/
American genotype branch when the 1-905 E gene region
was examined, and clustered in the American genotype
when the E gene region from nucleotide 906 to1047 was
analyzed (Figure 5C). Finally, when region 1048-1485
was analyzed, the clone clustered again with the Asian/
American strains.

The nucleotides involved in this recombinant are dis-
played in the alignment of the E gene region sequences of
the recombinant MEX_OAX_1656_05_C07 clone, the
parental clone MEX_OAX_1656_05_C17 and the strain
MEX_95 (Figure 6).

Discussion

Mutation rate studies indicate that DENV genome aver-
ages 1 nucleotide change per cycle of virus replication [32]
because of the lack of proofreading activity. Another
means to generate genetic changes is through recombina-
tion that has been reported in different Flaviviruses,
including hepatitis C virus (HCV), diarrhea bovine virus
(DBV), DENV, Japanese encephalitis virus (JEV), and
Saint Louis encephalitis virus (SLEV) [14,16,21]. Recently,
some evidences have showed recombination in natural
populations of DENV-1 -2, -3 and -4 [13,14,25,33] and
the incorporation of this recombination as a probable
mechanism contributing to genetic variation in DENV.
Furthermore, the circulation of different serotypes and
genotypes of DENV in a particular geographical region has
been documented [23,34,35], as well as the coexistence of
two different serotypes or genotypes in a given mosquito
or patient [23,26,27], which makes feasible the recombi-
nation in DENV. From the first identification of an interg-
enotypic DENV recombinant [12], several DENV-1, -2, -3
and -4 recombinant strains have been identified [14].
More importantly, the identification of this recombinant
strains demonstrates that DENV is capable of successfully
completing all the simultaneous stages of the infection in
the same cell: the simultaneous replication of both viral
genomes and the template shift by the viral RNA polymer-
ase, while keeping the correct reading frame, encapsida-
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tion and release of the recombinant genomes in the
process. The products will be subjected to the population
processes guiding the maintenance, expansion or disap-
pearance of new variants in the heterogeneous viral pop-
ulation.

All these reports focused on DENV-1 [13,18,27] recombi-
nation, and to date, there are a few reports of DEN-2
recombinant strains detected by analysis of protein E
sequences [14,25,26]. Besides, protein E gene of clones or
C(91y"PIM-E-NS1 54 region from human serum isolates
have not been reported. There is only one single report of
putative DENV-2 recombinant clone isolated from mos-
quitoes in the coding region for protein E [26]. In this
report, the  isolates = MEX_OAX1656_05  and
MEX_OAX1038_05 showed recombination within the
C(91)"PIM-E-NS1 5,4y region. In addition, there was
recombination clearly identified within the E protein gene
of the clone MEX_OAX1656_05_C7. Furthermore, the
parental strains from the recombinants were identified.
These results are a strong evidence of the creation of new
variants in a heterogeneous viral population. Further-
more, this is the first report of DENV-2 recombination in
Mexico.

We detected two isolates containing recombination
highly similar to the one obtained from different cities in
the state of Oaxaca, which is an evidence of the mainte-
nance and expansion of new variants. These two recom-
binants in the Cg;)-prM-E-NS1, 4 region contained 3
breakpoints non-previously reported: one in the prM and
two in the E protein (Figure 2, 3, 4, 5). We are showing
DENV-2 recombination between different genotypes in
the isolates and clones analyzed with high frequency of
approximately 30% and 10%, respectively. The detection
of the DENV recombinants supports a potentially signifi-
cant role for recombination in the evolution of DENV by
creating genetic variation. This result is very important
since recombination may shift the virulence of DENV.
One could speculate if this shift may increase or diminish
the virulence, like has happened in other RNA viruses,
such as poliovirus [36,37] influenza virus [38] and the
HIV virus [39]. A dramatic example is the loss of the atten-
uated phenotype of the poliovirus vaccine by recombina-
tion, resulting in the generation of new phenotypes that
produce the acute paralytic disease. Consequently, recom-
binants have the potential to generate strains with a
higher or lower virulence. To test this issue for DENV
recombinants will be necessary to have an animal model
to study the virulence of these recombinants.

The two points in our experimental procedure that have
been instrumental in obtaining the reported result and to
build confidence are: First, we analyzed 6 isolates and one
clone in the coding region C4;)-prM-E-NS1,,q,) from
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and 2223-2310 are displayed in A, B, C and D respectively.

Oaxaca and concentrated our efforts in sequencing the E
gene of 10 clones from one isolate. These regions were
chosen based on its biological relevance and on the loca-
tion of breakpoints identified in previous reports of
recombination in DENV [12,13,26,27,33]; secondly, we
minimized the chance of detecting false, artifactual
recombination by using long extension times [40] and a
proofreading DNA polymerase (Platinum Taq Hi-Fi) [41].

Moreover, the breakpoints tested by RDP3 resulted signif-
icant by 7 statistical methods; besides, the GARD software

displayed the same breakpoints as the RDP3 software
package.

The analysis of 10 clones obtained from the isolate
MEX_OAX_1656_05 showed one clone
(MEX_OAX_1656_05_C07) containing recombination in
the E gene (Figure 5, 6). Interestingly, the parental strains
for this recombinant were the Asian/American and the
American genotypes. This result is very important because
the American genotype has the highest divergence among
all the genotypes for DENV-2. Furthermore, this is the first
report on recombination between the Asian/American
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Figure 4

Nucleotide alignment of C(91)-prM-E-NS1(2400) sequence of MEX_OAX_1038_05 and MEX_OAX_1656_05
putative recombinant isolates with the parental strains. The number of nucleotide is determined by the position in our
sequences of DENV as described in Methods; the location of the breakpoints of MEX_OAX_1038_05 sequence determined
for BOOTSCAN is highlighted by (t); the breakpoints of MEX_OAX_1656_05 sequence determined for BOOTSCAN are
indicated by (*); the breakpoints of MEX_OAX_1038_05 and MEX_OAX_1656_05 sequences, determined for GARD are
labeled by (¢). MEX_OAX_1656241_05 clone is the putative mayor parent and INDI_GWI_102_0I is the putative minor par-
ents.
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Figure 5

Recombination plots of clone MEX_OAX_165607_05 of E protein gene. A) BOOTSCAN plot resulted from the anal-
ysis of the clone MEX_OAX_165607_05 sequence with 1000 bootstrap, the putative mayor parent MEX_OAX_165617_05,
and the putative minor parent MEX_95; B) Breakpoints plot obtained with GARD algorithm by using the sequences as above;

C) Phylogenetic trees (E gene) based on putative recombination and non-recombination regions by maximum likelihood meth-
ods.
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Figure 6

Alignment of recombinant E protein gene sequence MEX_OAX_165607_05 with parental sequences. Location
of the breakpoints of MEX_OAX_165607_05 sequence determined by BOOTSCAN is highlighted by (*); and the one deter-
mined by GARD is labeled by (¢). The number of nucleotide is determined by the position in the sequence of E gene.

(MEX_OAX_1656_05_C17) and American genotypes
(MEX_95), which is supported by the analysis with RDP3
and GARD (Figure 5A-B). This recombinant displays the
breakpoints between the nucleotides 906 and 1047. These
results suggest that the frequency of recombination in
DENV is higher than thought earlier, and the process will
remain fundamentally hidden until more studies of
clonal diversity to be undertaken. Nevertheless, the pre-
cise mechanism underlying the recombination events for
DENV is unknown. To understand the mechanism of
recombination the development of experimental models
for co-infection to generate DENV recombinants is
required.

The second breakpoint in the Cg;)-prM-E-NS1 ;4
region (nucleotide 868 and 826) for the
MEX_OAX_1038_05 and MEX_OAX_1656_05 isolates
was different for 40 nucleotides when determined by
BOOTSCAN, but it was the same when GARD was used
(Figure 4). This was not associated with a sequence that

permits the inference of a hot-spot of recombination as
previously reported [12,13,26,27] and does not permit
the deduction of the mechanism of recombination as has
been described for other flavivirus [31][42].

Recombination may be a consequence of circulation of
several genotypes at the same time in the same site and
probably inside the same cell in the mosquito or human
patient; in addition to the high density of different viruses
circulating in the geographic area of Oaxaca. This is sup-
ported by a previous work that suggests that density of
geographical and temporal sampling increases the proba-
bility for identifying recombinant sequences [25].

Phylogenetic studies have shown the circulation of the
American [43], American/Asian [23], and Cosmopolitan
[44] genotypes in Mexico, which makes feasible their
recombination and explains the fact of the Cosmopolitan
and American genotypes to recombine with the Asian/
American genotype spread more broadly. Our results in
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combination with previous reports [26] on DENV-2
recombination suggest that the different genotypes of
DENV-2 are circulating in the virus pool infecting the
mosquitoes or the human cells around the world. Until
now, it remains unclear whether the frequency of recom-
bination seen in this and previous studies is driving an
increasing virulence of DENV strains. However, the
recombinant strains of this study were obtained from the
outbreak 2005-2006 where the frequency of DHF cases
was higher than the DF cases in comparing to previous
epidemics [45]. To elucidate the role of recombination in
DENV virulence will be necessary to follow the generation
of recombinants in outbreaks from other Mexican states.

Conclusions

It is unclear whether the recombination events took place
in a human host or a mosquito vector co-infected by mul-
tiple DENV genotypes. In this study, we detected two
recombinant isolates of DENV-2 from human hosts
namely MEX_OAX 1038_05 and MEX_OAX_1656_05,
which identify 3 breakpoints within the prM-E-NS1
genome. Particularly the recombination appeared to have
involved two genotypes of DENV-2, the Asian/American
clone (MEX_OAX_1656_05_C241) from the same strain
and the Cosmopolitan strain (INDI_GWI_102_01).

It is remarkable that parental and recombinant viral
sequences of protein E were observed in an isolate from a
single patient, particularly when the recombination
appeared to have involved two genotypes of DENV-2
(Asian/American and the American) from the same geo-
graphic area (Oaxaca, Mexico). This is only the second
observation of one parental and recombinant of DENV-2
in a population within a single host [26]. There are two
more studies where both parental and recombinant viral
genomes were observed in a DENV-1 isolate from a single
patient. DENV recombination mechanism will be clari-
fied by undertaking more studies of clonal diversity in
both human and mosquito vector in Mexico.

Methods

DENYV infected cells and virus isolation

Aedes albopictus clone C6/36 cells were grown at 28°C.
After 18 h of culture, cells (2 x 10°/100 mm plate) were
infected with 0.2 ml DEN-2 inoculums with an input MOI
of 600 PFU/cell and were incubated at 28°C for 10 days.

Viruses were isolated as previously described [46] with a
few modifications. After 18 h of culture, C6/36 cells (10°/
15 ml tube) were infected with 0.01 to 0.1 ml of serum
specimen per tube, diluted to 1 ml with medium, and
incubated for 2 h at 28°C. After one wash, 3 ml MEM was
added and the cells were cultivated for approximately 15
days at 28°C (passage number 1). Cells were observed
every day and when a cytopathic effect was apparent from
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syncytium formation and cellular lysis, the cells were har-
vested and centrifuged at 3000 rpm for 5 min. The pellet
was suspended in 0.6 ml of MEM and stored in aliquots of
0.15 ml at-70° C. The supernatant (approximately 2.5 ml)
was stored in 2 aliquots of 1 ml and one of 0.5 ml at -
70°C. To obtain passages number two and three, C6/36
cells were incubated with 1 ml of the supernatant
obtained from the first or second passage for 2 h at 28°C
and the same procedure described above was followed.
Serotypes and recombination studies in all samples were
determined in the isolates MEX_OAX_14946_06,
MEX_OAX_1020_06, MEX_OAX_739_05,
MEX_OAX_1733_05, MEX_OAX_1038_05 and
MEX_OAX_1656_05 obtained from the third culture-pas-
sage. All isolates were obtained by the Health Department
from patients with DF, except for the isolate
MEX_OAX_14946_06 obtained from a patient with DHF
[47].

RNA extraction

Total RNA was extracted from cell culture supernatant
using Trizol® LS (Gibco BRL., Gaithersburg, Md.) accord-
ing to the manufacturer's recommendations. Ethanol-pre-
cipitated RNA was recovered by centrifugation and air-
dried. The RNA pellet was suspended in 50 pl water
treated with diethylpyrocarbonate (DEPC, Sigma-Aldrich)
and used as template for Reverse Transcription with the
Polymerase Chain Reaction (RT-PCR).

Reverse transcription-polymerase chain reaction (RT-
PCR)

All assays were performed with the ThermoScript™ RT-
PCR System containing Platinum Taq Hi-Fi (Invitrogen,
Life Technologies). A mixture of 5 ul of total RNA (0.1-0.5
ug), 50 ng of hexamers/reaction, and DEPC-treated water
(in a total volume of 50 ul) was incubated at 65°C for 5
min and chilled on ice. The first extension was carried out
at 25°C for 10 min and then at 50°C for 90 min. PCR
reaction was carried out by incubation of 20 uM of corre-
sponding sense and antisense PCR primers, 2 pl of the
cDNA synthesis reaction and 2.4 mM magnesium sulfate
as per manufacture's recommendations. Synthetic oligo-
nucleotide primer pairs were designed based on pairwise
of different sequences of DENV-2; to amplify and
sequence the partial open reading frame genome region
C-prtM-E-NS1 from nucleotide 91 (Cy;) to 2400
(NS1,,00): C(+) CAATATGCTGAAACGCGHG and NS1(-)
GITCTGTCCANGTRTGNAC, and for E gene: primers
EPP-F (+) GAATGACAATGCGTITGC and EPP-R (-)
TCAGCTCACAACGCAACC.

Cloning
The RT-PCR product of the partial genome (Cy;-prM-E-
NS1,,00) was restricted with Kpnl and ligated in the
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pGEM?®-3Z vector (Promega) following previous protocols
[48].

The RT-PCR products of E gene were ligated in the pCR*4-
TOPO vector included in TOPO® TA Cloning Kit for
Sequencing (Invitrogen, Life Technologies) according to
the manufacturer's instructions

Sequencing of PCR products

For sequencing the structural genes or E gene the follow-
ing primers were used: PrM(+) GGATGTCNKCNGAAGG;
PrM(-)CCTTCNGMNGACATCC; E(+) GACAGAGGNT-
GGGGMAATGG,; E(-) CCATTKCCCCANCCTCTGTGC; E(-)
CNCAAGARGGMGCCAGCCG; E(+)GGCTGGCKC-
CYTCTTGNG. The automated sequencing of purified
DNA fragments by spin columns (Qiagen, Chatsworth,
Calif.) was performed by the cycle-sequencing dye termi-
nator method. The Big Dye Terminator Cycle Sequencing
Ready Reaction Kit (ABIPRISM 100, Applied Biosystems,
Foster City, CA) was chosen for sequencing. The
sequences obtained were deposited in the GenBank data-
base (AF856321-AF856328; AF856341-AF856350).

Phylogenetic and Recombination studies
TrN93 substitution model was used to make the phyloge-
netic analysis since this model showed to be the best to
analyze DENV sequences by using "Model Selection”
implemented in "DataMonkey" [28,29]

The DENV-2 sequences of partial Cq;-ptM-E-NS1,,.,
genome (90) or E gene (180) were aligned using Clustal
W [49]; keeping the more representative sequences (17
and 16 respectively) to obtain plots and phylogenies trees
to evaluate recombination in our isolates and clones. The
accession number of sequences are as follow: VEN_2_87
(AF100465), MEX_131-92(AF100469), THNH_P36_93
(AF022441), TH_CO390_99 (AF100462), BANGKOK_74

(Al487271), NGC_44 (D00346), CHINA_43_89
(AF204178), CHINA_FJ_10_00 (AF276619),
INDI_GWL102_01  (DQ448233), INDO_BAO05i_05
(AY858035), INDO_ 98900666_04 (AB189124),

BR_64022_02 (AF489932), JAM_N1409_83 (M20558),
CHINA_04_85 (AF119661), DR_23_01 (AB122020),
MART_703_98 (AF208496), CUBA_13_97 (AY702034),
MEX_95 (DQ364562). The aligned sequences were ana-
lyzed by Recombinant Detection Program version 3
(RDP3) [50] using default parameters (window of 200nt,
step of 20nt, Jin and Nei, 1990 [51] substitution models
and 1000 bootstrap) and by the genetic algorithm for
recombination detection (GARD) [52,29].
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