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Abstract: Three-dimensional (3D) printing is one of the significant industrial manufacturing methods
in the modern era. Many materials are used for 3D printing; however, as the most used material
in fused deposition modelling (FDM) technology, acrylonitrile butadiene styrene (ABS) offers good
mechanical properties. It is perfect for making structures for industrial applications in complex envi-
ronments. Three-dimensional printing parameters, including building orientation, layers thickness,
and nozzle size, critically affect the crack growth in FDM structures under complex loads. Therefore,
this paper used the dynamic bending vibration test to investigate their influence on fatigue crack
growth (FCG) rate under dynamic loads and the Paris power law constant C and m. The paper
proposed an analytical solution to determine the stress intensity factor (SIF) at the crack tip based
on the measurement of structural dynamic response. The experimental results show that the lower
ambient temperature, as well as increased nozzle size and layer thickness, provide a lower FCG
rate. The printing orientation, which is the same as loading, also slows the crack growth. The linear
regression between these parameters and Paris Law’s coefficient also proves the same conclusion.

Keywords: fused deposition modelling; ABS; thermo-mechanical load; raster orientation; nozzle
size; layer thickness; stress intensity factor; fatigue crack growth rate

1. Introduction

Three-dimensional (3D) printing is one of the additive manufacturing (AM) technology
and has been developed over the years. In the past, 3D printing was primarily used for
prototyping. However, because of its effective operation, freedom of customization, and
cost-effectiveness, 3D printing has been used in many important applications in recent
years, such as medical, automotive, aerospace, and biomechanical sectors [1–5].

Moreover, fused deposition modeling (FDM)) is one of the most used 3D printing
techniques [6,7]. It is layer-by-layer printing, based on computer-aided design (CAD) and
computer-aided manufacturing (CAM) [8]. Moreover, the most common materials used in
this method are polymers because of their distinguished properties with low cost and light
weight, making them suitable for essential applications, such as aircraft wings and wind
blades [9].

These structures can experience fatigue failure due to dynamic loads in a complex
thermo-mechanical environment [10–12]. Compared with other materials [13–17], the crack
propagation during fatigue is highly complicated for FDM polymeric structures because
of the significant differences in its microstructure due to various printing parameters.
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Therefore, the effect of 3D printing parameters on mechanical properties was discussed in
much research.

Ismail et al. investigated the effect of raster angle and orientation on the mechanical
properties of ABS printed parts using tensile and three-point bending tests [18]. Similar
work has been carried out by Ziemian et al., whereby the effect of building orientation on
fatigue strength of acrylonitrile butadiene styrene (ABS) parts fabricated by 3D printing
was evaluated using the tensile test [19]. Furthermore, Sood et al. improved the compres-
sive strength of the FDM ABS specimen by changing building orientation, raster angle and
layer thickness, raster width, and gap [20]. Many other FDM polymeric materials were
investigated too. The relationship between building orientations and the fatigue life of poly-
lactic acid (PLA) specimens fabricated by 3D printing were tested under ultimate tensile
stress with 50–80% nominal values [21]. Tymrak et al. measured and compared the tensile
strength and elastic modulus of FDM ABS and PLA parts printed with different building
orientations, layer thickness, and raster gap [22]. In another study, four FDM materials,
including polycarbonate (PC), ABS, glycol-modified polyethylene terephthalate (PET-G),
and PLA, investigated the effect of layer thickness on the impact strength [23]. Wang
et al. analyzed the effect of layer thickness on mechanical properties of polyetherether-
ketone (PEEK) and its fiber-reinforced parts fabricated by 3D printing. Tensile, flexural
and impact tests were performed for glass fiber (GF) and carbon fiber (CF) reinforced
materials printed with layer thickness from 0.1 to 0.3 mm [24]. In addition to orientation
and layer thickness, several other parameters were also evaluated in previous research.
Vicente et al. studied the nozzle size influence on mechanical properties of 3D-printed ABS
parts via the tensile test. The selected nozzle sizes, 0.4 mm and 0.8 mm, were compared
with other printing parameters [25]. Zhang et al. tested the fracture behaviour of a glass
fiber-reinforced polymeric joint by tensile with different temperatures ranging between
−35 ◦C and 60 ◦C [26].

However, when we critically review the previous studies, it is found that the current
research still lacks an investigation about the crack growth in a FDM polymeric structure.
No research tested the crack propagation in a FDM structure like many similar works
on conventionally manufactured polymers. For conventionally manufactured polymeric
structures, a large number of studies tested the fatigue crack growth (FCG) rate considering
the ambient temperature and loading frequency [27–29]. Luo et al. investigated the effect
of temperature on the FCG rate of rubber polymer [27]. Kim and wang calculated the Paris’
power law constant C and m of ABS material at different temperatures and frequencies [28].
Similarly, Kim et al. calculated the Paris power law constant C and m in a commercial-grade
ABS under different temperatures ranging from −50 ◦C to 80 ◦C [29].

It is found that the above research about conventionally manufactured polymers [27–29]
investigated the FCG rate with the empirical correlation of Paris’ Law because this famous
empirical model [30,31] can represent the crack propagation behavior. Roylance reported
that the constants C and m in Paris’ law could be affected by the material type, testing
temperature, and loading frequency [32]. So, similarly, the printing parameters of the FDM
structure definitely can also affect the crack propagation and affect these two constants.

Therefore, this paper enhanced our previous research [33], which studied the fatigue
life of FDM ABS with different printing parameters and ambient temperatures, to further
test and investigate the effect of raster orientation, nozzle size, and layer thickness on crack
propagation and Paris’ law for FDM ABS. Unlike the test for conventionally manufactured
polymer, the dynamic thermo-mechanical loads are considered during tests to simulate
the actual working conditions. Thus, the paper also provides an analytical solution to
determine the dynamic stress intensity factor (SIF) used in Paris’ law correlation.
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2. Materials and Methods
2.1. Printing Parameters

Like the previous work [33], the paper focused on three essential parameters: building
orientation, layer thickness, and nozzle size. These parameters were tested under three
different environment temperatures (50, 60, 70 ◦C).

Three values, as shown in Table 1 and Figures 1–3, were evaluated for each printing
parameter to cover the typical range of printing parameters. It was assisted in a complete
assessment of the experimental results. Moreover, to deliver excellent print quality and a
typical setting range, the layer thickness and nozzle size were derived from the profile of
the default setting [33].

Table 1. Parameters of printed samples.

Building Orientation Nozzle Size Layer Thickness

X (0◦) 0.4 mm 0.05 mm
XY (±45◦) 0.6 mm 0.10 mm

Y (90◦) 0.8 mm 0.15 mm
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2.2. FDM Material

The red ABS (Color code: RAL 3020) filament fabricated by the Ultimaker® (Utrecht,
The Netherlands) was selected as raw material (Filament details shown in Table 2) [33]
because the ABS is the most used material for FDM and plastic zones can be clearly
observed for red color material [33].

Table 2. Filament specifications, and mechanical and thermal properties of the Ultimaker® ABS (RAL
3020) [33].

Filament Specifications and Properties Value

Diameter 2.85 ± 0.10 mm
Tensile modulus 1681 MPa (ISO 527)

Tensile stress at yield 39 MPa (ISO 527)
Tensile stress at break 33.9 MPa (ISO 527)

Elongation at yield 3.5% (ISO 527)
Elongation at break 4.8% (ISO 527)

Melt mass flow rate (MFR) 41 g/10 min (ISO 1133)
Melting temperature 225–245 ◦C (ISO 294)

Glass transition temperature 97 ◦C (ISO 294)

2.3. Sample Preparation

The bending fatigue test of FDM polymers does not have a specific standard. Therefore,
the geometry of the sample was selected as 150 × 10 × 3 mm3, as shown in Figure 4, which
is the same as that used in previous research [33,34]. Therefore, the results for the present
experiment and previous research can be compared. There was a 0.5-mm-deep initial-
seeded crack near the fixed end of the beam for all the samples to ensure that the maximum
stress concentration took place at the same point. As a result, the crack location in all the
experiments was the same and very similar to the fatigue failures of a real scenario due to
the stress concentration.

The CATIA v5 CAD software was used to design the specimen. The CAD model of the
specimen was built in CATIA v5 with an STL file format and imported to the Ultimaker®

CURA 4.6 software. CURA software was used to set a series of printing parameters.
Most parameters were maintained or recommended to default values during the printing
process, apart from the selected parameters shown in Table 1. The printing process of the
Ultimaker® 2+ 3D printer is shown in Figure 5.
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2.4. Experiments
2.4.1. Experimental Scheme

The 81 configurations mentioned in Section 2.1 were tested by a series of experiments.
The experiment was divided into three main parts. Firstly, the continuous bending vibration
was applied to the specimen. The number of cycles between different crack propagation
until fracture were recorded. Secondly, a digital microscope was used to capture the crack
depth. Finally, a dynamic mechanical analysis test (DMA) was applied to the broken
samples from the previous test to find the storage modulus. After that, the experimental
outputs were used in analytical calculations to find out the SIF and FCG rate. The detailed
experimental scheme can be shown in Figure 6.

2.4.2. Experimental Setup and Procedures

The experimental setup is shown in Figure 7, which is the same as the previous
study [33]. The fundamental frequency of the specimen was measured by an impact test
twice. Then, the shaker excited the specimen with an amplitude of 2 mm with the measured
fundamental frequency. This led to the resonance of the beam, and then the pre-seeded
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crack growth started. The accelerometer measured the acceleration and time data during
crack growth and transferred them into SignalExpress software via a DAQ card. The
test was paused when a significant displacement amplitude drop was observed in Signal
Express. A Dino–Lite digital microscope (AnMo Electronics Corporation, Hsinchu, China)
measured the corresponding crack depth. The new fundamental frequency was measured
and applied to the cracked specimen again. These procedures were repeated until the
beam broke.
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Polymers 2021, 13, 3737 7 of 19

3. Analytical Model and Experimental Data Process
3.1. Calculation of SIF Range and FCG Rate

This section shows how SIF and the FCG rates were calculated based on the raw
experimental data. Because the dynamic loads were applied on the tests, the stress ratio is
time-dependent rather than a constant value. The appropriate estimation is essential to
calculate the SIF.

For mode I fracture, the range of SIF (∆K) can be calculated using Equations (1) and (2) [35,36].
However, the average applied stress range (∆σ) was then used in this paper. It was
different from the constant stress range in the standard FCG test. ∆σ was time-dependent
due to the variable beam amplitude. Therefore, the mean ∆σ was approximately calculated
using the MATLAB code and then substituted in Equation (1).

∆K = ∆σ
√

πai f
( ai

H

)
(1)

where ai the initial crack depth, H is the beam thickness, and f
( ai

H
)

is the dimensionless
boundary correction factor which can be calculated using Equation (2) [35,37].( a

H

)
= 1.13− 1.374

( a
H

)
+ 5.749

( a
H

)2
− 4.464

( a
H

)3
(2)

Moreover, to calculate the average stress range at the crack location according to the
accelerometer measurements, the mean stress amplitude was calculated for each loading
cycle by using Equation (3) to Equation (12) [38]. Firstly, the displacement amplitude was
calculated at the beam tip (accelerometer location) by its quadratic integral relationship
with acceleration amplitude measured by the accelerometer during the experiments, as
shown in Equation (3).

yi(L) =
1
2

acci,peak − acci,trough

(2π fi)
2 (3)

where yi(L): the displacement amplitude at beam tip in the ith cycle, acci: the acceleration
in the ith cycle, and fi: the fundamental frequency of beam in the ith cycle.

Then, the displacement amplitude at the crack location yi(lc) can be derived based on
the mode shape of a cracked beam f (x) [39], as shown in Equations (4)–(9)

yi(lc) = Cs f × f (lc) (4)

Cs f =
yi(L)
f (L)

(5)

f (x) = C1sin(βx) + C2cos(βx) + C3sinh(βx) + C4cosh(βx) (6)

β4 =
ω2ρA
ET I

(7)

I =
bH3

12
(8)

ω =
ti − tj

i− j
(9)

where Cs f : the scale factor, lc: the crack location, C1−4: the coefficient in mode shape
function of the cracked beam, ω: the fundamental angular frequency, ρ: the FDM ABS
density, A: the beam’s cross-section area, ET : the elastic modulus at test temperature, I: the
area moment of inertia, b: the beam width, H: the beam height; and ti and tj: the ith and
jth peak time, respectively.
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After that, the bending moment Mi(lc) at the crack location in ith cycle can be calcu-
lated by Equation (10):

Mi(lc) =
∣∣∣∣ET I

d2yi(lc)
dx2

∣∣∣∣ (10)

Next, assuming that the bending stress amplitude σi(lc) at the crack tip in the ith
cycle was constant and equal to the stress at the beam surface. It can be calculated using
Equation (11),

σi(lc) =
6Mi(lc)

bH2 (11)

Finally, the mean stress range is given by Equation (12)

∆σ =
∑n

i=1 σi(lc)Ti

∑n
i=1 Ti

(12)

where Ti: the period of the ith cycle.
During the dynamic fatigue crack test, the single side cracked beam vibrated up and

down. As a result, it was exposed to two types of cyclic loading (tensile and compressive
stresses), as shown in Figure 8. However, only tensile stress was responsible for the
propagation of the crack. Therefore, the stress amplitude σi(lc) was used to show the
stress range per cycle instead of the difference among the peak and trough as shown in
Equation (12).
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For the same reason, the actual number of cycles that lead to crack propagation is half
of the total number of cycles. Because the crack was not propagated when the specimen
was exposed to compressive stresses; therefore, the average crack rate between two crack
depths can be calculated by Equation (13)

da
dN

= 2
( a f − ai

N

)
(13)

where a f : the final crack depth.



Polymers 2021, 13, 3737 9 of 19

With the calculated SIF range ∆K and FCG rate da
dN . The empirical relationship between

the ∆K and the fatigue crack growth rate can be modelled. The format of the model was
represented by Paris law, as shown in Equation (14) [29,30]. After that, this relationship
was plotted, and then the suitable values for C and m were identified using the curve
fitting function in MATLAB.

da
dN

= C(∆K)m (14)

3.2. Data Process

The C and m values were determined in Section 3.1 for different configurations. In
order to investigate and compare the effect of printing parameters on Paris’ law, a multiple
linear regression (MLR) model was used, as shown in Equation (15).

Ŷ = b0 + b1X1 + b2X2 + b3X3 + b4X4 (15)

where Ŷ is the C or m values, and we denote that X1 represents the raster orientation, X2
represents the nozzle size, X3 represents the layer thickness, X4 represents the temperature,
and b0−4 is the estimated regression coefficient that quantifies the association between the
parameters X and the dependent variable Ŷ.

The printing parameters are converted from the original values in Table 1 into stan-
dardized dimensionless values to eliminate the effects of differences in properties, such
as dimension and order of magnitude between different variables, thus making the effect
sizes of different variables comparable. The z-score standardized method was used, and
the values of X are shown in Table 3.

Table 3. Standardized Value for different parameters.

Building
Orientation Nozzle Size Layer

Thickness Temperature Standardised
Value

X (0◦) 0.4 mm 0.05 mm 50 ◦C −1
XY (±45◦) 0.6 mm 0.10 mm 60 ◦C 0

Y (90◦) 0.8 mm 0.15 mm 70 ◦C 1

4. Results and Discussion

The influence of printing parameters (building orientation, layers thickness, and
nozzle size) under 50, 60, and 70 ◦C on the FCG rate were studied. The effect was visualised
by the log-log plot, which used the Paris’ law relationship between the crack growth rate
( da

dN ) during crack propagation and the range of the stress intensity factor (∆K). The first-
order polynomial curve fitting method was used to plot the figures due to the linear
relationships of Paris law. R-squared and RMSE values for each parameter are shown in
Table 4.

Table 4. R-squared and RMSE for curve fitting of each parameter.

Parameters R-Squared RMSE

Building orientation
X (0◦) 0.6251 0.1562

XY (±45◦) 0.6244 0.1752
Y (90◦) 0.5061 0.175

Nozzle size (mm)
0.4 0.4103 0.2054
0.6 0.4235 0.2057
0.8 0.3556 0.2253

Layer thickness (mm)
0.05 0.4517 0.247
0.10 0.4178 0.1932
0.15 0.3077 0.198
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Table 4. Cont.

Parameters R-Squared RMSE

Temperature (◦C)
50 0.3222 0.2143
60 0.3862 0.1937
70 0.4781 0.2281

4.1. Building Orientation Influence

Figure 9 shows the crack growth rate variation for X, XY, and Y building orientations.
As can be observed, samples printed with X building orientation have the lowest FCG rate,
while Y building orientation has the highest, and XY orientation lies between them for the
same SIF value.
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Table 5 shows the FCG rate range and the mean fatigue life. The average FCG rate for
the X orientation corresponds to the 9.68 × 10−7 m/cycle. In comparison, Y orientation
corresponds to the 9.77 × 10−7 m/cycle. Furthermore, the mean number of cycles until
the fracture has 4343 cycles for the X orientation. However, the Y building orientation
approximately has 2282 cycles. These results are similar to the previous study provided
by the applied bending fatigue test [32,40]. However, they are different from what was
provided in most previous studies, which was tested by tension fatigue test [20,41]. This
found that the XY building orientation had the highest fatigue life, which means they had
the lowest FCG rate. Therefore, the difference in the type of the test may be the main reason
behind the difference in results.

Table 5. The mean FCG rate and number of cycles of different orientations regardless of other
printing parameters.

Building Orientation Mean FCG Rate
(m/cycle)

Mean Number of Cycles
until the Fracture

X 9.68 × 10−7 4343
XY 9.75 × 10−7 3912
Y 9.77 × 10−7 2282
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The findings are reasonable. The Y building orientation samples provide the highest
FCG rate because the Y orientation is lateral on the beam in a similar direction to the initial
seed crack. In fracture mechanics, the micro-cracks on or in the structure are the main
reason for the propagation of the crack [42]. These micro-cracks occur between filaments
of 3D structures due to printing defects in the form of microvoids. Furthermore, one of
the stress characteristics is that it concentrates around the weakest area of the structure.
Therefore, when the beam is vibrated, these microvoids lead to concentrate the stress
around them. The micro air voids are in the same direction as the initial seed crack in
the Y building orientation. Therefore, an excellent crack path was created, especially
when the stress acting vertically on these voids due to the beam’s vibration increased the
FCG rate and decreased the fatigue life. In contrast, the opposite happened in X building
orientation [33].

4.2. Layer Thickness Influence

Figure 10 shows that the 0.15-mm layer thickness had the lowest crack growth rate,
while the 0.05-mm layer thickness had the highest. Furthermore, the 0.10-mm layer
thickness always lies between them. Table 6 shows the FCG rate range and the mean
fatigue life. The average crack growth rate for 0.15-mm layer thickness corresponds to the
9.19 × 10−7 m/cycle. While 0.05-mm layer thickness corresponds to a 1.04 × 10−6 m/cycle,
and the 0.10-mm layer thickness lies between them. Furthermore, the highest mean number
of cycles until the fracture has 3805 cycles for the 0.15-mm layer thickness, while the lowest
has 3417 cycles provided by the 0.05-mm layer thickness.
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nozzle size, and X, XY, and Y building orientation) under 50, 60, 70 ◦C environmental temperatures.

Table 6. The mean FCG rate and number of cycles of different layer thicknesses regardless of other
printing parameters.

Layer Thickness
(mm)

Mean FCG Rate
(m/cycle)

Mean Number of Cycles
until the Fracture

0.05 1.04 × 10−6 3417
0.10 9.94 × 10−7 3523
0.15 9.19 × 10−7 3805

As can be observed, when the layer thickness changes between 0.05, 0.10, and 0.15 mm,
the crack growth rate changes slightly. In addition, by increasing the layer thickness, the
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FCG rate will decrease. These results are similar to what was founded in previous studies
for FDM ABS and PLA [33,40,43,44].

The reason behind the lower FCG rate of 0.15-mm layer thickness is related to the
micro air voids theory which states that, when the micro air voids decrease, the FCG rate
will decrease. In addition, when the layer thickness increases, the number of air voids
will decrease, increasing the global density and decreasing the concentrated stress on the
sample, increasing the strength and fatigue life. Therefore, the 0.15-mm layer thickness
has fewer micro air voids (dark red area) than the 0.10-mm and 0.05-mm layer thickness,
which provides more strength and longer fatigue life, as shown in Figure 11 [33].
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Figure 11. Comparison between the influence of different layer thicknesses of FDM ABS, printed with a 0.6-mm nozzle size,
Y building orientation, and layer thickness (a) 0.15 mm and (b) 0.10 mm [33].

4.3. Nozzle Size Influence

Figure 12 shows that the 0.8-mm nozzle size had the lowest crack growth rate, while
the 0.4-mm nozzle size had the highest and 0.6 lies between them. However, some samples
operating at 60 and 70 ◦C shows the 0.8-mm nozzle size had the lowest FCG at the start of
the test and the highest at the end. Table 7 shows the average FCG rate range and mean the
number of cycles until fracture. The average crack growth rate range for the 0.8-mm nozzle
size corresponds to the 8.19 × 10−7 m/cycle. However, a 0.4-mm nozzle size corresponds
with the 1.06 × 10−6 m/cycle. Furthermore, the highest mean number of cycles until the
fracture has 4147 cycles by the 0.8-mm nozzle size, while the lowest has 3224 cycles by the
0.4-mm nozzle size.

Table 7. The mean FCG rate and number of cycles of different nozzle sizes regardless of other printing
parameters.

Nozzle Size
(mm)

Mean FCG Rate
(m/cycle)

Mean Number of Cycles
until the Fracture

0.4 1.06 × 10−6 3224
0.6 1.02 × 10−6 3374
0.8 8.19 × 10−7 4147
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Figure 12. Comparison between nozzle size influence on FCG rate of FDM ABS samples with (0.05,
0.10 and 0.15 mm layer thickness and X, XY, Y building orientation) under 50, 60, 70 ◦C environmental
temperatures.

As can be observed, when the nozzle size increases, the FCG rate will decrease. These
results are like previous research conclusions for FDM ABS and PLA [33,40,43,44]. Further-
more, this result is related to the micro air voids provided and explained in Section 4.2.
The samples printed with 0.8-mm nozzle size has a lower number of micro air void than
0.6 and 0.4 mm, as shown in Figure 13.
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4.4. Environmental Temperature Influence

The environmental temperature has a significant influence on the FCG rate. Figure 14
shows that the FCG rate increased due to the increase in temperature. Additionally, the
50 ◦C environmental temperature had the lowest crack growth rate, the 70 ◦C had the
highest, and 60 ◦C was lies between them. Table 8 shows the average FCG rate and the
mean number of cycles. The average crack growth rate range for the 50 ◦C environmental
temperature was the 9.77 × 10−7 m/cycle. While the 70 ◦C environmental temperature
corresponds to the 9.86 × 10−7 m/cycle. Furthermore, the mean number of cycles until the
fracture has 3604 cycles for the 50 ◦C environmental temperature, 3068 cycles for 60 ◦C,
and 3122 cycles for 70 ◦C. This means that the FCG rate increases when the temperature
increases. This result is likely what was mentioned in previous research [9].
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samples printed with (0.05-, 0.10-, and 0.15-mm layer thickness; 0.4-, 0.6-, and 0.8-mm nozzle sizes;
and X, XY, and Y building orientations).

Table 8. The mean FCG rate and number of cycles of different environmental temperatures regardless
of other printing parameters.

Environmental Temperature
(◦C)

Mean FCG Rate
(m/cycle)

Mean Number of Cycles
until the Fracture

50 9.77 × 10−7 3604
60 9.78 × 10−7 3292
70 9.86 × 10−7 3122

The results are reasonable. The increase in temperature is negatively affecting the
mechanical properties. The evidence for this claim is that, in the DMA test, when tem-
perature increases, the storage modulus decreases, decreasing the strength of the printed
sample and increasing the FCG rate. In addition, for the FDM ABS at lower temperatures,
the strength of the bounding of the molecules to each other is very strong. However, at
higher temperatures, this strength decreases, which leads to the slip of the chain easily. In
conclusion, the increase in temperature in FDM ABS negatively affects the mechanical and
microstructural properties, leading to an increase in FCG rate [33].

4.5. Paris Law Constants (C and m) for Different Printing Parameters

The C and m values were determined for different configurations experimentally. Part
of the results is shown in Table 9. The full results are attached in Appendix A. It was
found that the values in Table 9 for FDM ABS are higher than previous research testing
on conventionally manufactured ABS [28,29] because of the micro air voids in the FDM
structure. The existence of air voids changes the microstructure of ABS, which leads to
lower crack resistance. This is reflected as the larger values of C and m in Paris’ law.

Because there is too much data, the MLR results from Section 3.2 were used to investi-
gate printing parameters’ effect on Paris’ law.
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Table 9. The Paris power law constant (C and m) for a part of configurations obtained from experi-
mental results where (da/dN in m/cycle and ∆K in MPa*

√
m).

Building
Orientation

T
(◦C)

Nozzle
Size

(mm)

Layer
Thickness

(mm)

Log
C C m R-Square

(%)

X 50 0.4 0.05 −3.607 2.47 × 10−4 0.763 94%
X 50 0.4 0.10 −4.885 1.30 × 10−5 0.390 81%
X 50 0.4 0.15 −5.099 7.96 × 10−6 0.329 91%
X 50 0.6 0.05 −3.754 1.76 × 10−4 0.754 99%

XY 50 0.4 0.05 −2.078 8.36 × 10−3 1.131 98%
Y 50 0.4 0.05 −2.938 1.15 × 10−3 0.818 84%
Y 50 0.8 0.15 −4.660 2.19 × 10−5 0.418 98%
Y 60 0.8 0.15 −4.660 2.19 × 10−5 0.418 98%
Y 70 0.8 0.15 −3.408 3.91 × 10−4 0.731 99%

Regression Equations (16) and (17) were fitted by MATLAB.

C = 0.38 + 0.55X1 − 0.45X2 − 0.57X3 + 0.02X4 (16)

m = 0.66 + 0.12X1 + 0.09X2 − 0.2X3 + 0.11X4 (17)

The regression coefficients of building orientation and temperature are positive values
(0.55 and 0.02). This proves that, when building orientation tends to be perpendicular to
the direction of stress or increased ambient environment, it increases the C value, resulting
in a higher FCG rate. In contrast, the nozzle size and layer thickness regression coefficients
are negative values (−0.45 and −0.57). This shows that the increased nozzle size and
layer thickness all decrease the FCG rate. These results again support the conclusion from
Sections 4.1–4.4.

The m value in Paris Law, which shows the slope of the curve in log-log plots, has a
smaller effect on the FCG rate. Therefore, the regression coefficient of nozzle size for the m
value is 0.09, which is the opposite of −0.45 in Equation (16). The overall trend of FCG rate
still decreases when the nozzle size is increasing.

5. Conclusions

An experimental study was performed on FDM ABS using the dynamic mechanical
loads at different ambient temperatures to investigate the influence of printing parameters
and temperature on FCG rates and the Paris law constants.

The paper proposed one analytical solution to determine the SIF range when dynamic
stress at the crack location is difficult to measure under structural resonating conditions.
The empirical Paris law model was developed for different configurations of raster orienta-
tion, nozzle size, layer thickness, and ambient temperature. The corresponding C and m
constants are listed as a reference for future research.

With the comparison of the FCG rate, it is found that increased layer thickness and
nozzle size all reduce the FCG rate due to the decrease in micro air voids. On the contrary,
the building orientation close to 90◦ and increased temperature accelerates the crack growth.
Therefore, combining the following parameters provides the lowest FCG rate and Paris
law constant: X building orientation, 0.15-mm layer thickness, and 0.8-mm nozzle size.

For Paris’ law, C and m values were also affected by environmental temperature and
printing parameters. As the temperature increased, the C and m values increased. In
addition, the X building orientation, higher layer thicknesses, and larger nozzle size values
provide the lowest C and m values because C and m values are directly related to FCG
rate. These results are realistic due to the material type and environmental temperature
influence on crack growth [9].
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However, the overall trend in C and m values was higher than in previous research [28,29].
This disparity is likely due to differing material status, structure, and operating conditions,
leading to a decrease in the FCG rate.

Author Contributions: Conceptualization, M.A.K.; Data curation, Y.L.A.A.; Formal analysis, Y.L.A.A.
and F.H.; Funding acquisition, M.A.K.; Investigation, Y.L.A.A. and F.H.; Methodology, Y.L.A.A.,
F.H. and M.A.K.; Project administration, M.A.K.; Resources, M.A.K.; Software, Y.L.A.A. and F.H.;
Supervision, M.A.K.; Validation, Y.L.A.A.; Visualization, Y.L.A.A. and F.H.; Writing—original draft,
Y.L.A.A. and F.H.; Writing—review & editing, F.H. and M.A.K. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The Paris power law constant (C and m) for all configurations obtained from experimental
results where (da/dN in m/cycle and ∆K in MPa*

√
m).

Building
Orientation

T
(◦C)

Nozzle
Size

(mm)

Layer
Thickness

(mm)
Log C C m R-Square

(%)

X 50 0.4 0.05 −3.607 2.47 × 10−4 0.763 94%
X 60 0.4 0.05 −4.736 1.84 × 10−5 0.426 93%
X 70 0.4 0.05 −3.888 1.29 × 10−4 0.673 98%
X 50 0.4 0.10 −4.885 1.30 × 10−5 0.390 81%
X 60 0.4 0.10 −5.087 8.18 × 10−6 0.330 91%
X 70 0.4 0.10 −4.746 1.79 × 10−5 0.390 86%
X 50 0.4 0.15 −5.099 7.96 × 10−6 0.329 91%
X 60 0.4 0.15 −5.109 7.78 × 10−6 0.318 93%
X 70 0.4 0.15 −4.787 1.63 × 10−5 0.387 82%
X 50 0.6 0.05 −3.754 1.76 × 10−4 0.754 99%
X 60 0.6 0.05 −4.327 4.71 × 10−5 0.515 95%
X 70 0.6 0.05 −4.888 1.29 × 10−5 0.341 99%
X 50 0.6 0.10 −4.481 3.30 × 10−5 0.537 98%
X 60 0.6 0.10 −4.719 1.91 × 10−5 0.444 97%
X 70 0.6 0.10 −4.764 1.72 × 10−5 0.396 95%
X 50 0.6 0.15 −5.700 2.00 × 10−6 0.221 84%
X 60 0.6 0.15 −4.483 3.29 × 10−5 0.498 91%
X 70 0.6 0.15 −4.152 7.05 × 10−5 0.680 87%
X 50 0.8 0.05 −2.936 1.16 × 10−3 0.999 99%
X 60 0.8 0.05 −0.229 5.90 × 10−1 1.703 99%
X 70 0.8 0.05 −4.213 6.12 × 10−5 0.603 93%
X 50 0.8 0.10 −5.024 9.46 × 10−6 0.442 88%
X 60 0.8 0.10 −5.163 6.87 × 10−6 0.321 97%
X 70 0.8 0.10 −4.663 2.17 × 10−5 0.435 85%
X 50 0.8 0.15 −5.559 2.76 × 10−6 0.245 91%
X 60 0.8 0.15 −5.367 4.30 × 10−6 0.263 96%
X 70 0.8 0.15 −4.005 9.89 × 10−5 0.641 84%

XY 50 0.4 0.05 −2.078 8.36 × 10−3 1.131 98%
XY 60 0.4 0.05 −3.886 1.30 × 10−4 0.632 95%
XY 70 0.4 0.05 −2.374 4.23 × 10−3 1.041 99%
XY 50 0.4 0.10 −4.013 9.71 × 10−5 0.603 96%
XY 60 0.4 0.10 −4.967 1.08 × 10−5 0.324 95%
XY 70 0.4 0.10 −4.204 6.25 × 10−5 0.523 99%
XY 50 0.4 0.15 −4.924 1.19 × 10−5 0.359 99%
XY 60 0.4 0.15 −4.426 3.75 × 10−5 0.496 97%
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Table A1. Cont.

Building
Orientation

T
(◦C)

Nozzle
Size

(mm)

Layer
Thickness

(mm)
Log C C m R-Square

(%)

XY 70 0.4 0.15 −4.502 3.15 × 10−5 0.453 75%
XY 50 0.6 0.05 −2.933 1.17 × 10−3 0.863 98%
XY 60 0.6 0.05 −4.512 3.08 × 10−5 0.456 94%
XY 70 0.6 0.05 −4.106 7.83 × 10−5 0.505 99%
XY 50 0.6 0.10 −4.789 1.63 × 10−5 0.381 99%
XY 60 0.6 0.10 −4.400 3.98 × 10−5 0.505 97%
XY 70 0.6 0.10 −2.101 7.93 × 10−3 1.083 85%
XY 50 0.6 0.15 −5.045 9.02 × 10−6 0.309 87%
XY 60 0.6 0.15 −2.560 2.75 × 10−3 0.980 98%
XY 70 0.6 0.15 −4.307 4.93 × 10−5 0.509 95%
XY 50 0.8 0.05 −3.679 2.09 × 10−4 0.781 95%
XY 60 0.8 0.05 −0.945 1.14 × 10−1 1.469 90%
XY 70 0.8 0.05 −0.934 1.16 × 10−1 1.490 85%
XY 50 0.8 0.10 −4.013 9.71 × 10−5 0.669 99%
XY 60 0.8 0.10 −3.721 1.90 × 10−4 0.691 64%
XY 70 0.8 0.10 −1.702 1.99 × 10−2 1.238 90%
XY 50 0.8 0.15 −4.505 3.13 × 10−5 0.529 99%
XY 60 0.8 0.15 −4.774 1.68 × 10−5 0.433 99%
XY 70 0.8 0.15 −3.266 5.42 × 10−4 0.812 91%
Y 50 0.4 0.05 −2.938 1.15 × 10−3 0.818 84%
Y 60 0.4 0.05 1.437 2.74 × 10+01 1.938 84%
Y 70 0.4 0.05 −0.837 1.46 × 10−1 1.357 92%
Y 50 0.4 0.10 −4.618 2.41 × 10−5 0.346 99%
Y 60 0.4 0.10 −4.316 4.83 × 10−5 0.419 98%
Y 70 0.4 0.10 −3.074 8.43 × 10−4 0.781 99%
Y 50 0.4 0.15 −4.826 1.49 × 10−5 0.314 97%
Y 60 0.4 0.15 −4.911 1.23 × 10−5 0.284 99%
Y 70 0.4 0.15 −4.344 4.53 × 10−5 0.433 92%
Y 50 0.6 0.05 −3.062 8.67 × 10−4 0.801 96%
Y 60 0.6 0.05 −4.301 5.00 × 10−5 0.432 96%
Y 70 0.6 0.05 −4.167 6.81 × 10−5 0.488 93%
Y 50 0.6 0.10 −4.836 1.46 × 10−5 0.340 90%
Y 60 0.6 0.10 −4.879 1.32 × 10−5 0.353 98%
Y 70 0.6 0.10 −2.241 5.74 × 10−3 1.002 96%
Y 50 0.6 0.15 −3.203 6.27 × 10−4 0.755 98%
Y 60 0.6 0.15 −3.063 8.65 × 10−4 0.814 96%
Y 70 0.6 0.15 −1.278 5.27 × 10−2 1.322 92%
Y 50 0.8 0.05 −4.307 4.93 × 10−5 0.508 94%
Y 60 0.8 0.05 0.270 1.86 × 100 1.705 97%
Y 70 0.8 0.05 −0.153 7.03 × 10−1 1.549 94%
Y 50 0.8 0.10 −4.620 2.40 × 10−5 0.429 99%
Y 60 0.8 0.10 −4.759 1.74 × 10−5 0.383 97%
Y 70 0.8 0.10 −1.951 1.12 × 10−2 1.124 96%
Y 50 0.8 0.15 −4.660 2.19 × 10−5 0.418 98%
Y 60 0.8 0.15 −4.660 2.19 × 10−5 0.418 98%
Y 70 0.8 0.15 −3.408 3.91 × 10−4 0.731 99%
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