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Abstract

Surrogate endpoints have been used to assess the efficacy of a treatment and can potentially 

reduce the duration and/or number of required patients for clinical trials. Using information theory, 

Alonso et al. (2007) proposed a unified framework based on Shannon entropy, a new definition 

of surrogacy that departed from the hypothesis testing framework. In this paper, a new family of 

surrogacy measures under Havrda and Charvat (H-C) entropy is derived which contains Alonso’s 

definition as a particular case. Furthermore, we extend our approach to a new model based on the 

information-theoretic measure of association for a longitudinally collected continuous surrogate 

endpoint for a binary clinical endpoint of a clinical trial using H-C entropy. The new model is 

illustrated through the analysis of data from a completed clinical trial. It demonstrates advantages 

of H-C entropy-based surrogacy measures in the evaluation of scheduling longitudinal biomarker 

visits for a phase 2 randomized controlled clinical trial for treatment of multiple sclerosis.
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1. Introduction

Surrogate endpoints which can be observed earlier, easier, possibly repeated, or are cost-

saving, have been used to replace clinical endpoints in clinical trials. For example, total 

tumor response rate and progression–free survival have been used in phase II and phase 

III cancer clinical trials as surrogate endpoints for overall survival, which often requires a 

longer trial duration to achieve adequate statistical power. The United States Food and Drug 

Administration (USFDA) has accepted the use of surrogate endpoints in regulatory reviews 

of new drug applications [1]. Most cancer drug approvals (55 of 83 (66%)) between 2009 

and 2014 by the USFDA have used at least one surrogate endpoint [2].

A motivative example is to use biomarkers in phase II cancer trials. Non-randomized single 

arm or randomized parallel clinical trials are used to evaluate signal of efficacy for a new 

drug. A binary response status, such as the total response based on the RECIST criterion [3], 

or a continuous response in change of tumor sizes [4] are common primary endpoints. For 

molecular-targeted drugs or immune oncology therapies, various serum, tissue, or imaging 

biomarkers are being developed to assess if the targeted pathways have been activated. 

These biomarkers are usually continuous, can be measured repeatedly, and their changes 

should proceed to a clinical response. However, the activation of a targeted pathway doesn’t 

necessarily imply the response to the treatment. Various questions have been raised about the 

utility of such biomarkers in phase II trials [5,6].

Surrogate endpoints provide the convenience to speed up the clinical trial [7], but may 

not represent the actual outcomes well regarding the benefit of therapy [8]. For instance, 

bevacizumab was approved in metastatic breast cancer based on the surrogate outcome and 

was later withdrawn for failing to confirm a survival benefit [5]. How to evaluate the therapy 

benefit between surrogates, denoted as S and the true clinical endpoint outcome, denoted as 

T, remains a scientific challenge.

There are a lot of successful statistical methods and measures to assess surrogate endpoints. 

One method to validate surrogate endpoints is to evaluate their correlation with clinically 

meaningful endpoints through meta-analyses [9]. Only 11 of 89 (12%) studies had found 

high correlation (r ≥ 0.85), and nine (10%) showed a moderate-only correlation (r > 0.7 to 

r < 0.85) between surrogates and endpoints [7], suggesting that the strength of surrogates in 

clinical practice is often unknown or weak.

The landmark paper by Prentice [8] proposed operational criteria for the identification of 

valid surrogate endpoints. A sufficient condition for an endpoint S, as a valid surrogate of 

a primary clinical endpoint T, in the evaluation of a treatment, denoted as Z, is that the 

random vector (Z, S, T) forms a Markov chain Z → S → T, i.e., conditioning on S, Z 
and T are independent from each other. This condition led to parametric and non-parametric 

approaches to quantify the proportion of the treatment effect on T that is explained by 

the treatment effect on the S [9–13]. Other proposed quantities to assess the utility of a 

surrogate endpoint include dissociative effects, associative effects, average causal necessity, 

average causal sufficiency, causal effect predictiveness surface, and principle surrogate, etc. 

[9,14–22].
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Buyse and Molenberghs [23] suggested two quantities to validate a surrogate endpoint: 

the relative effect which related the treatment effect on the primary outcome to that on 

the surrogate at the population level, and the adjusted association, which quantified the 

association between the primary outcome and surrogate marker after adjusting for the 

treatment at the individual level. These methods assumed that information regarding the 

surrogate and true endpoints was available from a single-trial surrogate evaluation method. 

They focused only on the validity, whereas the general association of the last one was related 

to the efficiency of a surrogate marker. Using an information-theoretic approach, Alonso and 

Molenberghs [24] and Pryseley et al. [25] redefined surrogacy in terms of the information 

content that S provides with respect to T. Using notations from Pryseley et al [25], let S be 

a continuous surrogate random variable and T be the continuous targeted clinical endpoint 

of interest. We use f(·) to denote the density function. The Shannon entropy functions for 

T and the conditional variable T|S are denoted as h(T) and h(T|S), respectively, where h(T) 

= E[−logf(T)] and h(T|S) = E[−logf(T|S)]. The corresponding entropy power functions are 

EPℎ(T ) = e
2
nℎ(T )/(2πe) and EPℎ(T |S) = e

2
nℎ(T |S)/(2πe). An information theoretic measure of 

association (ITMA) is defined by Alonso and colleagues as the proportion of uncertainty 

reduction measured by the entropy power function for T|S in reference to T:

Rℎ
2 = EPℎ(T ) − EPℎ(T |S)

EPℎ(T ) = 1 − e−2I(T , S) (1)

Here I(T, S) = E[−logf(T)] – E[−logf(T|S)] is the mutual information. If S is a good 

surrogate for T, uncertainty about the effect on T is reduced by knowing the knowledge of 

the effect on S. There are some useful properties as described by Alonso and Molenberghs 

[24]:

1. 0 ≤ Rℎ
2 ≤ 1

2. Rℎ
2 = 0, if and only if (T, S) are independent

3. Rℎ
2 is symmetric in (T, S)

4. Rℎ
2 is invariant under bijective transformations of T and S

5. When Rℎ
2 1 for continuous models, there is usually a deterministic relationship 

in the distribution of (T, S), that is, often T = φ(S).

6. When T is a discrete random variable, Rℎ
2 ≤ 1 − e−2ℎ(T ). So they propose to use 

Rℎ, max
2 = Rℎ

2 / 1 − e−2ℎ(T )  as a modified ITMA.

A good surrogacy should have a high Rℎ
2. The beauty of the informatic-theoretical 

framework is that it moves away from hypothesis testing and provides a quantitative 

measure of surrogacy. Thus, if there are two surrogate endpoints, S1 and S2, we can compare 

their utility as surrogacy endpoints based on the value of Rℎ
2′s.
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Multiple authors have provided examples of this approach and demonstrated applications for 

situations when S and T are both binary, continuous, longitudinal, and time-to-event random 

variables as well as ordinal outcomes [24–28].

In this paper, we present two new results on the topic of surrogate endpoints based 

on information-theoretic measure of association (ITMA). First, we extend the ITMA 

construction based on Shannon entropy to a construction based on Havrda and Charvat 

(H-C) entropy [29]. The extension is motivated by the general existence of the H-C entropy. 

Explicit expressions as well as the properties of ITMA in different situations based on H-C 

entropy are presented. Second, we extend the H-C ITMA model to a longitudinally collected 

continuous surrogate endpoint for a binary clinical endpoint of a clinical trial. Then, the 

benefit of S is evaluated with the ITMA [24,25]. The current work focuses on a single trial 

surrogacy and its extension to a meta-analytic framework will need further development.

The paper is organized in the following structure. In Section 2, we give an example of when 

the Shannon entropy cannot be defined, thus the surrogacy by Alonso and Molenberghs 

under the information theoretical framework will not work [24]. We then prove the existence 

of H-C entropy under general conditions. Therefore, a family of surrogacy measures based 

on ITMA of H-C entropy is defined. An explicit formula is obtained for the following 

situations: binary-binary, continuous–continuous and binary-continuous. In Section 3, we 

extend a longitudinal linear random effects model for the longitudinally collected surrogate 

marker and a probit regression model for a binary primary endpoint in clinical trials. An 

application using H-C entropy in selecting times to collect surrogate measures is presented 

using data from a completed clinical trial. Finally, Section 4 presents discussions and a 

conclusion. R-Programs that generated re-sults for tables in Section 3 are presented in the 

Appendix A.

2. Extension of ITMA Surrogacy from Shannon Entropy to Havrda-Charvat 

Entropy

Why should we consider the extension? While Shannon’s entropy is adequate in most 

applications, there are cases when a Shannon’s entropy function doesn’t exist, and thus the 

ITMA cannot be properly calculated. We give an example in the following.

Example 1.

Let X be the random variable with heavy tails. Its density function is

f(x) =

1
2πe− x2

2 , |x | ≤ c1

c2
|x | (log |x | )2 , |x | > c1

(2)

where c1 ≈ 1.44 and c2 ≈ 0.027 are chosen so that it is a continuous function with a heavy 

tail. The Shannon entropy h(X) for X is infinity.
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One way to make ITMA work is to use the Havrda-Charvat entropy [29], a generalization 

of entropy function that contains the Shannon entropy as its special case. Mathematically, 

Havrda-Charvat entropy is defined as follows:

HCα(X) = ∫ φα(f(x))f(x)dx . (3)

where

φα(x) = xα − 1 − 1 /(1 − α) α ≠ 1
−log(x) α = 1

(4)

It is easy to see that HC1(X) = h(X).

Proposition 1.

Under a mild regular condition that the density function for X is bounded, HCα(X) can 
always exist for an α > 1.

Proof.

We only need to prove that for a bounded density function f(x) by a constant K>0, 

∫ (f(x))adx < + ∞.

Let W = {x: f(x) > 1}, then it follows from the fact that

1 = ∫ f(x)dx = ∫W
f(x)dx + ∫W Cf(x)dx ≥ m(W ) + ∫W Cf(x)dx

that m(W) ≤ 1 and ∫W Cf(x)dx ≤ 1, where m(W) is the probability of W. Therefore,

∫ (f(x))αdx = ∫
W

(f(x))αdx + ∫
W C

(f(x))αdx ≤ Kα − 1m(W ) ∫
W C

f(x)dx < + ∞

Because Shannon’s entropy is a special case of H-C entropy and H-C entropy always 

exists with proper choice of α, ITMA of H-C entropy should be a more flexible way as a 

surrogacy measure for more distribution families. Different from Shannon’s entropy, H-C 

entropy satisfies a non-additive property such that HCα(T, S) = HCα(T) + HCα(S) + (1 − 

α)HCα(T)HCα(S), when T and S are independent. In general, the non-additive measures 

of entropy find justifications in many biological and chemical phenomena [30]. While H-C 

entropy has been used in quantum physics [31] and medical imaging research [32], it has not 

yet been used to describe the endpoint surrogacy for clinical trials.

To extend H-C entropy to measure the endpoint surrogacy for trials, we define the ITMA 

under H-C entropy power as the following:
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Rα
2 = 1 − e−2Iα(T , S)

(5)

where Iα(T, S) is the mutual information between T and S under H-C entropy [32]. 

Specifically, for α ≠ 1,

Iα(T , S) = HCα(T ) + HCα(S) + (1 − α)HCα(T )HCα(S) − HCα(T , S) (6)

When α = 1, Iα(T, S) = I(T, S) and Rα
2 = Rℎ

2 in Equation (1).

It is important to notice that: 
EPα(T ) − EPα(T |S)

EPα(T ) ≠ 1 − e−2Iα(T , S), for α ≠ 1 where 

EPα(X) = e
2
nHCα(X)/(2πe).

Some basic properties are available here.

1. When T and S are independent, Iα(T, S) = 0. Thus, Rα
2 = 0.

2. When T and S are deterministic, the value of Iα(T, S) will depend on α > 1 or α 
< 1 as seem in the following propositions.

Proposition 2.

Let T and S be two continuously normally distributed random variables such as 

the joint distribution of (T , S)′ N
μT
μS

,
σT

2 ρσTσS

ρσTσS σS
2 , the conditional distribution of 

(T |S) N μT +
ρσT
σS

S − μS , σT
2 1 − ρ2  and T N μT , σT

2 , where “′” means vector transpose. 

Then, we have the following results:

2.1 The mutual information for H-C entropy depends not only the correlation 

between T and S, but also their standard deviations for α ≠ 1.

Iα(T , S) = 2πσTσS
1 − α

α(1 − α) 1 − 1 − ρ2 1 − α α ≠ 1

Iα(T , S) = I(T , S) = − 1
2log 1 − ρ2 forα = 1

(7)

2.2 When α ≥ 1, ρ → ±1, Iα → ∞. ρ → ±0, Iα → 0, Iα is an increasing function of 

|ρ|

2.3 When α < 1, ρ → ±1, Iα → 1. ρ → ±0, Iα → 0, Iα is an increasing function of 

|ρ|.

Therefore, for α < 1, maximum Rα
2 = 1 − e−2. We can normalize Rα

2 by dividing its 

maximum value to make normalized Rα
2 in between 0 and 1
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Rα, max
2 = Rα

2

1 − e−2 , forα < 1 (8)

Proof.

HCα(T , S) = ∫ ∫ 1
(1 − α) fT , S

α − 1(t, s) − 1 fT , S(t, s)dtds

= 1
(1 − α) ∫ ∫ fT , S

α (t, s)dtds − 1

= 1
(1 − α)

2πσTσS 1 − ρ2

α 2πσTσS 1 − ρ2 α − 1

= 1
(1 − α)

2πσTσS 1 − ρ2 1 − α

α − 1

Similarly,

HCα(T ) = 1
(1 − α)

2πσT
2

1 − α
2

α − 1

HCα(S) = 1
(1 − α)

2πσS
2

1 − α
2

α − 1

And

(1 − α)HCα(T )HCα(S) = 1
(1 − α)

2πσT
2

1 − α
2

α − 1
2πσS

2
1 − α

2
α − 1

= 1
(1 − α)

2πσTσS
1 − α

α − 1
(1 − α)

2πσT
2

1 − α
2

α +
2πσS

2
1 − α

2
α + 1

(1 − α)

As such
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Iα(T , S) = 1
(1 − α)

2πσT
2

1 − α
2

α − 1 + 1
(1 − α)

2πσS
2

1 − α
2

α − 1 + 1
(1 − α)

2πσTσS
1 − α

α

− 1
(1 − α)

2πσT
2

1 − α
2

α +
2πσS

2
1 − α

2
α + 1

(1 − α) − 1
(1 − α)

2πσTσS 1 − ρ2 1 − α

α − 1

=
2πσTσS

1 − α

α(1 − α) 1 − 1 − ρ2 1 − α

Finally, results in 2.2 and 2.3 can be concluded from the expression of Iα(T, S). □

Proposition 3.

Let T and S be two binary outcome variables with 1 for a success and 0 for a failure such as 
the joint distribution of (T, S)′ ~ Multinomial (p0,0, p1,0, p0,1, p1,1). We have the following 
results:

Iα(T , S) = = 1
(1 − α) ∑

t = 0

1
∑

s = 0

1
pt, +

α p+, s
α − pt, s

α
(9)

3.1 When pt,s = pt,+ p+,s′ T and S are independent, Iα(T, S) = 0.

3.2 Let ρ =
p1, 1 − p1, + p+, 1

p1, + p0, + p+, 1p+, 0
 be the correlation between T and S. If [p0,0]α−1 + 

[p1,1]α−1 > [p1,0]α−1 + [p0,1]α−1, Iα(T, S) is an increasing function of ρ for α > 

1. For α < 1, Iα(T, S) is an increasing function of ρ if [p0,0]α−1 + [p1,1]α−1 > 

[p1,0]α−1 + [p0,1]α−1.

3.3 For α > 1, Iα(T, S) ≤ min(HCα(T), HCα(S)).

3.4 For α < 1, Iα(T, S) ≥ max(HCα(T), HCα(S)).

3.5 For a given marginal distribution of T and S, there is a maximum value of 
mutual information as

Iα(T , S) ≤ HCα(T ) + HCα(S) + (1 − α)HCα(T )HCα(S) − min HCα(T , S)
= Iα, max . (10)

Thus, we can normalize ITMA as Rα, max(T , S) =
Rα(T , S)

1 − e−2Iα, max
.

Proof.

Because

HCα(T , S) = 1
(1 − α) ∑

t = 0

1
∑

s = 0

1
pt, s pt, s

α − 1 − 1 = 1
(1 − α) ∑

t = 0

1
∑

s = 0

1
pt, s

α − 1
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HCα(T ) = 1
(1 − α) ∑

t = 0

1
pt, + pt, +

α − 1 − 1 = 1
(1 − α) ∑

t = 0

1
pt, +

α − 1

HCα(S) = 1
(1 − α) ∑

s = 0

1
p+, s p+, s

α − 1 − 1 = 1
(1 − α) ∑

s = 0

1
p+, s

α − 1

And

(1 − α)HCα(T )HCα(S) = 1
(1 − α) ∑

t = 0

1
pt, +

α − 1 ∑
s = 0

1
p+, s

α − 1

Thus,

HCα(T ) + HCα(S) + (1 − α)HCα(T )HCα(S) = 1
(1 − α) ∑

t = 0

1
pt, +

α ∑
s = 0

1
p+, s

α − 1

Therefore,

Iα(T , S) = 1
(1 − α) ∑

t = 0

1
pt, +

α ∑
s = 0

1
p+, s

α − 1 − 1
(1 − α) ∑

t = 0

1
∑

s = 0

1
pt, s

α − 1

= 1
(1 − α) ∑

t = 0

1
pt, +

α ∑
s = 0

1
p+, s

α − ∑
t = 0

1
∑

s = 0

1
pt, s

α

= 1
(1 − α) ∑

t = 0

1
∑

s = 0

1
pt, +

α p+, s
α − pt, s

α

which is the expression given in Equation (9).

Result 3.1 is the direct derivation from Equation (9) as pt,s = pt,+p+,s.

Result 3.2 can be derived through the following relationship:

p1, 1 = p1, + p+, 1 + ρ p1, + p0, + p+, 1p+, 0

p1, 0 = p1, + p+, 0 − ρ p1, + p0, + p+, 1p+, 0

p0, 1 = p0, + p+, 1 − ρ p1, + p0, + p+, 1p+, 0
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p0, 0 = p0, + p+, 0 + ρ p1, + p0, + p+, 1p+, 0

where

max −p1, + p+, 1, − p0, + p+, 0, p1, + p+, 0 − 1, p0, + p+, 1 − 1
p1, + p0, + p+, 1p+, 0

≤ ρ

≤ min 1 − p1, + p+, 1, 1 − p0, + p+, 0, p1, + p+, 0, p0, + p+, 1
p1, + p0, + p+, 1p+, 0

(11)

Then,

Iα(T , S) = 1
(1 − α) ∑

t = 0

1
∑

s = 0

1
pt, +

α p+, s
α − pt, + p+, s + ( − 1)t + sρ p1, + p0, + p+, 1p+, 0

α

Taking the derivative of Iα(T, S) on ρ, we have

dIα(T , S)
dρ = α

(1 − α) ∑
t = 0

1
∑

s = 0

1

−( − 1)t + s p1, + p0, + p+, 1p+, 0 pt, +
(z) p+, s

(z) + ( − 1)t + sρ p1, + p0, + p+, 1p+, 0
α − 1

= α
(1 − α) ∑

t = 0

1
∑

s = 0

1
p1, + p0, + p+, 1p+, 0 ( − 1)t + s + 1 pt, s

α − 1

= α
(1 − α) p1, + p0, + p+, 1p+, 0 − p0, 0

α − 1 − p1, 1
α − 1 + p1, 0

α − 1 + p0, 1
α − 1

Under condition that p0, 0
α − 1 + p1, 1

α − 1 > p1, 0
α − 1 + p0, 1

α − 1, 
dIα(T , S)

dρ > 0 for α > 1. 

Similarly, under condition that p0, 0
α − 1 + p1, 1

α − 1 < p1, 0
α − 1 + p0, 1

α − 1, 
dIα(T , S)

dρ > 0

for α < 1.

For 3.3 and 3.4

when α > 1,

HCα(T ) − Iα(T , S) = 1
(α − 1) ∑

t = 0

1
1 − pt, +

α − ∑
s = 0

1
pt, s

α − pt, +
α p+, s

α

= 1
(α − 1) ∑

t = 0

1
1 − ∑

s = 0

1
pt, s

α − pt, +
α 1 − ∑

s = 0

1
p+, s

α

≥ 1
(α − 1) ∑

t = 0

1
1 − ∑

s = 0

1
p+, s

α − pt, +
α 1 − ∑

s = 0

1
p+, s

α

= 1
(α − 1) 1 − ∑

s = 0

1
p+, s

α ∑
t = 0

1
1 − pt, +

α ≥ 0

However, when α < 1,
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HCα(T ) − Iα(T , S) = 1
(1 − α) ∑

t = 0

1
pt, +

α − 1 − ∑
s = 0

1
pt, +

α p+, s
α − pt, s

α

= 1
(1 − α) ∑

t = 0

1
pt, +

α − 1 − pt, +
α ∑

s = 0

1
p+, s

α + ∑
s = 0

1
pt, s

α

≤ 1
(1 − α) ∑

t = 0

1
pt, +

α − 1 − pt, +
α ∑

s = 0

1
p+, s

α + ∑
s = 0

1
p+, s

α

= 1
(1 − α) ∑

t = 0

1
pt, +

α − 1 ∑
s = 0

1
1 − p+, s

α ≤ 0.

Because of a symmetric relationship between T and S, we proved results 3.4 and 3.5.

For 3.5, for fixed marginal probability, Iα(T, S) depends only on ρ in HCα(T, S). Like 3.2,

dHCα(T , S)
dρ = α

(1 − α) p1, + p0, + p+, 1p+, 0 − p0, 0
α − 1 − p1, 1

α − 1 + p1, 0
α − 1 + p0, 1

α − 1

When 
dHCα(T , S)

dρ > 0, taking the lower boundary of ρ in inequality (11) will derive the min 

value of HCα(T, S).

When 
dHCα(T , S)

dρ < 0, taking the upper boundary of ρ in inequality (11) will derive the min 

value of HCα(T, S). □

Remark 1.

When the concordant pairs are more likely than the discordant pairs for the two binary 
endpoints, for α>1, [p0,0]α−1 + [p1,1]α−1 is more likely to be greater than [p1,0]α−1 + 

[p0,1]α−1. However, when α<1, [p0,0]α−1 + [p1,1]α−1 is more likely to be less than [p1,0]α−1 

+ [p0,1]α−1. Thus, when two binary endpoints have more chance to be concordant, the 
mutual information will be an increasing function of correlation coefficient of ρ as shown in 
Proposition 3 Result 3.2.

Now we define a model for a binary T and a continuous normally distributed surrogate 

variable S.

Proposition 4.

Let T be a binary outcome variable and S continuous normally distributed surrogate 

variable, where T~B(p0, p1) and S N μS, σS
2 . We assume that there is a latent variable 

U such that T = 1 ⇔ U ≥ 0, i.e, a Probit model with U~N(μT, 1) and μT = Φ−1(p1). 

Assume a correlation coefficient between U and S is ρ, the conditional binary endpoint 
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T|S follows a Bernoulli distribution with p1 |s = pT = 1|S = s = Φ
Φ−1 p1 + ρ

s − μS
σS

1 − ρ2  and 

p0 |s = pT = 0|S = s = 1 − pT = 1|S = s = Φ
Φ−1 p0 − ρ

s − μS
σS

1 − ρ2 . We have the following results:

4.1 The mutual information for H-C entropy is

Iα(T , S) = 1
(1 − α)

2πσS
2

1 − α
2

α ∑
t = 0

1
pt

α − ∫−∞
∞ ∑

t = 0

1
pt |s

α ϕα s − μS
σS

ds

=
2πσS

2
1 − α

2
(1 − α) α ∑

t = 0

1
pt

α − ℑ(α) Φ−1 pt
1 − ρ2 ,

( − 1)1 − t ρ
α

1 − ρ2

where ℑ(α)(a, b) = ∫−∞
∞ Φα(a + by)ϕ(y)dy.

4.2 When ρ = 0, Iα(T, S) = 0.

4.3 When ρ → ±1, 

Iα(T , S) 1
(1 − α)

2πσS
2

1 − α
2

α ∑t = 0
1 pt

α − Φ αΦ−1 p1 − Φ αΦ−1 p0

4.4 For α → 1, Iα(T , S) ∑t = 0
1 ∫−∞

∞ pt |slog pt |s ϕ(s)ds − ptlog pt ]

Proof.

The joint distribution function for (T, S) = (t, s) is:
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f(t, s) =

∫0
∞ 1

2πσS 1 − ρ2exp − 1
2 u − μT

S − μS
σS

1 ρ
ρ 1

−1 u − μT
S − μS

σS
du

t

× ∫−∞
0 1

2πσS 1 − ρ2exp − 1
2 u − μT

S − μS
σS

1 ρσS

ρσS σS
2

−1 u − μT
S − μS

σS
du

1 − t

= ∫0
∞ 1

2πσS 1 − ρ2exp − 1
2 1 − ρ2 u − μT − ρ

S − μS
σS

2
+ 1 − ρ2 S − μS

σS

2
du

t

× ∫−∞
0 1

2πσS 1 − ρ2exp − 1
2 1 − ρ2 u − μT − ρ

S − μS
σS

2
+ 1 − ρ2 S − μS

σS

2
du

1 − t

= 1 − Φ
−μT − ρ

S − μS
σS

1 − ρ2

t

Φ
−μT − ρ

S − μS
σS

1 − ρ2

1 − t
ϕ

S − μS
σS

σS

= 1 − Φ
−Φ−1 p1 − ρ

S − μS
σS

1 − ρ2

t

Φ
−Φ−1 p1 − ρ

S − μS
σS

1 − ρ2

1 − t
ϕ

S − μS
σS

σS

= p1 |s
t p0 |s

1 − t
ϕ

s − μS
σS

σS

Therefore,

HCα(T ) = 1
(1 − α) ∑

t = 0

1
pt α − 1

HCα(S) = 1
(1 − α)

2πσS
2

1 − α
2

α − 1

HCα(T , S) = 1
1 − α σS

1 − α∫−∞
∞

p1 |s
α + p0 |s

α ϕα S − μS
σS

d S
σS

− 1

HCα(T ) + HCα(S) + (1 − α)HCα(T )HCα(S) = 1
(1 − α)

2πσS
2

1 − α
2

α ∑
t = 0

1
pt α − 1

Iα(T , S)
= HCα(T ) + HCα(S) + (1 − α)HCα(T )HCα(S) − HCα(T , S)

= 1
(1 − α)

2πσS
2

1 − α
2

α ∑
t = 0

1
pt α − ∫−∞

∞ ∑
t = 0

1
pt |sα

ϕα s − μS
σS

σS
α ds

Therefore,
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HCα(T ) = 1
(1 − α) ∑

t = 0

1
pt α − 1

HCα(S) = 1
(1 − α)

2πσS
2

1 − α
2

α − 1

HCα(T , S) = 1
1 − α σS1 − α∫−∞

∞
p1 |sα + p0 |sα ϕα S − μS

σS
d S

σS
− 1

HCα(T ) + HCα(S) + (1 − α)HCα(T )HCα(S) = 1
(1 − α)

2πσS
2

1 − α
2

α ∑
t = 0

1
pt α − 1

Iα(T , S)
= HCα(T ) + HCα(S) + (1 − α)HCα(T )HCα(S) − HCα(T , S)

= 1
(1 − α)

2πσS
2

1 − α
2

α ∑
t = 0

1
pt

α − ∫−∞
∞ ∑

t = 0

1
pt |sα

ϕα s − μS
σS

σSα ds

Using J(α)(a, b) = ∫−∞
∞ Φα(a + by)ϕ(y)dy, we can derive an alternative formulation

∫−∞
∞ ∑

t = 0

1
Φ

Φ−1 pt + ( − 1)1 − tρ
s − μS

σS
1 − ρ2

α

ϕα
s − μS

σS
σSα ds

= ∫−∞
∞ ∑

t = 0

1
Φ

Φ−1 pt + ( − 1)1 − tρ
S − μS

σS
1 − ρ2

α

e
− α

2σS
2 s − μS

2

2πσS
2

α
2

ds

=
2πσS

2 /α
1
2

2πσS
2

α
2

∫−∞
∞ ∑

t = 0

1
Φ

Φ−1 pt + ( − 1)1 − t ρ
αy

1 − ρ2

α
e− 1

2y2

(2π)
1
2

dy

=
2πσS

2
1 − α

2
α ∑

t = 0

1 ∫−∞
∞

Φ
Φ−1 pt + ( − 1)1 − t ρ

αy

1 − ρ2

α

ϕ(y)dy

Iα(T, S)can be simplified as

Iα(T , S) =
2πσS

2
1 − α

2
(1 − α) α ∑

t = 0

1
pt α − ℑ(α) Φ−1 pt

1 − ρ2 ,
( − 1)1 − t ρ

α
1 − ρ2

Thus, we complete the proof for 4.1.

For 4.2, ρ = 0,
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Iα(T , S) = 1
(1 − α)

2πσS
2

1 − α
2

α ∑
t = 0

1
pt

α − ∫−∞
∞

p1α + p0α
ϕα S − μS

σS
σSα ds = 0

For 4.3, as ρ → 1,

∫−∞
∞

p1 |sα + p0 |sα
ϕα s − μS

σS
σSα ds ∫−Φ−1 p1

∞ ϕα s − μS
σS

σSα ds + ∫−∞
Φ−1 p0

ϕα s − μS
σS

σSα ds

=
2πσS

2
1 − α

2
α Φ αΦ−1 p1 + Φ αΦ−1 p0

Similarly, ρ → −1, 

∫−∞
∞ p1 |sα + p0 |sα

ϕα s − μS
σS

σSα ds
2πσS

2
1 − α

2
α Φ αΦ−1 p1 + Φ αΦ−1 p0 .

So, ρ → ±1, Iα(T , S) 1
(1 − α)

2πσS
2

1 − α
2

α ∑t = 0
1 pt

α − Φ αΦ−1 pt .

For α = 1, H-C entropy is similar to Shannon’s entropy. Thus, by taking limit of α to 1, we 

can derive Shannon’s mutual information for the Probit model in 4.4.

limα 1Iα(T , S) = limα 1
2πσS

2
1 − α

2
(1 − α) α ∑

t = 0

1
pt α − ∫−∞

∞
Φ

Φ−1 pt + ( − 1)1 − t ρ
αy

1 − ρ2

α

ϕ(y)dy

= limα 1
1

(1 − α) ∑
t = 0

1
pt α − ∫−∞

∞
Φ

Φ−1 pt + ( − 1)1 − t ρ
αy

1 − ρ2

α

ϕ(y)dy

= limα 1
1

−1 ∑
t = 0

1
pt αlog pt − ∫−∞

∞
Φ

Φ−1 pt + ( − 1)1 − t ρ
αy

1 − ρ2

α

log Φ
Φ−1 pt + ( − 1)1 − t ρ

αy

1 − ρ2 ϕ(y

)dy

= ∑
t = 0

1 ∫−∞
∞

Φ
Φ−1 pt + ( − 1)1 − tρy

1 − ρ2 log Φ
Φ−1 pt + ( − 1)1 − tρy

1 − ρ2 ϕ(y)dy − ptlog pt

= ∑
t = 0

1 ∫−∞
∞

pt ∣ ylog pt ∣ y ϕ(y)dy − ptlog pt
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Remark 2.

Taking into account that J(2)(a, b) = Φ a
1 + b2 − 2T a

1 + b2 , 1
1 + 2b2 , where 

T (ℎ, k) = ϕ(ℎ)∫0
k ϕ(ℎx)

1 + x2dx is the Owen’s function [33] and the property T(h, k) = T(−h, k), we 

can derive explicit formula for α=2,

I2(T , S) = − 1
2 πσS

∑
t = 0

1
pt

2 − Φ
Φ−1 pt
1 − ρ2/2

− 2T
Φ−1 pt
1 − ρ2/2

, 1 − ρ2

Since Φ−1(pt) = Φ−1(1 – p1−t) = −Φ−1(p1−t) and Φ
Φ−1 p1
1 − ρ2/2

+ Φ
Φ−1 p0
1 − ρ2/2

= 1 we can 

simplify the expression as

I2(T , S) = 1
2 πσS

1 − 4T
Φ−1 p0
1 − ρ2/2

, 1 − ρ2 − p1 2 − p0
2

3. Surrogacy of a Longitudinal Biomarker for a Binary Clinical Endpoint

3.1. Model for Longitudinal Continuous Surrogate Biomarkers in Phase II Trials

In many phase II trials, clinical endpoints of interest (T) are often a proportion of a binary 

endpoint or mean of a continuous variable. For example, in oncology phase II trials, a 

common clinical endpoint is total response rate. The surrogate biomarkers, on the other 

hand, are usually lab tests either from serum or urine or imaging modalities that can be 

measured repeatedly during the study. In this section, we focus on a binary one-time clinical 

endpoint T and a continuous repeated surrogate variable S.

In the remainder of the paper, we will use tj to denote the time of jth measurement, since 

baseline in a longitudinal trial. For simplicity, consider the difference model from baseline t0 

= 0.

Let the general model as:

Si, j |Zi, Ti = μSi + α1Zi + α2tj + α3Zitj + βjTi + ϵS, ij, for j = 1, …, K .

Thus, Si |Zi, Ti = Si, 0|Zi, Ti, Si, 1|Zi, Ti, …, Si, K |Zi, Ti ′ MV N μSi, ΣSS , where

μSi = μS + α1Zi + α2 + α3Zi t1 + β1Ti, …, μS + α1Zi + α2 + α3Zi tK + βKTi ′

Using a bivariate probit model [34] for the joint distribution of (Zi, Ti)′ we can derive a 

probit model for the conditional joint distribution for (Zi, Ti)′|S:
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Φ−1 P Ti = 1

Φ−1 P Zi = 1
Si MV N2

μ0, 1 γ1′

μ0, 2 γ2′
1
Si

, 1 ρ
ρ 1

where μ0,k and γk are the intercept and regression coefficient vector for the probit regression 

for T given longitudinal S (k = 1) and for Z given longitudinal S (k = 2), respectively, and ρ 
is the correlation coefficient of two underlying latent normal variables for T and Z.

Because a linear combination of multivariate normal variables is still a normal random 

variable, we can use the Proposition 4 to calculate ITMA under H-C entropy power to 

evaluate surrogacy of the longitudinal biomarker in each arm conditioning on Z. We can 

also average over the treatment arms to get the mean trial level ITMA under H-C entropy, 

denoted as

Iα(T , S |Z) = E Iα(T , S |Z) = Iα(T , S |Z = 1)P (Z = 1) + Iα(T , S |Z = 0)P (Z = 0)

Furthermore, we can use the mutual information Iα(T, Z|S) to verify Prentice’s criteria as 

suggested by [24]: i.e, conditioning on surrogate S, the clinical endpoint T and treatment 

assignment Z are independent, thus a good surrogate should lead to Iα(T, Z|S) ≈ 0. Since

Iα(T , Z |S) = E HCα(T |S) + HCα(Z |S) + (1 − α)HCα(T |S)HCα(Z |S) − HCα(T , Z |S)

where

HCα(T |S) = 1
1 − α [p(T = 1|S)]α + [p(T = 0|S)]α − 1 (12)

HCα(Z |S) = 1
1 − α [p(Z = 1|S)]α + [p(Z = 0|S)]α − 1

HCα(T , Z |S) = 1
1 − α [p(T = 1, Z = 1|S)]α + [p(T = 1, Z = 0|S)]α + [p(T = 0, Z = 1|S)]α

+ [p(T = 0, Z = 0|S)]α − 1

So for α ≠ 1, 

Iα(T , Z |S) = 1
1 − αE ∑t = 0

1 ∑z = 0
1 [p(T = t |S)]α[p(Z = z |S)]α − p T = t, Z = z |S α  When 

α = 1, Iα(T , Z |S) = E −∑t = 0
1 p(T = t |S)log[p(T = t |S)] − ∑z = 0

1 p(Z = z |S)log[p(Z = z |S)]
+ ∑t = 0

1 ∑z = 0
1 p(T = t, Z = z |S)log[p(T = t, Z = z |S)]

.

For real data, we can use bivariate probit model to estimate equations for [p(T = t|S)]α, [p(Z 
= z|S)]α, and [p(T = t, Z = z|S)]α, then use Equation (9) to perform numerical integration for 

the derivation of Iα(T, Z|S). One way to perform this analysis is to use R-package mvProbit 
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from CRAN-R (https://cran.r-project.org/web/packages/mvProbit/mvProbit.pdf, accessible 

on January 29, 2022).

3.2. A Data Example

“Safety, Tolerability and Activity Study of Ibudilast in Subjects with Progressive Multiple 

Sclerosis” (NCT01982942) is a US National Institute of Health (NIH) sponsored 

multicenter, randomized, double-blind, placebo-controlled, parallel-group phase II study 

from November 2013 to December 2017. The main study results have been published by 

Fox, et al. [35]. The trial data is publicly available upon request to NIH. We use this data for 

the numerical illustration for H-C ITMA.

More specifically, patients were enrolled with primary or secondary progressive multiple 

sclerosis of this phase II randomized trial of oral ibudilast (≤100 mg daily) or placebo for 

96 weeks. The primary efficacy end point was the rate of brain atrophy, as measured by the 

brain parenchymal fraction (brain size relative to the volume of the outer surface contour 

of the brain). Major secondary end points included the change in the pyramidal tracts on 

diffusion tensor imaging and cortical atrophy, all measures of tissue damage in multiple 

sclerosis.

We requested and received data from the study team that contained 104 placebo patients 

and 99 treated patients, with longitudinal observations in brain parenchymal fraction (BPF) 

and thinning of the cortical gray matter (cortical thickness) measured by magnetic resonance 

imaging at week 0, 24, 48, 72, and 96. For illustration purposes, we altered the primary 

and secondary endpoints of the trial and created a binary clinical endpoint as the cortical 

thickness (CTH) greater than 3 mm as a clinical outcome for less cortical gray matter 

atrophy and used BPF as the continuous longitudinal marker. Table 1 provides a summary of 

the data used for this illustration.

From Table 1, we can see that 104 patients were randomized to the control arm and 99 

patients to the treatment arm. The treatment significantly reduced cortical atrophy for 71% 

patients who maintained more than 3 mm cortical thickness (CTH) in the treatment arm in 

comparison to 48% in the placebo arm at 96 weeks post baseline. While the differences 

in BPFs between treatment arms had p-values above 0.38 in each follow-up MRI, the 

aggregated changes over time measured by the slopes of a mixed random effects regression 

model achieved highly statistical significance with a p-value of 0.0056.

The importance of evaluating the surrogacy of the longitudinal BPF measurements for the 

binary CTH endpoint in MS trials is to understand the strength of surrogacy and whether it 

can be used to shorten trial duration. More importantly for future trial design, we need to 

understand how often and when the longitudinal measurements should be performed.

Using formulas derived in Proposition 4, we derived the mean mutual information and 

ITMA of longitudinal BPF as a surrogate for the clinical endpoint of maintaining more than 

3 mm cortical thickness at the end of 96 weeks. We explore three choices of α = 0.5, 1, and 

2 to show the difference between H-C and Shannon entropies. The value of α = 1 has been 

considered because it corresponds to Shannon entropy. The other two alpha values have been 
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considered in other papers such as [32]. The columns of Table 2 are organized according to 

values of α. Each row in Table 2 represents a design to use BPF in the baseline (week 0) and 

different follow-up visits to construct a longitudinal surrogate endpoint. For example, the 

first row used the baseline and week 24 data while the last row used the data from baseline, 

weeks 48 and 72.

From Table 2, we can see that the longitudinal BPF measures at the baseline with at least 

one follow-up visit were all reasonable surrogates for the binary endpoint of CTH > 3.0 

mm. H-C entropy with α = 0.5 was not sensitive enough to differentiate subtle differences 

in surrogacy utility of different designs to collect surrogate endpoints. When α = 1, H-C 

entropy is Shannon entropy and it was able to discriminate among different designs to the 

3rd decimal place. H-C entropy for α = 2 was more sensitive and showed differences in all 

designs. As it demonstrated, using longitudinal BPF data could shorten trial duration to 72 

weeks. For a trial ended at 72 weeks, additional BPF measures at week 24 and week 48 did 

not add any more valuable utility to surrogacy than a single measure in week 24. Overall, the 

p-values from the linear mixed random effects model reflected the directions of ITMAs, but 

not in completely concordance, perhaps, due to random variation in fitting the mixed random 

effects and the probit models.

Table 3 examines the longitudinal surrogacy based on Prentice’s criteria. Here we want to 

determine if Iα(T, Z|S) is close to 0. The results of Table 3 confirm the observations in 

Table 2 that the longitudinal BPF is a good surrogate variable for binary CTH > 3.0 mm at 

96 weeks. Because Table 3 uses the same model as Table 2, the p-values for longitudinal 

models are omitted. Once again, Iα(T, Z|S) decreases with α.

4. Conclusions

Alonso et al. [24] proposed to assess the validity of a surrogate endpoint in terms 

of uncertainty reduction. The main proposals for measures of uncertainty are found in 

information theory. These authors based their proposal in the well-known Shannon entropy. 

In the past there has been an extensive work on generalized entropies [30–32,36–39]. We 

focus on the Havrda-Charvat entropy, which reduces to the Shannon case if the parameter 

is set to one, to extend that surrogacy measure. Based on the generalized entropy, we 

consider a generalized mutual information as it has been proved in other contexts to have 

better performance of some members of this family [30–32]. In this paper, the theoretical 

development of these measures has been completed. The advantage of our proposal is that 

it contains a particular case of a useful measure to assess surrogacy and demonstrates the 

ability to easily explore other measures which may have performance advantages for specific 

questions. We have seen the advantage of using α = 2 instead of α = 1 in our example to 

evaluate scheduling of longitudinal visits.

Some additional issues are pending. On one hand, we are working to carry out a more 

extensive numerical study for assessing the performance of these measures in the endpoint 

surrogacy context. In our paper, we compared the performance of ITMA in a real trial with 

three choices of α (0.5, 1 and 2). They were chosen for illustration purposes. The optimal 

choice of α remains a research question. Additional research can consider other ITMA, such 
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as divergence measures [36], taking into account that the mutual information is equal to the 

Kullback divergence, or measures of unilateral dependency as that defined by Andonie et al. 

[37] based on the informational energy [39] or surrogacy for testing of variances [38].
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Appendix A.: R-Program

R-Program for Table 1

### Row 1 ###

fisher.test(table(nihexample$CTh96YesNo,nihexample$trt.group))

### Row 3–5 ###

t.test(nihexample$bpf0~nihexample$trt.group)

t.test(nihexample$bpf96~nihexample$trt.group)

### Row 6 ###

library(lme4)

summary(lmer(bpf~trt.group+week+trt.group*week+(1|ID),data=nihexamplelong))

R-Program for Table 2

hcentr=function(pt,preds,pz,trt, alpha){

s2=var(preds)

if(alpha!=1){

mtrinf=pz/(1-alpha)*((2*pi*s2)^((1-alpha)/2)/sqrt(alpha)*((pt[2])^alpha+(1-

pt[2])^alpha)-mean((pnorm(preds[trt==1]))^alpha+(1-

pnorm(preds[trt==1]))^alpha))+(1-pz)/(1-alpha)*((2*pi*s2)^((1-alpha)/2)/

sqrt(alpha)*((pt[1])^alpha+(1-pt[1])^alpha)-

mean((pnorm(preds[trt==0]))^alpha+(1-pnorm(preds[trt==0]))^alpha))}
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if(alpha==1){ mtrinf=pz*(mean(pnorm(preds[trt==1])*log(pnorm(preds[trt==1])))

+mean(1-pnorm(preds[trt==1])*log(1-pnorm(preds[trt==1])))-

pt[2]*log(pt[2])-(1-pt[2])*log(1-pt[2]))+(1-

pz)*(mean(pnorm(preds[trt==0])*log(pnorm(preds[trt==0])))+mean(1-

pnorm(preds[trt==0])*log(1-pnorm(preds[trt==0])))-pt[1]*log(pt[1])-(1-

pt[1])*log(1-pt[1]))}

itma=1-exp(-2*mtrinf)

c(mtrinf,itma)

}

### Row 1 ###

pt=table(nihexample$CTh96YesNo,nihexample$trt.group)[2,]/

table(nihexample$trt.group)

myprobit1=glm(CTh96YesNo~trt.group+bpf0+bpf24,family=binomial(link=“probit”),

 data=nihexample)

row1=round(c(

hcentr(pt,myprobit1$linear.predictors,sum(nihexample$trt.group)/

length(nihexample$trt.group),nihexample$trt.group,0.5),

hcentr(pt,myprobit1$linear.predictors,sum(nihexample$trt.group)/

length(nihexample$trt.group),nihexample$trt.group,1),

hcentr(pt,myprobit1$linear.predictors,sum(nihexample$trt.group)/

length(nihexample$trt.group),nihexample$trt.group,2),

summary(lmer(bpf~trt.group+week+trt.group*week+(1|

ID),data=nihexamplelong[nihexamplelong$week==0 |nihexamplelong$week==24, ]))

$coefficients[4,5]),4)

### similar codes for other rows ####

R-Program for Table 3

library(mvtnorm)

library(mvProbit)

####(T, Z)####

table(table(nihexample$CTh96YesNo,nihexample$trt.group)

#####choose varibles: “bpf0”, “bpf24” “bpf48” “bpf72” “bpf96” (1–5) 

fullmodel1 = 

mvProbit(cbind(CTh96YesNo,trt.group)~bpf0+bpf24+bpf48+bpf72+bpf96,data=nihexa

mple)

#####model

summary(fullmodel1)

sigma=symMatrix(c(1,fullmodel1$estimate[length(fullmodel1$estimate)],1))

################################################

#mu1=fullmodel1$estimate[1]+fullmodel1$estimate[2]*nihexample$bpf0+fullmodel1

$estimate[3]*nihexample$bpf24

#mu2=fullmodel1$estimate[4]+fullmodel1$estimate[5]*nihexample$bpf0+fullmodel1

$estimate[6]*nihexample$bpf24
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#mu1=fullmodel1$estimate[1]+fullmodel1$estimate[2]*nihexample$bpf0+fullmodel1

$estimate[3]*nihexample$bpf24+fullmodel1$estimate[4]*nihexample$bpf48

#mu2=fullmodel1$estimate[5]+fullmodel1$estimate[6]*nihexample$bpf0+fullmodel1

$estimate[7]*nihexample$bpf24+fullmodel1$estimate[8]*nihexample$bpf48

#mu1=fullmodel1$estimate[1]+fullmodel1$estimate[2]*nihexample$bpf0+fullmodel1

$estimate[3]*nihexample$bpf24+fullmodel1$estimate[4]*nihexample$bpf48+fullmod

el1$estimate[5]*nihexample$bpf72

#mu2=fullmodel1$estimate[6]+fullmodel1$estimate[7]*nihexample$bpf0+fullmodel1

$estimate[8]*nihexample$bpf24+fullmodel1$estimate[9]*nihexample$bpf48+fullmod

el1$estimate[10]*nihexample$bpf72

mu1=fullmodel1$estimate[1]+fullmodel1$estimate[2]*nihexample$bpf0+fullmodel1$

estimate[3]*nihexample$bpf24+fullmodel1$estimate[4]*nihexample$bpf48+fullmode

l1$estimate[5]*nihexample$bpf72+fullmodel1$estimate[6]*nihexample$bpf96

mu2=fullmodel1$estimate[7]+fullmodel1$estimate[8]*nihexample$bpf0+fullmodel1$

estimate[9]*nihexample$bpf24+fullmodel1$estimate[10]*nihexample$bpf48+fullmod

el1$estimate[11]*nihexample$bpf72+fullmodel1$estimate[12]*nihexample$bpf96

fullmodel1$estimate

sigma

##################### T|S Z|S############

bs=10000

set.seed(873465)

BT=sample(c(1:length(CTh96YesNo)), size = bs, replace = TRUE) ### bootstrap 

ID###

BT_U1=matrix(0,bs,2) #### 1 D normal probability

BT_U2=matrix(0,bs,4) ####2 D normal probability

for (i in 1:bs)

{ c=BT[i]

BT_U1[i,1]=1-pnorm(0, mu1[c], 1) ####P(T=1|S)

BT_U1[i,2]=1-pnorm( 0,mu2[c], 1)####P(Z=1|S)

BT_U2[i,1]=pmvnorm(lower=c(0,0),up-

per=Inf,mean=c(mu1[c],mu2[c]),sigma)####P(T=1,Z=1|S]

BT_U2[i,2]=pmvnorm(lower=c(0,-Inf),up-

per=c(Inf,0),mean=c(mu1[c],mu2[c]),sigma)####P(T=1,Z=0|S]

BT_U2[i,3]=pmvnorm(lower=c(-

Inf,0),upper=c(0,Inf),mean=c(mu1[c],mu2[c]),sigma)####P(T=0,Z=1|S]

BT_U2[i,4]=pmvnorm(lower=-

Inf,upper=c(0,0),mean=c(mu1[c],mu2[c]),sigma)####P(T=0,Z=0|S]}

################################

alfa=0.5

p1=mean((BT_U1[,1]*BT_U1[,2])^alfa+((1-BT_U1[,1])*BT_U1[,2])^alfa+

(BT_U1[,1]*(1-BT_U1[,2]))^alfa+((1-BT_U1[,1])*(1-BT_U1[,2]))^alfa)

p2=mean(BT_U2[,1]^alfa+BT_U2[,2]^alfa+BT_U2[,3]^alfa+BT_U2[,4]^alfa)

I_alfa=1/(1-alfa)*(p1-p2)

IM_alfa=1-exp(-2*I_alfa)
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I_alfa

IM_alfa

###################################

alfa=2

p1=mean((BT_U1[,1]*BT_U1[,2])^alfa+((1-BT_U1[,1])*BT_U1[,2])^alfa+

(BT_U1[,1]*(1-BT_U1[,2]))^alfa+((1-BT_U1[,1])*(1-BT_U1[,2]))^alfa) 

p2=mean(BT_U2[,1]^alfa+BT_U2[,2]^alfa+BT_U2[,3]^alfa+BT_U2[,4]^alfa)

I_alfa=1/(1-alfa)*(p1-p2)

IM_alfa=1-exp(-2*I_alfa)

I_alfa

IM_alfa

######## alfa=1#####################

p1=-mean(BT_U1[,1]*log(BT_U1[,1])+(1-BT_U1[,1])*log(1-BT_U1[,1]))

p2=-mean(BT_U1[,2]*log(BT_U1[,2])+(1-BT_U1[,2])*log(1-BT_U1[,2]))

p3=mean(BT_U2[,1]*log(BT_U2[,1])+BT_U2[,2]*log(BT_U2[,2])

+BT_U2[,3]*log(BT_U2[,3]) +BT_U2[,4]*log(BT_U2[,4]))

I=p1+p2+p3

IM=1-exp(-2*I)
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Table 1.

Summary Statistics for The Real Data Example.

Variable Control (N = 104) Treatment (N = 99) p-Value *

CTH > 3 mm: N (%) 50 (48%) 70 (71%) 0.0016

BPF: Mean (SD)

Week 0 0.8023 (0.0301) 0.8040 (0.0281) 0.6823

Week 24 0.8012 (0.0301) 0.8039 (0.0277) 0.5001

Week 48 0.8009 (0.0311) 0.8036 (0.0282) 0.5115

Week 72 0.8001 (0.0303) 0.8032 (0.0283) 0.4433

Week 96 0.7989 (0.0306) 0.8026 (0.0293) 0.3813

Change/24 weeks ** −0.0008 (0.0001) −0.0004 (0.0001) 0.0056

*
p-value for CTH > 3 mm was calculated using Fisher’s exact test; p-values for mean differences at follow-up visits were calculated using a t-test. 

P-value for changes in 24 weeks (slopes) was calculated by the mixed random effects model.

**
change per 24 weeks was estimated using a mixed random effects linear regression model using the R-lmer package.
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Table 2.

H-C Mutual Information and ITMA by Different Longitudinal Designs.

BPF Data Used
α = 0. 5 α = 1 α = 2

p-Value *
Iα(T, S|Z) ITMA Iα(T, S|Z) ITMA Iα(T, S|Z) ITMA

0, 24 4.6042 0.9999 2.6300 0.9948 0.6063 0.7026 0.0797

0, 24, 48 4.6117 0.9999 2.6307 0.9948 0.6066 0.7028 0.1025

0, 24, 48, 72 4.6209 0.9999 2.6352 0.9949 0.6071 0.7031 0.0390

0, 24, 48, 72, 96 4.6103 0.9999 2.6361 0.9949 0.6069 0.7029 0.0056

0, 48 4.4683 0.9999 2.6012 0.9945 0.5980 0.6976 0.1586

0, 72 4.4522 0.9999 2.5912 0.9944 0.5962 0.6965 0.0675

0, 24, 72 4.6223 0.9999 2.6348 0.9949 0.6072 0.7031 0.0485

0, 48, 72 4.4696 0.9999 2.6022 0.9945 0.5980 0.6976 0.0382

*
p-value for treatment and visit interactions in a linear mixed random effects model using the R-lmer function.
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Table 3.

Prentice Criteria for Surrogate Endpoint.

BPF Data Used
α = 0. 5 α = 1 α = 2

Iα(T, Z|S) ITMA Iα(T, Z|S) ITMA Iα(T, Z|S) ITMA

0, 24 0.0390 0.0751 0.0271 0.0528 0.0108 0.0213

0, 24, 48 0.0388 0.0747 0.0270 0.0526 0.0108 0.0213

0, 24, 48, 72 0.0407 0.0782 0.0280 0.0545 0.0110 0.0218

0, 24, 48, 72, 96 0.0395 0.0760 0.0274 0.0533 0.0110 0.0218

0, 48 0.0428 0.0820 0.0297 0.0578 0.0117 0.0231

0, 72 0.0416 0.0798 0.0287 0.0558 0.0111 0.0219

0, 24, 72 0.0403 0.0775 0.0278 0.0541 0.0110 0.0217

0, 48, 72 0.0434 0.0832 0.0299 0.0580 0.0116 0.0229
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