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ABSTRACT

Background. The aim of this work is to combine radio-

logical and pathological information of tumor to develop a

signature for pretreatment prediction of discrepancies of

pathological response at several centers and restage

patients with locally advanced rectal cancer (LARC) for

individualized treatment planning.

Patients and Methods. A total of 981 consecutive

patients with evaluation of response according to tumor

regression grade (TRG) who received nCRT were retro-

spectively recruited from four hospitals (primary cohort

and external validation cohort 1–3); both pretreatment

multiparametric MRI (mp-MRI) and whole slide image

(WSI) of biopsy specimens were available for each patient.

Quantitative image features were extracted from mp-MRI

and WSI and used to construct a radiopathomics signature

(RPS) powered by an artificial-intelligence model. Models

based on mp-MRI or WSI alone were also constructed for

comparison.
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Results. The RPS showed overall accuracy of

79.66–87.66% in validation cohorts. The areas under the

curve of RPS at specific response grades were 0.98

(TRG0), 0.93 (B TRG1), and 0.84 (B TRG2). RPS at each

grade of pathological response revealed significant

improvement compared with both signatures constructed

without combining multiscale tumor information

(P\ 0.01). Moreover, RPS showed relevance to distinct

probabilities of overall survival and disease-free survival in

patients with LARC who underwent nCRT (P\ 0.05).

Conclusions. The results of this study suggest that

radiopathomics, combining both radiological information

of the whole tumor and pathological information of local

lesions from biopsy, could potentially predict discrepancies

of pathological response prior to nCRT for better treatment

planning.

Standard treatment for locally advanced rectal cancer

(LARC) includes neoadjuvant chemoradiotherapy (nCRT)

followed by total mesorectal excision (TME) and adjuvant

chemotherapy,1,2 which is able to decrease the local

relapse, downstage and downsize the tumor, and increase

the rates of subsequent successful R0 resection and

sphincter-preserving surgery.3 Patients’ pathological

response to nCRT is usually evaluated by tumor regression

grade (TRG) as TRG0: no remaining viable cancer cells;

TRG1: only small clusters or single cancer cells remaining;

TRG2: residual cancer remaining, but with predominant

fibrosis; and TRG3: minimal or no tumor kill with exten-

sive residual cancer, combined with lymph node status,

which is variable and available only after completion of all

preoperative treatment and surgery and thus cannot provide

guidance for adjusting the therapeutic approach. Impor-

tantly, TRG has been related to distinct probabilities of

cancer recurrence and survival, especially between TRG0

and TRG3.4–6 After nCRT, 15–27% of patients with LARC

who receive nCRT will achieve pathologic complete

response (pCR), usually achieving perfect long-term out-

comes, preferring to avoid surgery, and undergoing an

organ-preserving strategy such as ‘‘watch and wait’’ man-

agement.7–9 Additionally, for the more than 50% of

patients who are unable to reach good response (GR),10

treatment optimization according to different pathological

responses is essential to balance the benefits of nCRT

versus its toxicity.11 Therefore, it is important to establish a

reliable signature for predicting response discrepancies

prior to nCRT.

Multiparametric magnetic resonance imaging (mp-MRI)

is a requisite examination for LARC. Several investigators

have revealed that radiomics using quantitative and high-

dimensional image features from mp-MRI and the machine

learning method provided a new strategy for cancer diag-

nosis, efficacy evaluation, and prognosis.12–14 Radiomics

using pre- and posttreatment mp-MRI showed the possi-

bility of evaluating pCR after nCRT to distinguish patients

who could avoid TME.15 Furthermore, several previous

studies have predicted that response to nCRT can guide

therapy regimen planning, not only helping patients to

avoid surgery but also as a pretreatment prediction of pCR

and GR with two binary category models.16,17 Some works

have combined this with more imaging modalities to con-

struct a better prediction model by enriching the tumor

description.18 Nevertheless, personalized treatment still

requires a more hierarchical prediction model based on

different pathological responses, to reduce decision costs.

More importantly, all previous studies only considered the

tumor on a macroscale, using medical imaging to depict the

whole tumor. This may suffer from the potential risk of

overlooking tumor heterogeneity. In some cases, compared

with macroscopic information from mp-MRI of whole

tumor, pathological information from microscopic obser-

vation is necessary to enrich the description of lesions, but

insufficient attention has been paid to the efficacy of such

correlations.

Pathological evaluation of the biopsy specimen from

colonoscopy is the gold standard for rectal cancer diag-

nosis. Based on existing reports, this shows great

application prospects for predictions of curative effect and

prognosis in rectal cancer.19,20 Besides, compared with

conventional pathological diagnosis by visual evaluation of

morphology and grade differentiation, the subvisual mor-

phometric phenotypes of the digitizing whole slide image

(WSI) mined by machine learning provides a digital tool

for pathological evaluation of the biopsy specimen, possi-

bly having promising applications in treatment

optimization.21 Meanwhile, it may be possible to integrate

features from WSI with gene information to construct a

better prediction model for prognosis.22 It is hoped that

combining radiological information of whole tumor at

macroscale and pathological information of local lesions at

microscale to enrich the tumor descriptors will provide

prospects for the construction of a more powerful model

for predicting tumor response to nCRT.

To design a more reliable signature to predict discrep-

ancies of pathological response prior to nCRT, for better

treatment planning and validation in multicenter datasets, a

new strategy named radopathomics with both mp-MRI and

WSI, which takes advantage of combined tumor informa-

tion at different scales, is proposed herein.
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PATIENTS AND METHODS

Patients

A total of 981 patients treated with nCRT between May

2007 and November 2017 at four hospitals specializing in

gastrointestinal disease in China [the Sixth Affiliated

Hospital of Sun Yat-sen University (SYSU6, N = 303),

Sun Yat-sen University Cancer Center (SYSUCC,

N = 480), Yunnan Cancer Hospital (YNCH, N = 150), and

Peking University Cancer Hospital (PUCH, N = 48)] were

retrospectively recruited (Fig. S1). The inclusion criteria

were as follows: (1) All patients underwent pretreatment

MRI and biopsy under electronic colonoscopy with

hematoxylin–eosin (H&E) staining biopsy section digital-

ized to a WSI and were defined as LARC (cT3–4/N0–2/

M0); (2) All patients underwent nCRT (Supplementary

Information SI); (3) All patients underwent standard TME

surgery after nCRT; (iv) Pathological response was con-

firmed by experienced pathologists using a four-category

AJCC/CAP TRG system after TME surgery (Supplemen-

tary Information SII). The exclusion criteria were as

follows: (1) Patient accepted nonstandard or incomplete

nCRT or had neoadjuvant chemo- or radiotherapy alone;

(2) Treatment response data of patient were unavailable;

(3) Lack of biopsy pathological slides or quality of WSI did

not meet the requirements for diagnosis (e.g., tissue folds,

torn tissue); (4) Lack of pretreatment T2-weighted MRI

(T2WI), diffusion-weighted imaging (DWI), or insufficient

quality of MRI images to obtain measurements (e.g., due to

motion artifacts). This multicenter study was conducted in

accordance with the Declaration of Helsinki and was

approved by the ethics committee of the Sixth Affiliated

Hospital of Sun Yat-sen University (approval no.

2019ZSLYEC-169), with the requirement for informed

consent waived. Patients enrolled from SYSU6 with the

same magnetic resonance (MR) acquisition parameters

were used as the primary cohort (PC) to reduce any form of

overfitting or bias in the analysis, while the other three

datasets (SYSUCC, YNCH, and PUCH) were used as

independent validation cohorts (VC1–VC3).

Acquisition and Annotation of Images

Rectal MR examination for each patient was performed

before biopsy and within 1–2 weeks before nCRT treat-

ment. Axial fat-suppressed T2WI and DWI with two

b values (0 and 1000 s/mm2 or 800 s/mm2) were acquired

for each patient using 1.5-T or 3.0-T scanners at the four

hospitals (Table S1). The regions of interest (ROIs) of

tumors in the MRI images were manually annotated using

itk-SNAP software (www.itksnap.org) on each slice (Sup-

plementary Information SIII, Fig. S2).

H&E-stained slides from biopsy formalin-fixed paraffin-

embedded (FFPE) tissue were used for pathological diag-

nosis. WSI for analysis was collected by panoramic digital

image scanning technology using a Leica AT2 or CS2 at

each institution. The ROIs of tumor in biopsy WSI were

manually delineated using the ImageScope software (www.

leicabiosystems.com) at 10 9 magnification (1 lm/pixel)

by four expert pathologists and rechecked at 20 9 mag-

nification (0.5 lm/pixel) by another two expert

pathologists to ensure boundary validity (Fig. S3).

Features Extraction from mp-MRI

MRI of each patient was normalized with Z-scores to

obtain a standard normal distribution of image intensities.

Next, a total of 702 quantitative image features, named

radiomic features, were extracted from the normalized

pretreatment T2WI and apparent diffusion coefficient

(ADC) data with manually segmented ROIs by Pyra-

diomics (version 2.1.1, https://github.com/Radiomics/

pyradiomics) using Python.23 Intraclass correlation coeffi-

cients (ICCs) were utilized to evaluate the intra- and

interobserver agreement in terms of feature extraction and

reducing the negative impact of manual segmentation on

the extracted features. Details of extracted radiomic fea-

tures are illustrated in Supplementary Information SIV.

Feature Extraction from WSI

Features were extracted by automated histopathological

imaging analysis systems to represent the levels of tumor

cell differentiation, i.e., the pathological level information,

named pathomic features. A total of 770 features, including

pixel intensity, morphology, and nuclear texture for each

ROI, were extracted using CellProfiler platform (version

2.2.1, https://cellprofiler.org/),23 an open-source tool

widely used in the field of biological image analysis.

Details of the extracted pathomic features are illustrated in

Supplementary Information SV.

Signature Construction and Validation

A radiopathomics signature (RPS) was constructed

using both radiomic and pathomics features within the PC.

The eXtreme Gradient Boosting algorithm (XGBoost, h

ttps://github.com/dmlc/xgboost) was used to select useful

features from a pool of radiomic and pathomic features and

build a prediction model for different response.24 The

metric for feature selection was the average gain of the

feature (Gain), evaluating the importance of the feature

during feature screening. Satisfactory features with

Gain[ 0 were recorded as radiopathomic features. Then,

the Spearman test was used to evaluate the significance
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between each of the recorded features and true response

levels and eliminate the correlation values without statis-

tical significance (P\ 0.05) to further optimize the

radiopathomic features group (Supplementary Information

SVI). The two steps mentioned above were utilized step by

step as mitigation strategies for overfitting. Then, a few

important features were identified for modeling. The

strategies of early stop, regularization, and pruning were

employed to further restrict overfitting risk during

modeling.

For comparison, a radiomics signature (RS) was gen-

erated with features from mp-MRI alone, and another

pathomics signature (PS) was generated with features from

WSI alone. All models reached convergence conditions

and were validated in the three external validation cohorts

(VC1, VC2, and VC3). The flowchart of the study is shown

in Fig. 1.

Statistical Analysis

Quantitative statistics are presented as mean ± standard

deviation (SD). Categorical variables were analyzed using

v2 or Fisher’s tests. ACC and Kappa coefficient were used

to evaluate the overall performance of the multiple-cate-

gory classification. Receiver operating characteristic

(ROC) curves, area under curve (AUC), sensitivity,

specificity, positive predictive value (PPV), and negative

predictive value (NPV) were calculated for assessment of

binary-category subgroup analysis. The bootstrap strategy

(N = 1000) was applied to calculate the 95% confidence

intervals (CIs). The net reclassification improvement (NRI)

test was used for comparison among models at each cate-

gory. The DeLong test of ROCs was used to evaluate

improvement and overfiiting. For time-to-event endpoints,

in addition to the Kaplan–Meier method, P-values were

obtained from a stratified log-rank test, and the hazard ratio

(HR) was calculated from a Cox proportional hazard

model. The reported statistical significance levels were all

two sided, with the statistical significance level set at 0.05.

The statistical analyses were performed using the scikit-

learn package (version 0.21.3) of Python (version 3.6.5)

and R software (version 3.1.0).

RESULTS

Clinical Characteristics

A total of 981 consecutive LARC patients (TRG 0,

24.65%, 240/981; TRG 1, 28.95%, 284/981; TRG 2,

41.90%, 411/981; TRG 3, 4.69%, 46/981; median age,

55 years) who received nCRT and TME radical surgery at

the four hospitals were enrolled in this study. Proportion

distributions of clinical characters to each TRG in the PC

(SUSY6), VC1 (SYSUCC), VC2 (YNCH), and VC3

(PUCH) are presented in Supplementary Table S2. No

significant differences were found in either baseline char-

acters (P[ 0.05) or the distribution of patients among

different response (P[ 0.05) between the PC and VCs.

Prediction Performance of PRS and Comparison

with RS and PS

A total of 96,796 images, including 96,076 MRI (T2WI

and ADC) images and 981 biopsy H&E-stained slides

digitalized images, were utilized for manual annotation of

ROI and feature extraction. RPS was then constructed with

radiopathomic features by XGBoost (Supplementary

Information SVII). The overall performance of RPS among

the different VCs was evaluated by ACC and Kappa

coefficient according to the confusion matrix of prediction

in VC1, VC2, and VC3. The ACC of RPS reached above or

close to 80% in the VCs (Fig. 2a), being 12% and 25%

higher than those of RS and PS, offering the highest ACC

among VCs. The Kappa coefficient between RPS and true

TRG was above 0.7 in all the VCs, being significantly

better than for RS or PS (P\ 0.01) (Table 1). Variance of

ACC and Kappa value among validation cohorts was

reduced to 3.46% (P[ 0.05) and 0.04 (P[ 0.05),

respectively.

The distinguishing ability of each level (TRG0, TRG1,

TRG2, and TRG3) was evaluated by PPV and sensitivity.

According to the precision and recall rate (Fig. 2b, c), RPS

offered the best prediction for TRG0, with sensitivity and

PPV above 90% in the validation cohorts (Table 2). The

PPV of RPS dropped slightly for the prediction of TRG2,

but with sensitivity exceeding 97%. Although the sensi-

tivity and PPV for the prediction of TRG1 and TRG3 did

not maintain superiority as for TRG0 or TRG1, the PPV

still exceeded 80% in the validation cohorts. Compared

with RS or PS, significant improvement was demonstrated

by NRI (P\ 0.01) (Table S4).

RPS was also grouped for classification of TRG0

(TRG0), B TRG1 (TRG0 and TRG1), and B TRG2

(TRG0, TRG1, and TRG2), and AUCs exceeded 0.95,

0.90, and 0.80, respectively, for stratifications in the PC

and VCs (Table S3; Fig. 1c, f, i). However, the AUCs

dropped for B TRG2 in VC3 and the collection of all

patients in the validation cohorts because of the limited

number of negative samples (TRG3), albeit still showing

sensitivity above or close to 95% and PPV above 80%.

Then, ROC curves and AUCs were utilized for comparison

of RPS versus RS and PS. RPS for TRG0 yielded the

highest AUCs in the PC and VCs. Compared with AUCs in

the PC, AUCs of RPS dropped for B TRG1 and B TRG2

in the validation cohorts, albeit still significantly higher

Pretreatment Prediction of Response to nCRT 4299
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FIG. 1 Flowchart of study. This study included ROI segmentation,

feature extraction, feature selection, model training, signature

construction, comparison, and analyses of subgroups and survival.

Radiomic and pathomic features were extracted from mp-MRI or

WSI of the same patient. The eXtreme Gradient Boosting (XGBoost)

was used to select features and build models. Radiopathomic features

were recorded after feature selection. Three signatures were

constructed with different features by XGBoost, and model

comparison was conducted to select the optimal model with the

best performance for pretreatment prediction of TRG (i.e.,

discrepancies of pathological response). Subgroup and survival

analyses based on RPS were used to evaluate the performance for

pCR, GR, and survival prediction
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than those of RS or PS (P\ 0.01) (Fig. 3). From a DeLong

test of ROC curves and AUCs, RPS for TRG0, B TRG1,

and B TRG2 revealed both significantly incremental per-

formance (P\ 0.05) and no statistical difference between

the different centers (P[ 0.05).

Subgroup Analyses Based on Radiopathomics

Signature

For further analysis, RPS was divided into two sub-

groups, viz. pCR (TRG0 and ypT0N0) and GR (TRG0 and

TRG1), to correspond to clinical use. All the predicted

results were validated at the different centers (Supple-

mentary Table S4).

The pCR subgroup yielded ACC of 97.65% (95% CI,

96.5–98.8%) for the total validation patients, and the ACCs

of all the validation cohorts were larger than or close to

95%. The sensitivity, specificity, PPV, and NPV were all

above or close to 95% in VC1 and VC2.

The subgroup of GR yielded an ACC of 88.47% (95%

CI, 86.07–90.87%) for the total validation patients, and the

ACCs of all validation cohorts were larger than or close to

87%. The specificity and PPV in VC1 and VC3 were above

96%, with sensitivity above 80%.
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FIG. 2 Overall performance of RPS: a accuracy of RPS in validation

cohorts; b, e, h confusion matrixes of RPS in validation cohorts 1, 2,

and 3. Row represents the true label, and column the predicted label;

diagonal represents the number of patients whose predicted results

were consistent with the true results; c receiver operating

characteristic (ROC) curves of TRG0 versus TRG1–TRG3 in

primary and validation cohorts; c ROC curves of B TRG1 (TRG0–

TRG1) versus TRG2–TRG3 in primary and validation cohorts;

c ROC curves of B TRG2 (TRG0–TRG2) versus TRG3 in primary

and validation cohorts; d distribution of false-positive prediction at

each grade in validation cohorts. Red indicates the number of false-

positive samples in the prediction results, and blue indicates the total

number of a certain type of prediction; e distribution of false-negative

prediction at each grade in validation cohorts
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Prognosis Based on RPS

The Kaplan–Meier curve analysis showed that each RPS

was related to distinct probabilities of overall survival (OS)

and disease-free survival (DFS) for LARC patients (all

P\ 0.01) (Fig. 4). With increasing TRG level, both OS

and DFS decreased at both 3 and 5 years, while TRG0 and

TRG3 showed the best and worst survival outcomes,

respectively. Moreover, multivariate Cox regression anal-

ysis (with true TRG and Rp-Grade) was used to assess

whether RPS was independent of true TRG in predicting

survival and confirmed that RPS was an independent

prognostic factor for OS (HR 6.975, 95% CI 4.191–13.12,

P = 0.003) and DFS (HR 3.831, 95% CI 2.204–4.917,

P = 0.007).

DISCUSSION

In clinical practice, it is very difficult to rely solely on

radiographic or clinical diagnostic information to obtain

patients’ different levels of pathological response for

treatment optimization prior to nCRT. How to integrate

lesion information on a more visual scale to develop a more

reliable and generalized method to predict different

responses remains a challenging issue.

In this multicenter prospective study, the accuracy of

mp-MRI alone (RS), WSI alone (PS), and combining both

mp-MRI and WSI (RPS) in pretreatment prediction of TRG

(i.e., pathological response at different levels) was com-

pared. We demonstrated outperformance and significant

improvement for RPS, which was generated by the radi-

patomics strategy combining both radiological information

of whole tumor (mp-MRI) and pathological information of

local lesions (WSI). RPS achieved the highest overall

performance among the three signatures, yielding ACC of

78.66–87.76% versus 41.9–75.51% (RS) and 58.29–62.0%

(PS). Kappa coefficients of RPS lay in the range of 0.6–0.8,

indicating substantial agreement with the reference surgical

specimen,25 and was also higher than RS or PS.

Furthermore, signatures were grouped for classifying

TRG0 (TRG0), B TRG1 (TRG0 and TRG1), and B TRG2

(TRG0, TRG1, and TRG2). AUCs of RPS reached over

TABLE 1 Assessment of overall prediction performance of pathological responses

Metrics Signatures Total (N = 678) VC1 (N = 480) VC2 (N = 150) VC3 (N = 48)

ACC (%) [95% CI] RPS 85.2 [82.53–87.87] 87.66 [84.66–90.66] 78.66 [72.29–85.02] 81.34 [70.09–92.58]

RS 70.19 [66.68–73.7] 75.51 [71.58–79.44] 62.08 [54.11–70.05] 41.9 [28.12–55.67]

PS 62.0 [58.28–65.72] 62.67 [58.17–67.18] 60.56 [52.89–68.22] 58.29 [44.84–71.74]

Kappa coefficient [95% CI] RPS 0.772 [0.733–0.812] 0.797 [0.75–0.845] 0.705 [0.619–0.791] 0.713 [0.549–0.878]

RS 0.514 [0.466–0.563] 0.571 [0.508–0.635] 0.464 [0.371–0.558] 0.162 [0.006–0.318]

PS 0.417 [0.36–0.473] 0.412 [0.345–0.48] 0.45 [0.354–0.545] 0.345 [0.126–0.564]

Statistical quantifications shown with 95% CI, when applicable

VC1 validation cohort 1, VC2 validation cohort 2, VC3 validation cohort 3, ACC overall accuracy, RPS radiopathomics signature, RS radiomics

signature, PS pathomics signature

TABLE 2 Performance of radiopathomics signature at each category

Metric (%) [95% CI] Total (N = 678) VC1 (N = 480) VC2 (N = 150) VC3 (N = 48)

ACC 85.25 [82.55–87.96] 87.76 [84.86–90.66] 79.71 [72.52–84.9] 81.24 [70.15–92.34]

Sensitivity (TRG0) 96.08 [92.98–99.18] 96.49 [93.03–99.95] 96.62 [89.92–100.0] 91.3 [74.73–100.0]

Sensitivity (TRG1) 65.53 [58.62–72.44] 62.59 [54.22–70.95] 75.57 [61.75–89.4] 63.39 [42.96–83.82]

Sensitivity (TRG2) 97.67 [95.93–99.4] 97.16 [95.02–99.29] 100.0 [100.0–100.0] 100.0 [100.0 100.0]

Sensitivity (TRG3) 35.69 [20.0–51.38] – 35.55 [19.99–51.12] –

PPV (TRG0) 93.68 [89.93–97.43] 94.58 [90.48–98.69] 93.52 [84.68–100.0] 83.09 [61.19–100.0]

PPV (TRG1) 85.81 [80.03–91.59] 92.02 [86.19–97.85] 70.26 [56.42–84.1] 93.57 [81.1–100.0]

PPV (TRG2) 81.36 [77.32–85.39] 83.9 [79.6–88.19] 74.24 [63.57–84.92] 71.49 [52.04–90.94]

PPV (TRG3) 86.67 [69.29–100.0] – 92.54 [78.21–100.0] –

Statistical quantifications shown with 95% CI, when applicable

TRG tumor regression grade, VC1 validation cohort 1, VC2 validation cohort 2, VC3 validation cohort 3, PPV positive predictive value, ‘–’

insufficient sample distribution for evaluation
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0.95, 0.90, and 0.80 for stratifications in the PC and VCs,

respectively. The higher sensitivity and PPV in TRG0

and B TRG1 confirmed the ability of the model to dis-

criminate patients who could achieve greater benefit from

standard nCRT. The higher sensitivity and PPV of RPS

in B TRG2 could decrease the rate of missing patients who

were suitable for nCRT. Comparison between signatures

based on the group classification was assessed by ROC

curves and DeLong test and verified the significant

advantages of RPS in the PC (P\ 0.05) and VCs

(P\ 0.01) again.

Although some categories of TRG revealed distinct

probabilities of LARC patients’ survival, especially TRG3,

the differences between the Kaplan–Meier curves (Fig. 4)

suggested that it was difficult for the treatments to be

graded among all four TRGs. Therefore, according to the

guideline,26 the RPS combining posttreatment pathological

evaluation of lymph nodes was grouped for predicting pCR

status pretreatment (ACC of 97.65%), which even excee-

ded the accuracy of 94.08% for 222 patients achieved by

pCR evaluation using posttreatment mp-MRI.15 The GR

subgroup (TRG0 and TRG1) also yielded satisfactory

prediction accuracy (ACC of 88.47%) in the VCs. Pre-

diction of pCR or GR can reliably assist doctors in

accurately identifying patients with pCR for whom a ‘‘wait

and see’’ approach,15 local excision,27 or weighting benefits

of neoadjuvant therapy against drug toxicity28 may be most

appropriate. More importantly, each category of RPS

revealed distinct probabilities of LARC patients’ OS and

DFS (P\ 0.05) and was a prognosis factor independent of

true TRG (P\ 0.01). Combined with clinical TNM stage,

this may be able to optimize the existing standard for the

definition of patients who rely on nCRT.5

The first finding of this study is that the prediction model

using a radiomics strategy could associate mp-MRI with

different levels of response to nCRT. Radiomics analysis

integrating many high-dimensional imaging features can be

used to predict neoadjuvant therapy effects that are difficult

to detect visually and may perform relatively well before

treatment. Quantitative and high-dimensional features from

mp-MRI were demonstrated to qualitatively predict pCR

and GR17 and to enhance the limited accuracy of models by
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FIG. 3 Comparison of receiver operating characteristic (ROC)

curves among different signatures in primary cohort and patients in

all validation cohorts: a, d TRG0 (TRG0) versus TRG1–TRG3 in

primary and validation cohorts; b, e B TRG1 (TRG0–TRG1) versus

TRG1–TRG3 in primary and validation cohorts; c, f B TRG2

(TRG0–TRG2) versus TRG3 in primary and validation cohorts.

AUCs of RPS were statistically compared with AUC of RS and PS

(*P\ 0.05; **P\ 0.01; ***P\ 0.001)
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combining information from more imaging modalities.18

RS, which was constructed with mp-MRI alone, yielded

overall ACC of 75.51% in the largest VC (VC1, n = 480),

and achieved AUCs of 0.92 (TRG0), 0.85 (B TRG1), and

0.74 (B TRG2) in the other VCs. There was no obvious

overfitting between the PC and VCs.

The second finding is that quantitative tumor pathology

information from WSI is useful to enrich lesion descriptors

and is related to the response to nCRT. Microscopic

pathology image features have been explored to screen

abnormality and detect disease,15 classify molecular sub-

type,29,30 distinguish susceptive responders29,30 or

intractable patients,31 as well as predict survival out-

comes.32,33 However, it is unfortunate that pathological

information has not been mined from biopsy specimens

obtained from colonoscopy to predict tumor response,

given that biopsy is an essential examination for LARC

patients.34 Levels of tumor cell differentiation32 were one

highlight among numerous pathological descriptors, which

could be calculated by automated histopathological

imaging analysis systems using WSI. With this method,

extensive, quantitative, and high-dimensional tumor

microinformation was obtained, also showing potential to

integrate with other types of features to build a multiomics

prediction model for prognosis.22 During our experiments,

we utilized the same strategy to extract nucleus features

from WSI (named pathomic features) and generated PS.

The overall ACC of PS was above or close to 60% in the

VCs. The AUCs of PS in TRG0, B TRG1, and B TRG2

were 0.895, 0.77, and 0.635 in the VCs, respectively.

Compared with RS, the AUC of PS in TRG0 was close to

R-Grade but significantly decreased in B TRG1 and B

TRG2 (P\ 0.05) in the VCs. PS and pathomic features

showed relevance for different response, but PS slightly

lacked sufficient reliability as an independent signature for

response prediction.

The most important finding of this work is the

radiopathomics strategy, which strengthens the radiomics

strategy by adding pathological knowledge. This strategy

mines complementary information provided by WSI and
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FIG. 4 Kaplan–Meier survival curves: a, b overall survival curves at
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mp-MRI and enriches the descriptors of tumors to predict

discrepancies in the pathological response to nCRT. Highly

correlated with pathological response, the set of selected

features with limited redundant information was the most

important effect reducing modeling overfitting. The power

of the radiopathomics strategy achieved a significant

improvement compared with the signatures constructed

using mp-MRI or WSI alone (P\ 0.05). According to

radiology, the mp-MRI contained phenotype (T2) and

microcirculation (ADC) heterogeneous information for the

whole tumor.33 According to pathology, biopsy WSI

reflected pathological and gene-related information

through nucleus features at a microscopic level.35 There

was correlation between the information between the dif-

ferent observation scales, although most were independent

from each other. In our study, 1404 features from MRI and

770 features from biopsy WSI of each patient were

extracted. Heat maps of feature analysis with Pearson

coefficient showed little correlation between radiomic and

pathomic features (Supplementary Fig. S4), indicating that

there was not too much redundant information between

radiomic and pathomic features in our feature extraction.

Then, the radiopathomics strategy found more interactive

features with higher Spearman correlation coefficient of

tumor response (Supplementary Fig. S5), indicating that

the selected features were more relevant to response at

different levels, and their combination was more powerful.

The selected features reflected the shape and texture fea-

tures of the tumor in MRI, and the shape or texture

information of the nucleus in biopsy WSI (Supplementary

Table S5). Radiopathomics integrating these features pro-

vides a more comprehensive overall picture of the tumor.

Hence, RPS showed satisfactorily incremental performance

without overfitting according to this multicenter validation.

The subgroup of RPS was also higher than in previous

research17,18,36 because of the use of the radiopathomics

strategy and a state-of-the-art modeling method

(XGBoost). XGBoost is a recent method that has offered a

breakthrough in the field of data mining.37 The second

reason for restricting overfitting was that XGBoost

obtained more diverse optimization strategies in weight

updating, loss function, regularization, and pruning. Last

but not least, samples with a sufficient number and high

quality in the training phase were also important for

reducing overfitting. Consequently, our proposed

radiopathomics strategy and signature avoid the limitation

of only using medical imaging to depict the whole tumor

and decrease the potential risk of overlooking tumor

heterogeneity by adding microscale pathological informa-

tion. A more accurate signature without overfitting for

pretreatment prediction of different degrees of efficacy of

nCRT based on routine inspection without additional

examination, combining features of medical and digital

pathology imaging modalities, provided greater reliability

for better and more personalized treatment planning for

patients with LARC who underwent nCRT.

In conclusion, the RPS proposed herein based on a

radiopathomics strategy using pretreatment mp-MRI and

WSI from H&E-stained biopsy specimens together,

thereby combining radiological information of the whole

tumor and pathological information of local lesions, pro-

vides a new approach for pretreatment prediction of

discrepancies of pathological response to restage LARC

patients who undergo nCRT. RPS could be useful in

individualized clinical decision-making by providing

radiologists and oncologists with a potential tool for more

detailed response prediction with hierarchical prognostic

relevance.
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