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Abstract
Background. Evaluation of tumor-tissue images stained with hematoxylin and eosin (H&E) is pivotal in diagnosis, 
yet only a fraction of the rich phenotypic information is considered for clinical care. Here, we propose a survival 
deep learning (SDL) framework to extract this information to predict glioma survival.
Methods. Digitized whole slide images were downloaded from The Cancer Genome Atlas (TCGA) for 766 diffuse glioma 
patients, including isocitrate dehydrogenase (IDH)-mutant/1p19q-codeleted oligodendroglioma, IDH-mutant/1p19q-
intact astrocytoma, and IDH-wildtype astrocytoma/glioblastoma. Our SDL framework employs a residual convolu-
tional neural network with a survival model to predict patient risk from H&E-stained whole-slide images. We used 
statistical sampling techniques and randomized the transformation of images to address challenges in learning from 
histology images. The SDL risk score was evaluated in traditional and recursive partitioning (RPA) survival models.
Results. The SDL risk score demonstrated substantial univariate prognostic power (median concordance index of 
0.79 [se: 0.01]). After adjusting for age and World Health Organization 2016 subtype, the SDL risk score was sig-
nificantly associated with overall survival (OS; hazard ratio = 2.45; 95% CI: 2.01 to 3.00). Four distinct survival risk 
groups were characterized by RPA based on SDL risk score, IDH status, and age with markedly different median OS 
ranging from 1.03 years to 14.14 years.
Conclusions. The present study highlights the independent prognostic power of the SDL risk score for objective 
and accurate prediction of glioma outcomes. Further, we show that the RPA delineation of patient-specific risk 
scores and clinical prognostic factors can successfully demarcate the OS of glioma patients.

Key Points

• The survival deep learning (SDL) risk score can predict patient-specific survival from 
whole slide images and the prediction accuracy exceeds other approaches.

• An interaction between IDH status, SDL risk score, and age can delineate significantly 
different survival risk groups within glioma subtypes.

A pathologist’s examination of tumor tissue stained with he-
matoxylin and eosin (H&E) is an important component of the 
decision-making process in oncology. The phenotypic informa-
tion present in histology slides contains data on tumor aggres-
siveness and markers of disease progression that are crucial 
for prognostication.1 Historically, histologic grading of diffuse 
glioma was the clinical gold standard to determine the course 

of treatment or the need for additional testing, such as molec-
ular profiling.2 More recently, molecular alterations identified in 
specific subsets of diffuse glioma, including 1p/19q-codeletion, 
EGFR amplifications, and isocitrate dehydrogenase 1/2 (IDH) 
mutations, informed major revisions, and the emergence of 
molecular subtyping in glioma.3–5 In 2016, the World Health 
Organization (WHO) identified several new entities of diffuse 
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glioma based on genetic and epigenetic alterations in ad-
dition to the histologic phenotypes of tumors,6,7 and even 
greater integration of molecular information for diagnosis is 
incorporated in the fifth edition of the WHO Classification of 
Tumors of the Central Nervous System.8

Although research on the molecular determinants of 
glioma is ongoing, microscopic analysis of H&E-stained 
tumor tissue can reveal many characteristics of the disease 
and plays a critical role in the diagnosis and treatment of 
diffuse glioma.9 Such features include proliferation, nu-
clear and cellular atypia, vascular features, tumor cell in-
filtration, and extent of necrosis. However, diagnostic 
interpretation of histopathology images depends on 
the manual assessment of stained slides, which can be 
time-consuming and subject to inter-pathologist varia-
bility.1,10,11 The emergence of computational analysis of his-
tological imaging has received significant attention. With 
the recent boost in artificial intelligence, an increasing 
number of methods have been developed to leverage the 
state-of-the-art deep learning techniques for the automatic 
classification of tumor subtypes, identification of metas-
tases, and nuclei segmentation.12–18 Specifically, deep 
convolutional neural networks (CNNs) have become the 
de-facto standard in histopathological image analysis with 
performance on par with human experts for diagnostic 
tasks such as tumor detection and histologic grading.14,19,20

Several prior studies have implemented deep learning 
to address survival prediction. For instance, Faraggi and 
Simon17 introduced the first approach to combined Cox 
proportional hazards (CoxPH) with neural networks in 1995. 
And in 2016, Yousefi et al.18 built upon Faraggi and Simon’s 
work to combined the CoxPH model with more modern ar-
tificial learning techniques. More recently, Katzman et al.21 
introduced, DeepSurv, a CoxPH-based deep neural net-
work to predict the survival rate based solely on structured 
clinical data without leveraging histopathology images. 
DeepConvSurv, a similar approach by Zhu et al.,22 uses a 
modified deep CNN on whole slide images (WSIs) to pre-
dict survival outcomes and achieved marginally better per-
formance (concordance index [c-index] of 0.62 for lung 
cancer) than DeepSurv (c-index of 0.60). Mobadersany 
et al.23 developed Survival CNNsto predict patient survival 
outcomes using high power fields extracted from different 
regions of interest (ROI) that showed superior perfor-
mance in predicting survival compared to the conventional 

CoxPH model; however, this study was limited by requiring 
subjective interpretation to define risk group thresholds, 
limiting its application in the clinical setting. Chen et al.16 
recently introduced Pathomic Fusion to allow the com-
bination of histology and genomic features for survival 
prediction.

Despite the recent success in the application of deep 
learning in predicting survival outcomes from histopa-
thology images, these techniques have not yet made a 
clinical impact by providing the necessary prognostic in-
terpretation for cancer patients. One clinically relevant 
goal of prognostic models is risk stratification. Risk strat-
ification for glioma patients is critical as it can help tailor 
treatments to reduce aggressive therapeutic regimens for 
low-risk patients while increasing the likelihood of those 
regimens in high-risk patients. While prior studies have 
emphasized determining complex interactions between 
histologic characteristics, clinical data, and molecular bio-
markers,16,23–25 here we present a more practical and rig-
orous approach to understanding these interactions. We 
hypothesize that integrating deep learning-based patient 
survival outcomes with prognostic molecular and clinical 
covariates delineates patients into more homogenous risk 
groups and improves predictive accuracy necessary for the 
clinical management of gliomas.

In this study, we extend on the previously published 
work22,23 by exploring deep learning with a transfer 
learning technique26 for survival outcome prediction using 
images from H&E-stained tumor tissue and propose a 
clinically significant risk stratification model for diffuse 
gliomas. While previously published work has focused 
on identifying risk groups in the distribution of patient-
specific survival outcomes,23,27–30 our study takes us one 
step closer to mapping out the relationship between deep 
learning-based patient outcomes and prognostic clinical 
and molecular parameters.

Materials and Methods

Data Cohort

Digitized WSIs from diagnostic formalin-fixed paraffin-
embedded specimens stained with H&E were obtained 
from The Cancer Genome Atlas (TCGA) along with 

Importance of the Study

Current pathologic evaluation of hematox-
ylin and eosin tumor tissue images focuses 
on only a small amount of the rich pheno-
typic information available. Here, we devel-
oped a deep learning approach to extract all 
additional information from the images to 
predict overall survival across distinct mo-
lecular subtypes of glioma patients. Our inte-
grated survival deep learning framework has 
substantial prognostic power and combined 
with isocitrate dehydrogenase (IDH)-status 

and age can delineate significantly different 
survival risk groups. Interestingly, these 
groups identify higher-risk IDH-wildtype 
astrocytomas as well as lower risk IDH-
wildtype glioblastomas and separate IDH-
mutant subgroups with varying survival. The 
ability of a computational approach to his-
tologic images to capture diverse, clinically 
relevant information may facilitate a more 
personalized patient evaluation in the neuro-
oncology clinic.
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clinical information accessed via the Genomic Data 
Commons Data Portal (https://gdc.cancer.gov). The 
dataset contained a total of 1061 whole-slide images 
from 769 unique patients from TCGA-Glioblastoma 
Multiforme (GBM) and TCGA-Low Grade Glioma (LGG) 
cohorts. These images were classified based on the 2016 
WHO paradigm that stratifies diffuse gliomas based on 
phenotypic and molecular genetic features such as IDH1/ 
IDH2 gene mutation status and 1p19q chromosome 
co-deletion status. Tumor subtypes include IDH-mutant 
and 1p/19q-codeleted oligodendroglioma, IDH-mutant/-
wildtype astrocytoma, IDH-mutant/-wildtype glioblas-
toma. Additional information on overall survival (OS), 
clinical, and molecular biomarkers for the patient cohort 
were obtained from the cBioPortal for Cancer Genomics 
website (https://www.cbioportal.org/). Data were ascer-
tained in accordance with the World Medical Association 
Declaration of Helsinki. Three patients were excluded 

from the initial set of 769 patients as they had missing 
survival information and conflicting IDH status. A  sum-
mary of the dataset is provided in Table 1.

Data Preparation

Due to the high dimensionality and gigapixel resolution of 
WSIs, the proposed model was trained on multiple ROI ex-
tracted from H&E-stained slides.23 These ROIs (1024 × 1024) 
were extracted at 20× magnification using Openslide soft-
ware and accounted for all artifacts such as air bubbles, blurry 
regions, and folds.23 Data augmentation techniques such as 
morphological rotation along the center (90°, 180°, 270°), ver-
tical and horizontal mirroring, and image scaling were ap-
plied to each ROI to accommodate limited cohort data, color 
variation, and image artifact. Furthermore, we also employed 
color augmentation using the transformation of brightness, 
hue, and contrast to adjust pixel-level image values.

  
Table 1. Summary of Patient Characteristics

 TCGA Cohort (N = 766) Hazard Ratio 95% CI P 

Clinical and Demographics Variables

Sex

 Female 307 (41.8%) —   

 Male 427 (58.2%) 1.12 (0.92,1.38) .262

Age at diagnosis

 Mean (SD) 49.7 (15.4) 1.06 (1.05, 1.07) < .001

 Median 51.0    

 Q1, Q3 37.0, 61.0    

 Range 10.0–88.0    

Grade

 II 181 (24.7%) —   

 III 205 (27.9%) 2.98 (1.84, 4.82) < .001

 IV 348 (47.4%) 14.92 (9.72, 22.91) < .001

WHO classification

 IDH-mutant astrocytoma 203 (29.0%) —   

 IDH-mutant GBM 20 (2.9%) 4.58 (2.52, 8.34) < .001

 IDH-mutant oligodendroglioma 141 (20.1%) 0.65 (0.35,1.22) .183

 IDH-wildtype astrocytoma 72 (10.3%) 5.66 (3.52, 9.10) < .001

 IDH-wildtype gbm 264 (37.7%) 11.90 (8.22, 17.23) < .001

IDH status

 Mutant 364 (52.0%) —   

 Wildtype 336 (48.0%) 9.45 (7.14, 12.50) < .001

ATRX status

 Mutant 162 (21.1%) —   

 Wildtype 409 (53.4%) 2.74 (1.91, 3.93) < .001

1p19q status

 Codeleted 142 (18.5%) —   

 Non-codeleted 620 (80.9%) 7.75 (4.62, 13.00) < .001

Abbreviations: IDH, isocitrate dehydrogenase 1 or 2 gene; ATRX, α-thalassemia, mental retardation, X-linked protein; 1p19q, deletion status of 
short arm of chromosome 1 and long arm of chromosome 19; GBM, glioblastoma multiforme.

  

https://gdc.cancer.gov
https://www.cbioportal.org/


 4 Chunduru et al. Survival deep learning in glioma pathology

Workflow

Our proposed integrated survival deep learning frame-
work uses a pretrained CNN)model to extract visual fea-
tures from ROIs. These high-level image-derived features 
are aggregated by a fully connected layer and global 
pooling strategy and then introduced to a final CoxPH 
layer. The output is a single risk value indicating patient 
cancer-specific survival. The learning process is guided by 
a precise loss function that accommodates time-to-event 
and censoring information. We further illustrate the pre-
trained CNN model and integrated survival training in the 
following subsections.

Neural network architecture.—A pretrained CNN, to-
gether with fine-tuning and transfer learning, leads 
to faster convergence and often outperforms training 
from scratch 26. We used a ResNet-50 architecture pre-
trained on an ImageNet dataset with input resized from 
(1024 × 1024) to (256 × 256). We chose this family of ar-
chitecture as it is designed to simplify training deep 
neural networks by adding residual connections to avoid 
information loss during deep network training. Our inte-
grated deep learning system’s fundamental constituents 
comprised multiple convolution layers with weights ini-
tialized using a pre-trained model and a global average 
pooling layer. These sequential layers were followed by a 
fully connected layer and a final linear output layer mod-
eled as the Cox layer that produced risk for each sample. 
A dropout layer was added to the fully connected layer 
before the Cox layer to control for overfitting. We trained 
the model using the Adam optimizer for gradient descent 
optimization with a total number of epochs set to 100 
and a mini-batch size of 32. Parameters to the Adam op-
timizer include an initial learning rate of 1e-04, the mo-
mentum of 0.9, and inverse time decay factor of 0.1. To 
prevent overfitting during the training phase, we applied 
the Leaky-Relu activation function and dropout with a 

ratio of 0.35. Due to histological structure differences in 
H&E-stained images fine-tuning of the last layers was 
adopted to accommodate the difference in the glioma 
cancer dataset from the ImageNet dataset. Prediction 
models were trained using TensorFlow (v1.15.0) on 
NVIDIA:TESLA-V100 GPU. An overview of the model 
workflow is presented in Figure 1.

Deep learning training and validation.—The integrated 
survival deep learning model was trained with Monte 
Carlo cross-validation (MCCV).31 In MCCV, the sample 
is randomly split into a learning and test set numerous 
times. For each split, the patient cohort was randomly 
split into training (80%) and testing (20%) sets. Two ad-
vantages of MCCV are to decrease the bias associated 
with the split sample approach and decrease the variance 
over v-fold cross-validation.32 Each time, the training set 
trained the model, and the testing set assessed the cor-
responding model’s performance. This procedure was re-
peated 20 times (as previously seen there is a minimal 
advantage in increasing iterations to 50 or 1000 while the 
computational burden escalates)32 by changing random 
states while maintaining the same train-test split ratio. 
Z-score normalization was applied to each training/test 
image ROI before feeding into the model. The final model 
used for evaluation was aggregated by taking the expo-
nential moving average of model weights across training 
steps with a decay constant of 0.99 to ensure stability 
across training epochs. The training process was guided 
by the negative log partial-likelihood loss function ap-
propriate for CoxPH models and censored data. During 
training optimization, the loss function was evaluated 
over a small batch size of 32 samples instead of the en-
tire dataset to improve generalization and allow a small 
memory footprint. The predicted SDL risk score at the 
patient level was aggregated by taking the median risk 
values for all samples across the patient.
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Figure 1. Overview of proposed integrated survival deep learning model. (1) Multiple regions of interest are extracted from the whole slide image 
of H&E stained tumor tissue containing viable tumor. (2) These regions are then sent through a network of convolutional, pooling and fully con-
nected layers that extract survival discriminative features. A Cox proportional hazards model was integrated with the fully connected layer which 
outputs patient specific risk scores. (3) Survival risk grouping: Recursive partitioning analysis was employed for risk stratification of the patient 
cohort based on predicted risk scores and prognostic molecular variables. H&E, hematoxylin and eosin.
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Statistical analysis.—Survival analysis was performed 
with univariate and multivariate CoxPH models to esti-
mate hazard ratios (HRs) and 95% CIs for the association 
of predicted SDL risk score and other baseline clinical 
variables with OS, aggregated over training/testing sets. 
For multivariable analysis, we examined the additional 
prognostic value of predicted patient risk scores with and 
without controlling for known prognostic factors (ie, IDH-
status, age at diagnosis, histologic grade). Prognostic 
prediction performance was evaluated using the c-index, 
defined as the ratio of all pairs of samples whose predicted 
survival times are correctly ordered among all uncensored 
patients.33

Internal validity of Cox regression models was deter-
mined using a bootstrapping technique.34 One-thousand, 
random bootstrap samples were drawn with replacement 
from the development data set. Then, the bootstrap sample 
estimated model was evaluated in the entire development 
dataset. The difference between the performance in the 
bootstrap sample and that in the development dataset was 
used to obtain the estimates of optimism in the develop-
ment dataset.35

We employed recursive partitioning analysis (RPA), via 
the partDSA algorithm,36 to model OS. RPA enables the 
stratification of the patient into more homogenous survival 
groups based on multiple input variables. The variables 
included for the model building were age at diagnosis 
(as a continuous variable), SDL risk score, WHO-subtype, 
IDH1/2 mutation status, α-thalassemia, mental retardation, 
X-linked (ATRX) mutation status, and 1p19q co-deletion 
status. The partDSA tree that minimized the 5-fold cross-
validated integrated Brier error was selected, and terminal 
nodes of the resulting tree defined the final risk groups 
from which the corresponding Kaplan-Meier curves were 
generated. HRs and 95% CIs for the risk groups were cal-
culated via the CoxPH model. All statistical analyses were 
done in the R software, version 4.0.2. The significance level 
for statistical tests was 0.05.

Results

Characteristics of the Study Cohort

This study derived a risk score using an integrated survival 
deep learning framework on H&E-stained WSIs. The score 
was built and evaluated on the TCGA cohort consisting of 
both low-grade and high-grade diffuse gliomas. A  sum-
mary of TCGA patient cohort characteristics is presented in 
Table 1.

Among the 766 unique patients from the TCGA cohort in-
cluded in the analysis, the median age of diagnosis was 51 
(interquartile range [IQR]: 37–61) years, and the median OS 
(mOS) for the combined LGG/GBM cohort was 2.5 years 
(95% CI: 2.16 to 3.13). Based on 2016 WHO classification of 
tumors of the central nervous systems,6 we classified the 
diffuse gliomas into 5 subtypes based on IDH mutations 
and co-deletion of chromosome 1p and 19q. Forty-eight 
percent (336 out of 700 with known IDH status) were IDH-
wildtype, including 264 GBM (mOS of 1.16 years, 95% CI: 
1.01 to 1.25) and 72 astrocytoma (mOS of 1.75 years, 95% 
CI: 1.53 to 2.24). Of the 52% (364 out of 700)  that were 

IDH-mutant: 141 were oligodendroglioma with 1p/19q-
codeletion (mOS of 14.14 years, 95% CI: 12.85 to not ap-
plicable [NA]), 203 were astrocytoma (mOS of 8.18 years, 
95% CI: 6.26 to NA), and 20 were GBM (mOS of 2.95 years, 
95% CI: 1.89 to 7.64). In the cohort, 47% were grade IV and 
52% grade II/III gliomas. A detailed description of the pa-
tient characteristics, based on WHO subtype, is presented 
in Supplementary Table 1.

In univariate survival models, age (HR: 1.06; 95% CI: 1.05 
to 1.07; P < .001), IDH-mutation status (mutant vs wildtype, 
HR: 9.45, 95% CI: 7.14 to 12.50, P < .001), histologic WHO 
grade (grade III vs grade II, HR: 2.98, 95% CI: 1.84 to 4.82, 
P < 0.001; grade IV vs grade II, HR: 14.92, 95% CI: 9.72 to 
22.91, P < .001), WHO 2016 diffuse glioma subtype (IDH-
mutant GBM vs IDH-mutant astrocytoma, HR: 4.58, 95% 
CI: 2.52 to 8.34, P < .001; IDH-mutant oligodendroglioma 
vs IDH-mutant astrocytoma, HR: 0.65, 95% CI: 0.35 to 
1.22, P = .183; IDH-wildtype astrocytoma vs IDH-mutant 
astrocytoma, HR: 5.66, 95% CI: 3.52 to 9.10, P < .001; IDH-
wildtype GBM vs IDH-mutant astrocytoma, HR: 11.90, 
95% CI: 8.22 to 17.23, P < 0.001), along with ATRX-status 
(wildtype vs mutant, HR: 2.74, 95% CI: 1.91 to 3.93, P < .001) 
and codeletion of 1p19q (non-codeleted vs codeleted, HR: 
7.75, 95% CI: 4.62 to 13.0, P < .001) were associated with OS 
while sex was not (male vs female, HR: 1.12, 95% CI: 0.92 to 
1.38, P = 0.262) (Table 1).

Characteristics of the Risk Score From the 
Integrated Survival Deep Learning Framework

The survival deep learning model’s output produced a con-
tinuous patient-specific risk score calculated by taking the 
median risk score across all the patient samples. The mean 
SDL risk score across all patients was 0.1 (±1.3) and ranged 
from (−4.9 to 2.8). Performance of the SDL risk score was 
evaluated over 20 bootstrap iterations which showed sub-
stantial prognostic ability, achieving a median c-index of 
0.79 (0.782, 0.794).

Next, we explored the association between the SDL risk 
score and clinical and molecular variables (Figure 2). An 
increase in SDL risk score was observed in IDH-wildtype 
versus IDH-mutant patients, as well as with an increase in 
age at diagnosis and histologic grade (Figure 2). Within the 
IDH subgroups the SDL risk score was higher for the IDH-
wildtype subgroup with a median of 1.19 (0.62, 1.55) com-
pared to the IDH-mutant subgroup with a median of −1.02 
(−1.64, −0.35). Examining OS within the IDH subgroups, 
the patients with IDH-wildtype tumors had an mOS of 
1.23  years (95% CI: 1.11 to 1.35) compared to those with 
IDH-mutant tumors which had an mOS of 8.18 years (95% 
CI: 7.28 to NA) (Figure 2A).

Higher SDL risk scores were correlated with older age 
groups. Figure 2B shows the Kaplan-Meier analysis by 
age. Earlier empirical studies revealed an association of 
age with molecular characteristics of diffuse glioma pa-
tients.37–40 On average, patients with IDH-wildtype GBM 
have the highest age at diagnosis (median 59 years) and 
worst prognosis (mOS 1.16  years, 95% CI: 1.01 to 1.25). 
Patients belonging to IDH-mutant oligodendroglioma are 
relatively younger (median age 45  years) and have the 
longest mOS (14.1 years, 95% CI: 12.85 to NA).

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac111#supplementary-data
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For histologic grade, the SDL risk score increases 
from a median of −1.32 (−1.80, −0.82) at grade II, to −0.69 
(−1.12, 0.04) at grade III, to 1.31 (1.00, 1.61) at grade IV 
(Supplementary Table 2). Histologic grade is associated 
with worse outcomes for grade IV (mOS of 1.16 years [95% 
CI: 1.03 to 1.25]) as compared to grade II with an mOS of 
12.85 years (95% CI: 8.18 to NA) and grade III with an mOS 
5.16 years (95% CI: 3.84 to NA) (Figure 2C).

To explore the histologic features associated with the SDL 
risk score, histologic features were compared for 68 ROIs of 
which 23 were designated as higher risk and 45 were des-
ignated as lower risk. A total of 12 histologic features were 
scored for each image by a neuropathologist (J.J.P) who was 
blinded to both the risk score and overall histologic diagnosis. 
A clear pattern emerged where images from higher-risk ROIs 
contained histologic features associated with tumor aggres-
siveness, including mitoses (16/23 [70%]), simple or complex 
microvascular hyperplasia (11/23 [48%]), increased cellular 
density (8/23 [35%]), or necrosis (5/23 [22%]). In contrast, im-
ages from lower-risk ROIs contained cells with uniform nuclei 
(32/45 [71%]), abundant eosinophilic cytoplasm (18/45 [40%]), 
and perinuclear halos (13/45 [29%]).

SDL Risk as a Prognostic Factor in Univariate and 
Multivariate Models

Cox-regression analysis was performed to assess the as-
sociation of SDL risk score with OS. In a univariate model, 

the SDL risk score was associated with poor outcomes (HR: 
3.29, 95% CI: 2.88 to 3.76; P < .001). That is, for every one-
point increase in SDL risk score, the risk of dying increased 
more than 3-fold. In multivariate models, we controlled for 
prognostic clinical and molecular variables. We included 
age at diagnosis, sex, histologic grade, IDH status, and 
WHO 2016 diffuse glioma subtype. After forward and back-
ward feature selection, the significant variables remaining 
were SDL risk score, age at diagnosis, and WHO 2016 dif-
fuse subtype (Figure 3). The forest plot shows the substan-
tial prognostic power of SDL risk scores in the presence of 
clinical and molecular variables with a hazard ratio of 2.45 
(95% CI: 2.01 to 3.0).

Performance of the SDL risk score model was compared 
by assessing the predictive accuracy of a baseline Cox model 
generated using clinical variables: WHO 2016 diffuse glioma 
subtype and age at diagnosis. This model performed slightly 
better (c-index: 0.82 [95% CI: 0.81 to 0.82]) than the Cox 
model with SDL risk score alone (c-index: 0.81 [95% CI: 0.813 
to 0.813). Overall, the multivariate Cox model that included 
clinical variables, molecular variables, and the SDL risk score 
achieved a higher c-index of 0.84 (95% CI: 0.83 to 0.84)

Integrated SDL Framework Improves Patient 
Stratification

The RPA to classify the patients for OS is depicted in 
Figure 4A. The optimal tree elucidated interactions 
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between significant clinical variables: IDH status, age 
at diagnosis, and SDL risk scores that separated the pa-
tients into 4 mutually exclusive risk groups. Group 1 pa-
tients had the worst outcome and were comprised of 2 
IDH-wildtype subgroups: those with an SDL risk score 
greater than 1.08; and those with an SDL risk score less 
than 1.08 and over 54  years of age (n = 327; mOS of 
1.03 years [95% CI: 0.97 to 1.16]). Group 2 patients had 
better survival than Group 1 and included patients who 
had an IDH-wildtype tumor, an SDL risk score less than 
1.08, and were under 54  years of age (n = 75; mOS of 
2.14 years [95% CI: 2.04 to 3.92]). Group 3 patients had 
better survival than those in Group 2 and included those 
with IDH-mutant tumors and an SDL risk score over 
−0.98 (n = 176; mOS of 5.29 years [95% CI: 4.21 to 7.64]). 
Group 4 patients experienced the best survival and were 
those with an IDH-mutant tumor and an SDL risk score 
less than −0.98 (n = 188; mOS of 14.14  years [95% CI: 
9.50 to NA]). Clinical characteristics, HRs, and Kaplan-
Meier curves for these four risk groups are shown in 
Table 2 and Figure 4B.

Figure 4C shows the Kaplan-Meier plot for the IDH-
wildtype tumor patients (Groups 1 and 2) split by Group 
and GBM/astrocytoma status. Interestingly, the combina-
tion of SDL risk score and age accurately delineated higher 
risk IDH-wildtype astrocytomas as well as lower-risk IDH-
wildtype GBMs. For example, in Group 1 (defined by a high 
SDL risk score or a lower SDL risk score and higher age 
at diagnosis) the majority were IDH-wildtype GBM tumors; 
however, 16% of Group  1 (ie, 43 out of 273)  were IDH-
wildtype astrocytoma (solid black line in Figure 4C) and 

exhibited survival characteristics similar to IDH-wildtype 
GBM. In Group 2 (defined by a lower SDL risk score and 
younger age at diagnosis), approximately 45% (34 out 
of 75) of the patients were diagnosed with a GBM tumor 
(dotted red line in Figure 4C). A lower SDL risk score and 
younger age identified those patients as having a better 
prognosis than might be expected based on histologic 
grade alone.

Discussion

This study presents a clinically significant deep learning-
based survival model to predict patient outcomes directly 
from images of H&E-stained tumor tissue. The proposed 
SDL model uses a residual deep learning framework and 
traditional CoxPH model to predict time-to-event out-
comes. In this study, we showed that employing residual 
networks and utilizing randomized transformation of im-
ages addresses challenges in model overfitting when 
dealing with a small sample size. Furthermore, using a 
pre-trained model from the published literature and fine-
tuning the model on glioma pathology images increases 
the network’s performance.26

We demonstrated that our SDL risk, which is derived 
from a modified ResNet model, is associated with histo-
logic features of tumor aggressiveness in higher risk ROIs, 
has the ability to predict patient-specific survival from 
WSIs, and that the prediction accuracy exceeds other 
H&E-stained tissue imaging based deep learning ap-
proaches.23,29 In a multivariable regression model with age 

  
Variable Hazard ratio (95% CI) p-values

<0.001***

<0.001***

-

0.824

0.009**

0.005**

0.566

Hazard ratio (95% CI)

2.45 (2.01–3.00)
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Figure 3. Forest plot of the HRs for multivariate survival model. The figure illustrates the HR and 95% CI of the SDL risk score in the presence of 
other clinical variables, including age at diagnosis and WHO 2016 subtype. HR = 1: No effect; HR < 1: Reduction in risk; HR > 1: Increase in risk. HR, 
hazard ratio; SDL, survival deep learning.
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at diagnosis, WHO subtype, and SDL risk score, the SDL 
risk score remained a significant predictor associated with 
OS. Further, we introduced a novel recursive partitioning 
model, leveraging the SDL risk score and clinical vari-
ables to predict OS. These results demonstrate that the 
SDL model captures complex patterns non-redundant with 
known prognostic variables. Thus, this study takes us one 
step closer to systematically mapping out the relationship 
between histology-derived survival outcomes and prog-
nostic molecular variables to strengthen significant risk 
group separation and overall prognostic performance.

A significant conclusion from the study is that the in-
tegrated SDL model, together with RPA, improved the 
prediction accuracy and accurate stratification of the pa-
tient cohort. Additionally, it highlights the relative impor-
tance of utilizing histologic features from H&E-stained 
tumor tissue to predict survival outcomes. The RPA indi-
cated that patients with an IDH-mutant tumor and lower 
SDL risk score had a better prognosis than patients 
with an IDH-mutant tumor and higher SDL risk score. 
Furthermore, Kaplan-Meier analysis showed remarkable 
similarity in the discriminative power of SDL risk score 
and current WHO paradigm consistent with expected pa-
tient outcomes.

This work represents a proof-of-concept study to in-
tegrate deep learning in the analysis of H&E image and 

has some limitations. Foremost, the findings presented 
here require additional validation in a large, independent 
cohort. The TCGA cohort was classified with the now 
outdated WHO 2016 classification. Highlighting the im-
portance of our findings, 47% (20/43) of lower grade IDH-
wildtype tumors with higher SDL risk scores had gain of 
chromosome 7 and loss of chromosome 10 and would be 
considered WHO grade 4. Our use of Monte-Carlo cross-
validation may include a bias, similar to using a split-
sample approach, if each sample was not represented at 
least once in the training set and at least once in the test 
set. Although we attempted multiple steps to avoid addi-
tional biases in tuning parameter selection, we acknowl-
edge it is best to separate tuning parameter selection 
from model building.41 The retrospective dataset used 
for training suffers from a previously documented selec-
tion bias.42 Furthermore, the proposed method relies on a 
small portion of regions from WSIs. In contrast, automated 
region extraction may lead to a better understanding of 
heterogeneity across the entire slide. Nevertheless, our 
study shows that the SDL framework can identify clinically 
relevant features associated with increased risk, and com-
bining it with molecular and clinical data may lead to more 
homogenous patient cohorts and may have the potential 
to serve as noninvasive tool guiding patient management 
for clinical trials.

  

SDL Risk score SDL Risk score

Age at diagnosis

IDH Status
O

ve
ra

ll 
su

rv
iv

al

S
tr

at
a

Time (years)

>–0.98 ≤ –0.98

≤ 54>54

≤ 1.08>1.08

IDH-Wildtype subtype
1.00

0.75

0.50

O
ve

ra
ll 

su
rv

iv
al

S
tr

at
a

Number at risk
Number at risk

Time (years)

0.25

0.00

43
29
230
34

5
12
37
18

0
4
4
8

0
2
0
6

0
2
0
1

0

1.02 (0.91–1.16)

1.40 (0.97–2.12)

2.06 (1.73–4.98)

2.23 (2.03–NA)

2
0
1

0

Group-1: GBM

Median OS (95% CI),
years

Group-1: Astrocytoma

Group-2: GBM

Group-2: Astrocytoma

2 4 6 8 10

IDH-WildtypeIDH-Mutant

A

B C

Group 3
N = 176

1.00
Group 4

Group 3

Group 2

Group 1

0.75

0.50

0.25

0.00

327
75
176
188

45
38
90
104

5
15
32
37

1
8
17
23

1
3
5

12

0

Median OS (95% CI),
years

Hazard ratio
(univariable)

1.03 (0.97–1.16)

2.14 (2.05–3.92)

5.29 (4.21–7.64)

14.4 (9.5–NA)

1.00 (baseline)

0.26 (0.19–0.36)

0.12 (0.09–0.17)

0.03 (0.01–0.04)

3
3
6

0 2 4 6 8 10

Group 3
N = 188

Group 1
N = 235

Group 1
N = 92

Group 2
N = 75

Figure 4. RPA for TCGA cohort (n = 766). (A) RPA model defines 4 risk groups based on IDH mutation status, age at diagnosis, and SDL risk score. 
(B) Kaplan-Meier curves, number at risk, median OS, and HRs for the 4 risk groups as determined in (A). Group 1 has the worst OS, Group 2 and 3 
have intermediate OS, and Group 4 has the best OS. (C) Kaplan-Meier curves, number at risk, and median OS of IDH-Wildtype split by Group 1 and 
Group 2. The solid two lines represent IDH-wildtype astrocytoma within Groups 1 and 2 resepectively whereas dashed represent IDH-wildtype GBM 
within Groups 1 and 2. HR, hazard ratio; OS, overall survival; SDL, survival deep learning; RPA, recursive partitioning analysis; IDH, isocitrate dehydro-
genase; GBM, Glioblastoma multiforme.
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Figure 4. RPA for TCGA cohort (n = 766). (A) RPA model defines 4 risk groups based on IDH mutation status, age at diagnosis, and SDL risk score. 
(B) Kaplan-Meier curves, number at risk, median OS, and HRs for the 4 risk groups as determined in (A). Group 1 has the worst OS, Group 2 and 3 
have intermediate OS, and Group 4 has the best OS. (C) Kaplan-Meier curves, number at risk, and median OS of IDH-Wildtype split by Group 1 and 
Group 2. The solid two lines represent IDH-wildtype astrocytoma within Groups 1 and 2 resepectively whereas dashed represent IDH-wildtype GBM 
within Groups 1 and 2. HR, hazard ratio; OS, overall survival; SDL, survival deep learning; RPA, recursive partitioning analysis; IDH, isocitrate dehydro-
genase; GBM, Glioblastoma multiforme.
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Table 2. Demographics Table for RPA risk Groups for TCGA Cohort

 Group 1 (N = 327) Group2 (N = 75) Group 3 (N = 176) Group 4 (N = 188) Total (N = 766) 

Clinical and Demographics Variables

Sex

 Female 128 (39.1%) 38 (51.4%) 68 (41.7%) 73 (42.9%) 307 (41.8%)

 Male 199 (60.9%) 36 (48.6%) 95 (58.3%) 97 (57.1%) 427 (58.2%)

Age at diagnosis

 Mean (SD) 60.5 (11.9) 41.1 (10.6) 42.3 (12.5) 40.0 (12.4) 49.7 (15.4)

 Median 61.0 44.0 40.0 38.5 51.0

 Q1, Q3 54.5, 69.0 34.2, 50.0 33.0, 51.0 30.0, 49.8 37.0, 61.0

 Range 14.0–88.0 10.0–54.0 20.0–75.0 14.0–74.0 10.0–88.0

Grade

 II 6 (1.8%) 10 (13.5%) 52 (31.9%) 113 (66.5%) 181 (24.7%)

 III 38 (11.6%) 19 (25.7%) 91 (55.8%) 57 (33.5%) 205 (27.9%)

 IV 283 (86.5%) 45 (60.8%) 20 (12.3%) 0 (0.0%) 348 (47.4%)

WHO grouping

 IDH-mutant Astrocytoma 0 (0.0%) 0 (0.0%) 86 (48.9%) 117 (62.2%) 203 (29.0%)

 IDH-mutant GBM 0 (0.0%) 0 (0.0%) 20 (11.4%) 0 (0.0%) 20 (2.9%)

 IDH-mutant oligodendro-
glioma

0(0.0%) 0 (0.0%) 70 (39.8%) 71 (37.8%) 141 (20.1%)

 IDH-wildtype astrocytoma 43 (15.8%) 29 (46.0%) 0 (0.0%) 0 (0.0%) 72 (10.3%)

 IDH-wildtype GBM 230 (84.2%) 34 (54.0%) 0 (0.0%) 0 (0.0%) 264 (37.7%)

IDH status

 Wildtype 273 (100.0%) 63(100.0%) 0 (0.0%) 0 (0.0%) 336 (48.0%)

 Mutant 0 (0.0%) 0 (0.0%) 176 (100.0%) 188 (100.0%) 364 (52.0%)

ATRX status

 Wildtype 170 (52.0%) 36 (48.0%) 98 (55.7%) 105 (55.9%) 409 (53.4%)

 Mutant 9 (2.8%) 3 (4.0%) 67 (38.1%) 83 (44.1%) 162 (21.1%)

Vital status

 Alive 53 (16.2%) 26 (34.7%) 126 (71.6%) 175 (93.1%) 380 (49.6%)

 Deceased 274 (83.8%) 49 (65.3%) 50 (28.4%) 13 (6.9%) 386 (50.4%)

Survival time (years)

 Median 1.03 2.14 5.29 14.14 2.50

 95% CI (0.97 to 1.16) (2.04 to 3.92) (4.21 to 7.64) (9.50 to NA) (2.16 to 3.13)

SDL risk

 Mean (SD) 1.2 (0.7) 0.2 (1.1) −0.2 (0.7) −1.7 (0.6) 0.1 (1.3)

 Median 1.3 0.6 −0.3 −1.6 0.2

 Q1, Q3 1.0, 1.6 0.1, 0.9 −0.7, 0.2 −1.9, −1.3 −1.0, 1.3

 Range −1.4 to 2.8 −4.9 to 1.1 −1.0 to 1.5 −3.9 to -1.0 −4.9 to 2.8

Abbreviations: IDH, isocitrate dehydrogenase 1 or 2 gene; ATRX, α-thalassemia, mental retardation, X-linked protein; 1p19q, deletion status of 
short arm of chromosome 1 and long arm of chromosome 19; GBM, glioblastoma multiforme; SDL risk, survival deep learning risk; RPA, recursive 
partitioning analysis.
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