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Abstract: Technological advances enable the design of systems that interact more closely with
humans in a multitude of previously unsuspected fields. Martial arts are not outside the application
of these techniques. From the point of view of the modeling of human movement in relation to the
learning of complex motor skills, martial arts are of interest because they are articulated around a
system of movements that are predefined, or at least, bounded, and governed by the laws of Physics.
Their execution must be learned after continuous practice over time. Literature suggests that artificial
intelligence algorithms, such as those used for computer vision, can model the movements performed.
Thus, they can be compared with a good execution as well as analyze their temporal evolution during
learning. We are exploring the application of this approach to model psychomotor performance in
Karate combats (called kumites), which are characterized by the explosiveness of their movements.
In addition, modeling psychomotor performance in a kumite requires the modeling of the joint
interaction of two participants, while most current research efforts in human movement computing
focus on the modeling of movements performed individually. Thus, in this work, we explore how to
apply a pose estimation algorithm to extract the features of some predefined movements of Ippon
Kihon kumite (a one-step conventional assault) and compare classification metrics with four data
mining algorithms, obtaining high values with them.

Keywords: human activity recognition (HAR); computer vision; deep learning; human pose estima-
tion (HPE); OpenPose; martial arts; karate

1. Introduction

Human activity recognition (HAR) techniques have proliferated and focused on rec-
ognizing, identifying and classifying inputs through sensory signals, images or video, and
are used to determine the type of activity that the person being analyzed is performing [1].
Following [1], human activities can be classified according to: (i) gestures (primitive move-
ments of the body parts of a person that may correspond to a particular action of this
person [2]); (ii) atomic actions (movements of a person describing a certain motion that
may be part of more complex activities [3]); (iii) human-to-object or human-to-human
interactions (human activities that involve two or more persons or objects [4]); (iv) group
actions (activities performed by a group of persons [5]); (v) behaviors (physical actions that
are associated with the emotions, personality, and psychological state of the individual [6]);
and (vi) events (high-level activities that describe social actions between individuals and
indicate the intention or the social role of a person [7].

HAR-type techniques are usually divided into two main groups [5,8]: (i) HAR models
based on image or video, and (ii) those that are based on signals collected from accelerome-
ter, gyroscope, or other sensors. Due to legal and other technical issues [5], HAR sensor-
based systems are increasing their number of projects. The scope of the sensors at present is
large, with cheap and good quality sensors to be able to develop any system in any sector or
specific field. In this way, HAR-type systems can gather data from diverse type of sensors
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such as: accelerometers (e.g., see [9,10]), gyroscopes, which are usually combined with
an accelerometer (e.g., see [11,12]), GPS (e.g., see [13,14]), pulse-meters (e.g., see [15,16]),
magnetometers (e.g., see [17,18]) and thermometers (e.g., see [19]). As analyzed in [20], the
field is still emerging, and inertial-based sensors such as accelerometers and gyroscopes can
be used to (i) recognize specific motion learning units and (ii) assess learning performance
in a motion unit.

In turn, the models developed based on images and video can provide more meaning-
ful information about the movement, as they can record the movements performed by the
skeleton of the body. It is an interdisciplinary technology with a multitude of applications
at a commercial, social, educational and industrial level. It is applicable to many aspects
of the recognition and modeling of human activity, such as medical, rehabilitation, sports,
surveillance cameras, dancing, human–machine interfaces, art and entertainment, and
robotics [21–29]. In particular, gesture and posture recognition and analysis is essential for
various applications such as rehabilitation, sign language, recognition of driving fatigue,
device control and others [30].

The world of physical exercise and sport is susceptible to the application of these
techniques. What is called the Artificial Intelligence of Things (AIoT) has already emerged,
applicable to different sports [31]. In sports and exercise in general, both sensors and video
processing are being applied to improve training efficiency [32–34] to develop sport and
physical exercise systems. Regarding inertial sensor data, [35] provides a systematic review
of the field, showing that sensors are being applied in the vast majority of sports, both worn
by athletes and in sport tools. Techniques based on computer vision for Physical Activity
Recognition (PAR) have mainly used [36]: red-green-blue (RGB) images, optical flow, 2D
depth maps, and 3D skeletons. They use diverse algorithms, such as Naive Bayes (NB) [37],
Decision Trees (DT) [38], Support Vector Machines (SVM) [39], Nearest Neighbor (NN) [40],
Hidden Markov Models (HMM) [41], and Convolutional Neural Networks (CNN) [42].

However, currently, hardly any sensor-based or video-based HAR systems address the
problem of modeling the movements performed from a psychomotor perspective [43,44],
such that they can be compared with the same user along time or with users of different
levels of expertise. This would allow to provide personalized guidance to the user to
improve the execution of the movements, as proposed in the sensing-modeling-designing-
delivering (SMDD) framework described in [45], which can be applied along the lifecycle
of technology-based educational systems [46]. In [45], two fundamental challenges are
pointed out: (1) modeling psychomotor interaction and (2) providing adequate personal-
ized psychomotor support. One system that follows the SMDD psychomotor framework is
KSAS, which uses the inertial sensors from a smartphone to identify wrong movements in
a sequence of predefined arm movements in a blocking set of American Kenpo Karate [47].
In turn, and also following the SMDD psychomotor framework, we are developing an
intelligent infrastructure called KUMITRON that simultaneously gathers both sensor and
video data from two karate practitioners [48,49] to offer expert advice in real time for both
practitioners on the Karate combat strategy to follow. KUMITRON can also be used to
train motion anticipation performance in Karate practice, based on improving peripheral
vision, using computer vision filters [50].

The martial arts domain is useful to contextualize the research on modeling psychomo-
tor activity since martial arts require developing and working on psychomotor skills to
progress in the practice. In particular, there are several challenges for the development
of intelligent psychomotor systems for martial arts [51]: (1) improve movement model-
ing and, specifically, movement modeling in combat, (2) improve interaction design to
make the virtual learning environment more realistic (where available), (3) design motion
modeling algorithms that are sensitive to relevant motion characteristics but insensitive to
sensor inaccuracies, especially when using low cost wearables, and (4) create virtual reality
environments where realistic force feedback can be provided.

From the point of view of the modeling of human movement in relation to the learning
of complex motor skills, martial arts are of interest because they are articulated around a



Sensors 2021, 21, 8378 3 of 27

system of movements that are predefined, or at least, bounded, and governed by the laws of
Physics [52]. To understand the impact of Karate on the practitioner, there is a fundamental
reading by its founder [53]. The physical work and coordination of movements can
be practiced individually by performing forms of movements called “katas”, which are
developed to train from the most basic to the most advanced movements. In turn, the
Karate combat (called “kumite”) is developed by earning points on attack techniques that
are applied to the opponent in combat. The different scores that a karateka (i.e., Karate
practitioner) can obtain are: Ippon (3 points), Wazari (2 points) and Yuko (1 point). The
criterion for obtaining a certain point in kumite is conditioned by several factors, among
others, that the stroke is technically well executed [54]. This is why karatekas must polish
their fighting techniques to launch clear winning shots that are rewarded with a good
score. The training of the combat technique can be performed through the katas (individual
movements that simulate fighting against an imaginary opponent), or through Kihon kumite
exercises, where one practitioner has to apply the techniques in front of a partner, with the
pressure that this entails.

There are some works that develop and apply movement modeling to the study of the
technique performed by karatekas, but only individually [55–57]. However, in this work,
we are exploring if it is also feasible to develop and apply computer vision techniques to
other types of exercises in which the karateka has to apply the techniques with the pressure
of an opponent, such as in Kihon kumite exercises. Thus, in the current work, we focus
on how to model the movements performed in a kumite by processing video recordings
obtained with KUMITRON when performing the complex and dynamic movements of
Karate combats.

In this context, we pose the following research question: “Is it possible to detect
and identify the postures within a movement in a Karate kumite using computer vision
techniques in order to model psychomotor performance?”.

The main objective of this research is to develop an intelligent system capable of identi-
fying the postures performed during a Karate combat so that personalized feedback can be
provided, when needed, to improve the performance in the combat, thus, supporting psy-
chomotor learning with technology. The novelty of this research lies in applying computer
vision to an explosive activity where an individual interacts with another while performing
rapid and strong movements that change quickly in reaction to the opponent’s actions.
According to the review of the field in human movement computing that is reported next,
computer vision has been applied to identify postures performed individually in sports
in general and karate in particular, but we have not found postural identification in the
interaction of two or more individuals performing the same activity together.

Thus, our research seeks to offer a series of advantages in the learning of martial arts,
such as studying the movements of practitioners in front of opponents of different heights,
in real time and in a fluid way. It is intended to use the advances of this study to improve
the technique of Karate practitioners applying explosive movements, which is essential for
the assimilation of the technique and hence, achieve improvement in the performance of
the movements, according to psychomotor theories [58].

The rest of the paper is structured as follows. Related works are in Section 2. In
Section 3, we present the methodology and define the dataset to answer the research
question. In Section 4, we explain how the current dataset is obtained. After that, in
Section 5 we analyze the dataset and present the results. In Section 6, we discuss the results
and suggest some ideas for future work. Finally, conclusions are in Section 7.

2. Related Works

The introduction of new technologies and computational approaches is providing
more opportunities for human movement recognition techniques that are applied to sports.
The extraction of activity data, together with their analysis with data mining algorithms is
making the training efficiency higher. Through the acronym HPE (Human Pose Estimation),
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studies have been found in which different technologies are applied that seek to model the
movement of people when performing physical activities.

Human modeling technologies have been applied for the analysis of human move-
ments applied to sport as described in [59]. In particular, different computer vision tech-
niques can be applied to detect athletes, estimate pose, detect movements and recognize
actions [60]. In our research, we focus on movement detection. Thus, we have reviewed
works that delve into existing methods: skeleton based models, contour-based models, etc.
As discussed in [61–63], 3D computer vision methodologies can be used for the estimation
of the pose of an athlete in 3D, where the coordinates of the three axes (x, y, z) are necessary,
and this requires the use of depth-type cameras, capable of estimating the depth of the
image and video received.

Martial arts, similar to sport in general, is a discipline where human modeling tech-
niques and HPE are being applied [64–66]. Motion capture (mocap) approaches are some-
times used and can add sensors to computer vision for motion modeling, combining the
interpretation of the video image with the interpretation of the signals (accelerometer, gy-
roscope, magnetometer, GPS). In any case, the pose estimation work is usually performed
individually [67,68], while the martial artist performs the techniques by themselves.

Virtual reality (VR) techniques have been used to project the avatar or the image
of martial artists to a virtual environment programmed in a video game for individual
practice. For instance, [69] uses computer vision techniques and transports the individual
to the monitor or screen making use of background subtraction techniques [70]. In turn, [71]
also creates the avatar of the person to be introduced into the virtual reality and, thus, be
able to practice martial arts in front of virtual enemies that are watched through VR glasses,
but in this case, body sensors are used to monitor the movements.

The application of computer vision algorithms in the martial arts domain not only
focus on the identification of the pose and the movement, but there are advances in the
prediction of the next attack. For this, the trainer can be monitored using residual RGB
and CNN network frames to which LSTM neural networks are applied that predict the
next attack movement in 2D [72]. Moreover, computer vision together with sensor data can
be used to record audiovisual teaching material for Physics learning from the interaction
of two (human) bodies as in Phy+Aik [73], where Aikido techniques practiced in pairs
are monitored and used to show Physics concepts of circular motion when applying a
defensive technique to the attack received.

Karate [74] is a popular martial art, invited at the Tokyo Olympics, and thus, there have
been efforts in applying new technologies to its modeling from a computing perspective to
improve psychomotor performance. In this sense, [75] has reviewed the technologies used
in twelve articles to analyze the “mawasi geri” (side kick) technique, finding that several
kinds of inputs, such as 3D video image, inertial sensors (accelerometers, gyroscopes,
magnetometers) and EMG sensors can be used to study the speed, position, movements
of body parts, working muscles, etc. There are also studies on the “mae geri” movement
(forward kick) using the Vicon optical system (with twelve MX-13 cameras) to create
pattern plots and perform statistical comparison among the five expert karatekas who
performed the technique [76]. Sensors are also used for the analysis of Karate movements
(e.g., [77,78]) using Dynamic Time Warping (DTW) and Support Vector Machines (SVM).
In this context, it is also relevant to know that datasets of Karate movements (such as [79])
have been created for public use in other investigations as in the above works, but they
only record individual movements.

Kinematics has also been used to analyze intra-segment coordination due to the
importance of speed and precision of blows in Karate as in [80], where a Vicon camera
system consisting of seven cameras (T10 model) is used. These cameras capture the
markers that the practitioners wear, and which are divided into sub-elite and elite groups.
In this way, a comparison of the technical skill among both groups is made. Using a
gesture description language classifier and comparing it with Markov models, different
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Karate techniques individually performed are analyzed to determine the precision of the
model [57].

In addition to modeling the techniques performed individually, some works have
focused on the attributes needed to improve the performance in martial arts practice.
For instance, VR glasses and video have been used to improve peripheral vision and
anticipation [69,81], which has also been explored in KUMITRON [50] with computer
vision filters.

The conclusion that we reached after the literature review carried out is that new
technologies are being introduced in many sectors, including sports, and hence, martial arts
are not an exception. The computation approaches that can be applied vary. In some cases,
the signals obtained from sensors are processed, in others computer vision algorithms are
used, and sometimes both are combined. In the particular case of Karate, studies are being
carried out, although mainly focus on analyzing how practitioners perform the techniques
individually. Thus, an opportunity has been identified to study if existing computational
approaches can be applied to model the movements during the joint practice of several
users, where in addition to the individual physical challenge of making the movement in
the correct way, other variables such as orientation, fatigue, adaptation to the anatomy of
another person, or the affective state can be of relevance. Moreover, none of the works
reviewed uses the modeling of the motion to evaluate the psychomotor performance
such that appropriate feedback can be provided when needed to improve the technique
performed. Since computer vision seem to produce good results for HPE, in this paper we
are going to explore existing computer vision algorithms that can be used to estimate the
pose of karatekas in a combat, select one and use it on a dataset created with some kumite
movements aimed to address the research question raised in the introduction.

3. Materials and Methodology

In this section, we present some computer vision algorithms that can be used for pose
estimation and present the methodology proposed to answer the research question.

3.1. Materials

After the analysis of the state of the art, we have identified several computer vision
algorithms that produce good results for HPE, and which are listed in Table 1. According
to the literature, the top three algorithms from Table 1 offering best results are WrnchAI,
OpenPose and AlphaPose. Several comparisons with varied conclusions have been made
among them. According to LearnOpenCV [82], WrnchAI and OpenPose offer similar
features, although WrnchAI seems to be faster than OpenPose. In turn, [83] concludes that
AlphaPose is above both when used for weight lifting in 2D vision. Other studies such
as [84] find OpenPose superior and more robust when applied to real situations outside of
the specific datasets such as MPII [85] and COCO [86] datasets.

From our own review, we conclude that OpenPose is the one that has generated
more literature works and seems to have the largest community of developers. OpenPose
has been used in multiple areas: sports [87], telerehabilitation [88], HAR [89–91], artistic
disciplines [92], identification of multi-person groups [93], and VR [94]. Thus, we have
selected OpenPose algorithm for this work due to the following reasons: (i) it is open
source, (ii) it can be applied in real situations with new video inputs [84], (iii) there is a
large number of projects available with code and examples, (iv) it is widely reported in
scientific papers, (v) there is a strong developers community, and (vi) the API gives users
the flexibility of selecting source images from camera fields, webcams, and others.
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Table 1. Description of existing computer vision algorithms for pose estimation.

Pose Estimation
Algorithms Description

AlphaPose (https:
//github.com/MVIG-SJTU/AlphaPose,

accessed on 28 November 2021)

Presented in 2016 [95], it is an algorithm that allows estimating the pose of one or
more individuals. It is the first open source system that has reached the following
records: 80+ mAP (82.1 mAP) on MPII dataset and 70+ mAP (72.3 mAP) on COCO
dataset. This means that the algorithm is more precise in detecting keypoints in
comparison with others. AlphaPose is free to use and distribute as long as it is not
used for commercial purposes.

DeepCut
(https://github.com/eldar/deepcut,

accessed on 28 November 2021)

System developed in 2016 [96] presented as a multi-person computer vision
system, with deeper, stronger and faster features compared to the state of the art at
that time. It works bottom-up for image treatment. The way of working is to
detect the people who are in an image to later predict the joint locations. It can be
applied to both images and video of sports such as baseball, athletics or soccer.

Deep Pose
(https://github.com/mitmul/deeppose,

accessed on 28 November 2021)

An algorithm presented in 2014 [97] that estimates the human pose using Deep
Neural Networks (DNN). To do this, a regression based on DNN is performed to
estimate the joints. In challenges of precision in the classification of images [98],
DeepPose obtained better results than the rest of the works, becoming a
benchmark of that moment.

DensePose
(https://github.com/facebookresearch/

DensePose, accessed on 28 November 2021)

It is an algorithm developed in 2018 by members of Facebook [99] that maps the
pixels of the human body in 2D to turn it into a 3D surface that covers the human
body. It serves one or more individuals. It is being used to determine the surface of
the human body for different purposes such as trying on virtually an article of
clothing on the avatar created for oneself.

High Resolution Net (HRNet)
(https://github.com/HRNet/

HigherHRNet-Human-Pose-Estimation,
accessed on 28 November 2021)

Neural network architecture for the estimation of human pose developed in 2019
by Microsoft [100]. It is also used for semantic segmentation and object detection.
Despite being a relatively new model, it is becoming a benchmark in the field of
computer vision algorithms. It has been the winner in several computer vision
tournaments, for example in ICCV2019 [101]. It is a useful architecture to
implement in the postural analysis of televised events since it makes
high-resolution estimates of postures.

OpenPose (https://github.com/CMU-
Perceptual-Computing-Lab/openpose,

accessed on 28 November 2021)

Computer vision algorithm for the estimation of pose in real time of several people
in 2D developed in 2017 [102]. It has undergone functionalities extensions, and
currently allows to be used in 3D, hand point detection, face detection, and work
with Unity. The OpenPose API allows obtaining the image from various devices:
recorded video, streaming video, webcam, etc. Other hardware is also supported,
such as CUDA GPUs, OpenCL GPUs, and CPU-only devices.

PoseNet (https://github.com/tensorflow/
tfjs-models/tree/master/posenet, accessed

on 28 November 2021)

It is a pose estimator for a single person or several people, offering 17 keypoints
with which to model the human body. It was developed in 2015 [103]. At first, it
was aimed at lightweight devices such as mobile phones or browsers, although
today it has advanced and improved performance.

WrnchAI
(https://go.hingehealth.com/wrnch,

accessed on 28 November 2021)

WrnchAI is a human deposit estimation algorithm developed by a company based
in Canada in 2014 and released only under license. It can be used for one or
several individuals making use of the low latency engine, being a system
compatible with all types of video. Due to its commercial use, we could not find
any scientific paper describing it.

About OpenPose

OpenPose [102] is a computer vision algorithm proposed by the Cognitive Computing
Laboratory at Carnegie Mellon University for the real-time estimation of the shape of
the bodies, faces and hands of various people. OpenPose provides 2D and 3D multi-
person hotspot detection, as well as a calibration toolbox for estimating specific region
parameters. OpenPose accepts many types of input, which can be images, videos, webcams,
etc. Similarly, its output is also varied, which can be PNG, JPG, AVI or JSON, XML and
YML. The input and output parameters can also be adjusted for different needs. OpenPose

https://github.com/MVIG-SJTU/AlphaPose
https://github.com/MVIG-SJTU/AlphaPose
https://github.com/eldar/deepcut
https://github.com/mitmul/deeppose
https://github.com/facebookresearch/DensePose
https://github.com/facebookresearch/DensePose
https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation
https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-models/tree/master/posenet
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provides a C ++ API and works on both CPU and GPU (including versions compatible
with AMD graphics cards). The main characteristics are summarized in Table 2.

Table 2. Technical characteristics of the OpenPose algorithm (obtained from https://github.com/CMU-Perceptual-
Computing-Lab/openpose, accessed on 28 November 2021).

OpenPose Features

Main functionality
(with a plain camera)

Detection of keypoints of several people in real time 2D.
Body/foot keypoint estimate of 15, 18 or 25 keypoints, including 6 foot keypoints. Execution time
invariable with respect to the number of people detected.
Handheld keypoint estimate of 2 × 21 keypoints. The execution time depends on the number of
people detected.
Estimation of keypoints of faces of 70 keypoints. The execution time depends on the number of
people detected.

Real-time single-person 3D
keypoint detection

3D triangulation of multiple unique views.
Synchronization of Flir cameras managed.
Compatible with Flir/Point Gray cameras.

Calibration Toolbox Estimation of the distortion, intrinsic and extrinsic parameters of the camera.

Input Image, Video, Webcam, Flir/Point Gray, IP Camera, and support for adding your own custom input
source (e.g., depth camera).

Output
Basic image + keypoint display/save (PNG, JPG, AVI...), keypoint save (JSON, XML, YML...),
keypoints as array class and support to add your own code custom output (e.g., some fancy
user interface).

In this way, we can start by exploring the 2D solutions that OpenPose offers so that it
can be used with different plain cameras such as the one in a webcam, a mobile phone or
even the camera of a drone (which is used in KUMITRON system [48]). Applying 3D will
require the use of depth cameras.

As described in [102], OpenPose algorithm works as follows:

1. Deep learning bases the estimation of pose on variations of Convolutional Neural
Networks (CNN). These architectures have a strong mathematical basis on which
these models are built:

( f ∗ g)
∫ ∞

−∞
f (τ)g(t− τ)dτ =

∫ ∞

−∞
f (t− τ)g(τ)dτ (1)

2. Apply ReLu (REctified Linear Unit): the rectifier function is applied to increase the
non-linearity in the CNN.

3. Group: It is based in spatial invariance, a concept in which the location of an object
in an image does not affect the ability of the neural network to detect its specific
characteristics. Thus, the clustering allows CNN to detect features in multiple im-
ages regardless of the lighting difference in the pictures and the different angles of
the images.

4. Flattening: Once the grouped featured map is obtained, the next step is to flatten it.
The flattening involves transforming the entire grouped feature map matrix into a
single column which is then fed to the neural network for processing.

5. Full connection: After flattening, the flattened feature map is passed through a
network neuronal. This step is made up of the input layer, the fully connected layer,
and the output layer. The output layer is where the predicted classes are provided. The
final values produced by the neural network do not usually add up to one. However,
it is important that these values are reduced to numbers between zero and one, which
represent the probability of each class. This is the role of the Softmax function.

σ : Rk → (0, 1)k

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
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σ(z)j =
ezj

∑k
1⇐1 ezk

forj = 1, . . . .., K. (2)

All these steps can be represented by the following diagram in Figure 1.
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3.2. Methodology

The objective of the research introduced in this paper is to determine if computer
vision algorithms (in this case, OpenPose) are useful to identify the movements performed
in a Karate kumite by both practitioners. To answer the question, a dataset will be prepared
following predefined Kihon Kumite movements both corresponding to attack and defense as
explained in Section 4.2. The processing of the dataset consists of two clearly differentiated
parts: (i) the training of the classification algorithms of the system using the features
extracted with the OpenPose algorithm, and (ii) the application of the system to the input
of non-preprocessed movements (raw data). These two stages are broken down into the
following sub-stages, as shown in Figure 1:

1. Acquisition of data input: Record the movements to create the dataset to be used in
the experiment, and later to test it.

2. Feature extraction: Applying the OpenPose algorithm to the dataset to group anatom-
ical positions of the body (called keypoints) into triplets to calculate the angle,
which allow generating a pre-processed input data file for algorithm training (see
Figures 3 and 4). OpenPose allows to have the 2D position of each point (x, y). Thus,
by having the coordinates of three consecutive points, the angle formed by those three
with respect to the central one is calculated. An example is provided next.

3. Train a movement classifier: With the pre-processed data from point 2, train data
mining algorithms to classify and identify the movements. Several data mining
algorithms can be used for the classification in the current work generating the
corresponding learning models (see below). For the evaluation of the classification
performance, 10-fold cross validation is proposed, following [105–107].

4. Test the movement classifier: Apply the trained classifier to the non-preprocessed
input (raw data) with the movements performed by the karateka.
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5. Evaluate the performance of the classifiers: Compare the results obtained by each
algorithm in the classification process with usual machine learning classification
metrics, currently those offered by Weka: (i) true positive rate, (ii) false positive rate,
(iii) precision (number of true positives that are actually positive compared to the
total number of predicted positive values), (iv) recall (number of true positives that
the model has classified based on the total number of positive values), (v) F-measure
(metric that combines precision and recall), (vi) MMC (Mahalanobis Metric for Clus-
tering: minimizes the distances between similarly labeled inputs while maximizing
the distances between differently labeled inputs), ROC area (area under the Receiver
Operating Curve: used for classification problems and represents the percentage of
true positives against the ratio of false positives), and PRC area (Precision Recall
Curve: a plot of precision vs. recall for all potential cut-offs for a test).

This process follows the scheme in Figure 2, which shows the steps proposed for
Karate movement recognition using OpenPose algorithm to extract the features from the
images and data mining algorithms on these features to classify the movements:
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Figure 2. Steps for Karate movement recognition using OpenPose.

OpenPose works with 25 keypoints (numbered from 0 to 24, as shown in Section 4.3 in
Figure 9) for the extraction of input data, which are used to generate triples, as it can be seen
in Figure 3. OpenPose keypoints are grouped into triplets of three consecutive points, which
are the input attributes (angles) for classifying the output classes. To define the keypoints,
OpenPose expanded the 18 keypoints of COCO dataset (https://cocodataset.org/#home
accessed on 2 December 2021) with the ones for the feet and waist from the Human
Foot Keypoint dataset (https://cmu-perceptual-computing-lab.github.io/foot_keypoint_
dataset/ accessed on 2 December 2021)).

https://cocodataset.org/#home
https://cmu-perceptual-computing-lab.github.io/foot_keypoint_dataset/
https://cmu-perceptual-computing-lab.github.io/foot_keypoint_dataset/
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Human Foot Keypoint datasets.

The 26 triplets that can be obtained from the 25 keypoints in Figure 3 are grouped and
named by their main anatomical part, as shown in Figure 4.
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 Figure 4. Triplets of keypoints for calculating the angle with OpenPose.

This allows identifying the numbering of the triples with their body position. As an
example we have the keypoints numbered 5, 6 and 7 that correspond to the main part
“Shoulders Left Arm” as it can be seen in Figure 4. In Figure 3, the angular creation of the
commented triplet can be graphically observed. Figure 4 collects all the triples formed by
the keypoints in Figure 3, naming them the main body part they represent. The grouping
of the keypoints in triples makes it possible to avoid the variability of the points depending
on the height of the practitioners, in order to calculate their angle. In this way, a person of
190 cm tall and another of 170 cm tall, will have similar angles for the same Karate posture,
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compared to the bigger variation of the keypoints due to the different height of the bodies.
This allows the algorithm training to be more efficient and fewer inputs are required to
achieve optimal computational performance.

As a result, Figure 5 shows the processing flow proposed to answer the research
question regarding the identification of kumite postures. On the top part of the figure, the
data models are trained to identify all the movements selected for the study. This is done by
generating a dataset with the angles of each Karate technique, which is trained according
to different data mining algorithms. Subsequently, these trained algorithms are used on
real kumite movements in real time in order to identify the kumite posture performed, as
shown on the bottom.

Figure 5. Training model and the raw data input process flow proposed in this research.

For the selection of the data mining classifiers, a search was made of the types of clas-
sifiers applied in general to computer vision. Some works such as [108–112] use machine
learning (ML) algorithms, mainly decision trees and bayesian networks. However, deep
learning (DL) techniques are more and more used for the identification and qualification of
video images as in [113–116]. In particular, a deep learning classification algorithm that is
having very good results according to the studies found is the Weka DeepLearning4j algo-
rithm [117–119]. The Weka Deep Learning kit allows to create advanced Neural Network
Layers as it is explained in [120].

In addition to a general analysis of ML and DL algorithms, specific application to
sports, human modeling and video image processing were also sought. The BayesNet algo-
rithm has already been used to estimate human pose in other similar experiments [121–123].
Another algorithm that has been applied to this type of classifications is the J48 decision
tree [124–126]. These two ML algorithms were selected for the classification of the move-
ments, as well as two neural network algorithms included in the WEKA application: the
MultiLayerPerceptron (MLP) algorithm, which has also been used in different works as
well as similar algorithms [127,128], and the aforementioned DeepLearning4J. Thus, we
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have selected two ML and two DL algorithms. Table 3 compares both types of algorithms
following [129].

Table 3. Machine Learning vs. Deep Learning (obtained from [129]).

Characteristics Machine Learning Deep Learning

Data Requirement Small/Medium Large

Accuracy High accuracy Medium accuracy

Preprocessing phase Needed Not needed

Training time Short time Takes longer time

Interpretability From easy (tree, logistic) to
difficult (SVM) From difficult to impossible

Hardware requirement Trains on CPU Requires GPU

Due to the type of hardware that was used, which consisted of standard cameras
(without depth functionality) available in webcams, mobiles and drones, the research was
oriented to the application of the video image in 2D format for its correct processing and
postural identification.

3.3. Computational Cost

The operation of OpenPose for the application programmed consists of a communi-
cation system between OpenPose and the functions designed for the video manipulation,
done with the four classes in a Java application listed below. The computational cost
associated with the processing is determined through the computational analysis of the
following main parts of the code that are represented in Figure 6.
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The video input is captured by the OpenPose application libraries that identify the
keypoints of each individual that appears in the image. As explained in the official
OpenPose paper [102], the runtime of OpenPose consists of two major parts: (1) CNN
processing time whose complexity is O(1), constant with varying number of people; and
(2) multi-person parsing time, whose complexity is O(N2), where N represents the number
of people.

OpenPose communicates with our application by sending information about the iden-
tified keypoints and the number of individuals in the image. The Java application, receives
the data from OpenPose, dimensioned in “N” the problem for the complexity calculation.

There are four main classes:

• pxStreamReadCamServer: receives MxN pixels image compressed in JPEG: (640 * 480) = O(ni)
to decompress

• receiveArrayOfDouble: receives 26 double (angle) = 26 = K2
• stampMatOnJLabel: display image on a Jlabel =~ K1
• wrapperClassifier.prediceClase: deduce position of the angles, 26 * num layers = 26 ∗ 16 = K3

Thus, the cost estimate for these functions is:

• Cost: O(ni) + K2 = 26 => 1 (one) + K3 = 26 ∗ 16 => 16 == O(ni) + K;

Therefore, the computational cost of the intelligent movement identification system
for an individual and several is:

• Full cost per frame for one person: 2 ∗ O(ni) + K;
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• Full cost per frame for more than one person: O(Nˆ2) + 2 ∗ O(ni) + K;

It can be seen how in this case the higher computational cost of the OpenPose al-
gorithm marks the total operational cost of the set of applications, finally reaching a
quadratic order.

4. Dataset Construction
4.1. Defining the Dataset Inputs

To answer the research question, first we have to select the video images to generate
the dataset with the interaction of the karatekas. There are different forms of kumite in
Karate, from multi-step combat (to practice) to free kumite [130] (very explosive with very
fast movements [131]). Multi-step combat (each step is as an attack) is a simple couple
exercise that slowly lead the karateka to an increasingly free action, according to predefined
rules. It does not necessarily have to be equated with competition: it is more of a pair
exercise in which the participant together with a partner develops a better understanding
of the psychomotor technique. Participants do not compete with each other but train with
themselves. The different types of kumite are listed in Table 4, from those with less freedom
of movement to free combat.

Table 4. Types of kumite.

KIHON-KUMITE
(multi-step combat)

IPPON KIHON KUMITE: One-step conventional assault.

SAMBON KIHON KUMITE: Three-step conventional assault.

GOHON KIHON KUMITE: Five-step conventional assault.

KUMITE

JYU IPPON KUMITE: Free and flexible assault one step away. It can have different work types:
(i) announcing height and type of attack, (ii) announcing height, (iii) announcing type of attack, and
(iv) unannounced.

URA IPPON KUMITE (Kaisho Ippon Kumite): Unconventional one-step assault. In this type of work
one of the karatekas (acting as uke) performs the attack and the other (as tori) defends it and
counterattacks the uke who defends the counterattack by the tori and ends up counterattacking. There
are three working types: (i) announcing the attack and with the pre-established counterattack,
(ii) announcing the attack and with the free counterattack, and (iii) unannounced.

JIYU KUMITE: Free and flexible combat.

SHIAI KUMITE: Regulated combat for competition.

In order to follow a progressive approach in our research, we started with the Ippon
Kihon kumite, which is a pre-established exercise so that it can facilitate the labeling of
movements and their analysis. This is the most basic kumite exercise, consisting of the
conventional one-step assault. We will use it to compare the results obtained from the
application of the data mining algorithms on the feature extracted from the videos recorded
and processed using the OpenPose algorithm.

4.2. Preparing the Dataset

In this first step of our research, the following attack and defense sequences were
defined to create the initial dataset, as shown in Figure 7.

The Ippon Kihon kumite sequence proposed for this study would actually be (i) Gedan
Barai, (ii) Oi Tsuki, (iii) Soto Uke, and (iv) Gyaku Tsuki. However, to calibrate the algorithm
and enrich the dataset, we also took two postures Kamae (which is the starting posture),
both for attack and defense, although they are not properly part of the Ippon Kihon kumite.
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Since monitoring the simultaneous interaction of two karatekas in movement is
complex, we have made this first dataset as simple as possible to familiarize ourselves
with the algorithm, learn and understand the strengths and weaknesses of OpenPose
and explore its potential in the human movement computing scenario addressed in this
research (performing martial arts combat techniques between two practitioners). We aim at
increasing the difficulty and complexity of the dataset gradually along the research. Thus,
for this first dataset, we selected direct upper trunk techniques (not lateral or angular) to
facilitate the work of OpenPose classification. In addition, simple techniques with the limbs
were selected. Thus, when working in 2D, lateral and circular blows that could acquire
angles that could be difficult to calculate in their trajectory and execution, are avoided. The
sequence of movements in pairs of attack and defense is shown in Table 5.

Table 5. Postures to be detected in the dataset for the Ippon Kihon kumite.

Attack Defense

1 Kamae 1 Kamae

1 Gedan Barai 2 Soto Uke

3 Oi Tsuki 3 Gyaku Tsuki

4.3. Implemented Application to Obtain the Dataset

Once the dataset was prepared, a Java application was developed in KUMITRON
to collect the data from the practitioners. In particular, in this initial and exploratory
collection of data, a green belt participant was video recorded performing the proposed
movements, both attack and defense. The video was taken statically for one minute in
which the karateka had to be in one for the predefined postures of Table 5 and Figure 7, and
the camera was moved to capture different possible angles of the shot in 2D. In addition,
videos were also taken dynamically in which the karateka went from one posture to another
and waited 30 seconds in the last one.

Figure 8 shows the interface of the application while recording the Oi Tsuki movement
performed by the karateka while testing the application. On the left panel, the postures
detected are listed chronologically from bottom to top. On the right of the image, the
skeleton identified with the OpenPose algorithm is shown on the real image.



Sensors 2021, 21, 8378 15 of 27

Sensors 2021, 21, x FOR PEER REVIEW 15 of 28 
 

 

Figure 8 shows the interface of the application while recording the Oi Tsuki move-
ment performed by the karateka while testing the application. On the left panel, the pos-
tures detected are listed chronologically from bottom to top. On the right of the image, the 
skeleton identified with the OpenPose algorithm is shown on the real image.  

 
Figure 8. Performing individually an Ippon Kihon kumite movement (Oi Tsuki attack) for the recognition tests. 

The application can also identify the skeletons of both karatekas when interacting in 
an Ippon Kihon kumite. Figure 9 shows the left practitioner (male, green belt) launching a 
Gedan Barai attack when the one on the right (women, white belt) is waiting in Kamae.  

 
Figure 9. Applying OpenPose to Ippon Kihon kumite training of two participants, where the body 
keypoints are represented (image obtained from KUMITRON). 

5. Analysis and Results 
The attributes selected for the classification with the data mining algorithms, as ex-

plained in Section 3.2, were the 26 triples obtained from the OpenPose keypoints. In this 
way, it is possible to calculate the angles that are formed by the different joints of the body 
of each karateka. Figure 10 shows the 26 different attributes considered corresponding to 
the 26 triplets introduced in Figure 4. They are shown in order as they are sent by the 
application. The last window shows the classes (postures) that are being identified. Colors 
are assigned as indicated in Table 6. 

Figure 8. Performing individually an Ippon Kihon kumite movement (Oi Tsuki attack) for the recogni-
tion tests.
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Figure 9. Applying OpenPose to Ippon Kihon kumite training of two participants, where the body
keypoints are represented (image obtained from KUMITRON).

5. Analysis and Results

The attributes selected for the classification with the data mining algorithms, as
explained in Section 3.2, were the 26 triples obtained from the OpenPose keypoints. In this
way, it is possible to calculate the angles that are formed by the different joints of the body
of each karateka. Figure 10 shows the 26 different attributes considered corresponding
to the 26 triplets introduced in Figure 4. They are shown in order as they are sent by the
application. The last window shows the classes (postures) that are being identified. Colors
are assigned as indicated in Table 6.
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Table 6. Defined Karate postures with the colors used in Figure 10 and the number of dataset
inputs considered.

Class Color Number of Dataset Inputs

Attack01: “Kamae” Blue 1801
Attack02: “Gedan Barai” Red 1548

Attack03: “Oi Tsuki” Cyan 1805
Defense01: “Kamae” Dark green 3643

Defense02: “Soto Uke” Pink 1721
Defense03: “Gyaku Tsuki” Light green 3627

For each of the postures (classes) several videos were recorded with KUMITRON to
create the initial dataset (as described in Section 4.3) and obtain the video inputs of the
postures for the OpenPose algorithm indicated in Table 6. The postures were recorded in
different ways. On the one hand, one minute long videos were made where the camera
moved from one side to the other while the karateka was completely still maintaining the
posture. To generate postural variability, other videos were created where the karateka
performed the selected postures for the Ippon Kihon kumite, stopping at the one that was to
be recorded. In this way, it is assumed that the recorded videos can offer more difference
between keypoints than just making static recordings. From the recorded videos, the inputs
generated come out at a rate of 25 frames per second. Thus, from one second of video,
25 inputs are generated for every second. A feature in OpenPose to clean the inputs with
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values very different from the average ones was used to deal with the members that remain
in the back of the camera.

In Figure 10, it can be observed in a range of 180 degrees (range in which the 26 angles
move) the values that each class takes according to the part of the body. This can be
interesting in future research to investigate, for example, whether a posture is overloaded
and is likely to cause some type of injury because it is generating an angle that what it is
convenient for that part of the body.

The statistical results obtained by applying the four algorithms (BayesNet, J48, MLP
and DeepLearning4J) using Weka suite to the identification of movements of the Ippon
Kihon kumite dataset built in this first step of our research are presented in Table 7. The
dataset obtained for the expression is publicly accessible (https://github.com/Kumitron
accessed on 2 December 2021).

Table 7. Summary results of the four data mining algorithms using 10-fold cross validation.

J48 BayesNet MLP DeepLearning4J

Time to build model (seg) 0.5 0.27 34.18 47.9
Correctly Classified Instances 14139 14137 14138 14142

% Correct 99.9576 99.9434 99.9505 99.9788
Incorrectly Classified Instances 6 8 7 3

% Incorrect 0.0424 0.0566 0.0495 0.0212
Kappa statistic 0.9995 0.9993 0.9994 0.9997

Mean absolute error 0.0001 0.0002 0.0006 0.0001
Root mean squared error 0.0119 0.0137 0.0118 0.0074
Relative absolute error 0.0539 0.0702 0.2148 0.0521

Root relative squared error% 3.2416 3.7228 3.2134 2.0249
Total number of Instances 14145 14145 14145 14145

Table 7 shows that the classifying algorithms have obtained a good classification
performance without significant differences among them. Nonetheless, the performance
of the algorithms will need to be revaluated when more users and more movements are
included in the dataset and it becomes more complex. The detail of the evaluation metrics
results by type of algorithm is shown in Table 8.

Table 8. Evaluation metrics obtained for the four algorithms.

Algorithm TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

BayesNet 1.000 0.000 0.999 0.999 0.999 0.999 1.000 1.000

J48 1.000 0.000 1.000 1.000 0.999 0.999 1.000 0.999

MLP 1.000 0.000 1.000 1.000 1.000 0.999 1.000 1.000

DeepLearning4J 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

As expected from Table 7, evaluation metrics are good in all the algorithms. DeepLearn-
ing4J seems to perform slightly better. However, another important variable to consider
in the performance analysis between algorithms is the time it takes to build the models.
Figure 11 shows that, from the comparison of the four algorithms, the differences in pro-
cessing time between the ML and DL algorithms are high. As expected, neural networks
take much longer, and since performance results are similar, they do not seem necessary
for the current analysis. However, we will analyze how both the processing time evolves
in these algorithms, with a greater number of inputs and varying conditions of speed of
movements in future versions of the dataset.

https://github.com/Kumitron
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The detailed performance results by type of movement (class) for each algorithm is
shown in Tables 9–12 reporting the values of the metrics computed by Weka. These results
were already good in the overall analysis, and no significant difference was found between
types of movements in any of the algorithms.

The metrics computed for the BayesNet algorithm are reported in Table 9.

Table 9. BayesNet algorithm—metrics computed by movement (class).

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

1.000 0.000 0.999 1.000 0.999 0.999 1.000 1.000 Attack01

1.000 0.000 0.996 1.000 0.998 0.998 1.000 0.999 Attack02

0.996 0.000 1.000 0.996 0.998 0.997 1.000 1.000 Attack03

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Defense01

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Defense02

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Defense03

Avg. 1.000 0.000 0.999 0.999 0.999 0.999 1.000 1.000

The metrics computed for the J48 algorithm are reported in Table 10.

Table 10. J48 algorithm—metrics computed by movement (class).

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.999 0.000 0.998 0.999 0.999 0.998 0.999 0.997 Attack01

0.998 0.000 0.999 0.998 0.998 0.998 0.999 0.997 Attack02

0.999 0.000 1.000 0.999 1.000 1.000 1.000 1.000 Attack03

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Defense01

1.000 0.000 0.999 1.000 1.000 1.000 1.000 0.999 Defense02

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Defense03

Avg. 1.000 0.000 1.000 1.000 0.999 0.999 1.000 0.999

The metrics computed for the MLP algorithm are reported in Table 11.
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Table 11. MLP algorithm—metrics computed by movement (class).

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.999 0.000 0.999 0.999 0.999 0.999 0.999 1.000 Attack01

0.997 0.000 0.998 0.997 0.998 0.997 1.000 1.000 Attack02

0.999 0.000 0.999 0.999 0.999 0.999 1.000 1.000 Attack03

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Defense01

1.000 0.000 0.999 1.000 1.000 1.000 1.000 0.999 Defense02

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Defense03

Avg. 1.000 0.000 1.000 1.000 1.000 0.999 1.000 1.000

The metrics computed for the BayesNet algorithm are reported in Table 12.

Table 12. Deep Learning4J—metrics computed by movement (class).

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.999 0.000 0.999 0.999 0.999 0.999 0.999 1.000 Attack01

0.999 0.000 1.000 0.999 0.999 0.999 1.000 1.000 Attack02

1.000 0.000 0.999 1.000 0.999 0.999 1.000 1.000 Attack03

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Defense01

1.000 0.000 1.000 1.000 1.000 1.000 1.000 0.999 Defense02

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Defense03

Avg. 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

Network Hyperparameters

For the application of the classification models, possible methods of optimization of
the hyperparameters were investigated [132]. Since the results obtained with the current
dataset and default parameters in Weka were good, no optimization was performed, and
default values were left. Table 13 shows the scripts used to call the algorithms in Weka.

Table 13. Network hyperparameters using Weka.

Network Hyperparameters

BayesNet weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.net.search.local.K2 – -P 1 -S BAYES -E
Weka.classifiers.bayes.net.estimate.SimpleEstimator – -A 0.5

J48 weka.classifiers.trees.J48 -C 0.25 -M 2

MLP weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a

DeepLearning4j

weka.dl4j.inference.Dl4jCNNExplorer -custom-model “weka.dl4j.inference.CustomModelSetup
-channels 3 -height 224 -width 224 -model-file C:\\Users\\Johni\\wekafiles\\packages” -decoder
“weka.dl4j.inference.ModelOutputDecoder -builtIn IMAGENET -classMapFile
C:\\Users\\Johni\\wekafiles\\packages” -saliency-map “weka.dl4j.interpretability.WekaScoreCAM -bs
1 -normalize -output C:\\Users\\Johni\\wekafiles\\packages -target-classes -1” -zooModel
“weka.dl4j.zoo.Dl4jResNet50 -channelsLast false -pretrained IMAGENET”

6. Discussion

Recalling the classification of human activities introduced in Section 1 [1], this reesearch
focuses on type iv, that is, group activities, which focus on the interaction of actions between
two people. That is the line of research that makes this work different from those found
in the state of the art. The application of OpenPose algorithm to kumite recorded videos
aims to facilitate improving the practitioners’ technique against different opponents when
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applying the movements freely and in real time. This is important for the assimilation
of the techniques in all kinds of scenarios, including sport practice and personal defense
situations. The modeling of movements for psychomotor performance can provide a useful
tool to learn Karate that opens up new lines of research.

To start with, it can allow studying and improving the combat strategy, having exact
measurements of the distance necessary to know when a fighter can be hit by the opponent’s
blows, as well as the distance necessary to reach the opponent with a blow. This allows
training in the gym in a scientific and precise way for combat preparation and distance
taking on the mat. In addition, studies can be carried out on how some factors such as
fatigue can create variability in the movements developed within a combat in each one
of its phases. This is important because this allows for deciding on the choice of certain
fighting techniques at the beginning or end of the kumite to win. Modeling and capturing
tagged movements can also be used to produce datasets and to apply them in other areas
such as cinema or video games, which are economically attractive sectors.

The current approach to progress in our research is to label not only single postures
(techniques) within the Ippon Kihon kumite (as done here) but the complete sequences of
the movements. There is some work that can guide the technical implementation of this
approahc, where classes are first identified and then become subclasses of a superclass [133].
In the work reported in this paper, classes have been defined as the specific techniques to
be identified. In the next step, the idea is that these techniques are considered as subclasses,
being part of a superior class or superclass. In this way, when the system identifies a
concatenation of specific movements, it should be able to classify the attack/defense
sequence (default Ippon Kihon kumite) that is being carried out as shown in Figure 12.
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This can be useful in order to add personalized support to the kumite training based on
the analysis of the psychomotor performance both comparing the current movements with
a good execution and analyzing the temporal evolution of the execution of the movements.
The system will be able to recognize if the karateka is developing the movements of a
certain section correctly, not only one technique, but the entire series. Thus, training is
expected to help practitioners assimilate the concatenations of movements in attack and
defense. Furthermore, having super classes identified by the system makes it possible to
know in advance which next subclass will be carried out, in such a way that the following
movements that will be carried out by a karateka can be monitored through the system,
provided that they follow the pattern of some predefined concatenated movements. This is
of special interest to be able to work the anticipation training for the defender.
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For this, a methodology has to be followed for creating super classes that bring
together the different concatenated movements. In principle, it seems to be technically
possible, as it has been introduced above, but more work is necessary to be able to answer
the question with absolute security, since in order to recognize a superclass, the application
must recognize all subclasses without any errors or identification of any wrong postures
in the sequence. This requires high identification and classification precision. Moreover,
the system needs to have in memory the different movements of each defined superclass,
which means that it knows which movement should be the next to perform. In this way,
training can be enriched with attack anticipation work in a dynamic and natural way.

For future work, and in addition to exploring other classification algorithms, such as
the LSTM algorithm that have reported good results in other works [47,134], it would be
interesting to add more combinations of movements to create a wider base of movements
and to compare the results between different Ippon Kihon kumite movements. Thus, the
importance of the different keypoints from OpenPose will be studied (including the analysis
of the movements that are more difficult to identify) as well as if it is possible to eliminate
some to make the application lighter. For the Ippon Kihon kumite sequence of postures
that has been used in the current work, the keypoints of the legs does not seem to be
especially important since the labeled movements are few, and the monitored postures are
well identified only with the upper part of the body.

Next, the idea is to extend the current research to faster movements that are performed
in other types of kumite, following the order of difficulty of these, from Kihon Sambon kumite
to competition kumite, or kumite with free movements. This will allow the calibration of the
technical characteristics of the algorithm used (currently OpenPose) to check what type
of image speed is capable of working with while still obtaining satisfactory results. This
would also be an important step forward in adding elements to anticipation and peripheral
vision training. Such attributes have already been started to be explored in our research
using OpenCV algorithms [50].

The progress in the classification of the movements during a kumite will be integrated
into KUMITRON intelligent psychomotor system [48]. KUMITRON collects both video
and sensor data from karatekas’ practice in a combat, models the movement information,
and after designing the different types of feedback that can be required (e.g., with TORMES
methodology [135]), delivers the appropriate one for each karateka in each situation
(e.g., taking into account the karatekas’ affective state during the practice, which can
be obtained with the physiological sensors available in KUMITRON following a similar
approach as in [136]) through the appropriate sensorial channel (vibrotactile feedback
should be explored due to the potential discussed in [137]). In this way, it is expected
that computer vision support in KUMITRON can help karatekas learn how to perform
the techniques in a kumite with the explosiveness required to win the point, making rapid
and strong movements that quickly react in real time and in a fluid way to the opponent’s
technique, adapting also the movement to the opponent’s anatomy. The psychomotor
performance of the karatekas is to be evaluated both comparing the current movements
with a good execution and analyzing the temporal evolution of the execution of the
movements.

7. Conclusions

The main objective of this work was to carry out a first step in our research to assess
if computer vision algorithms allow identifying the postures performed by karatekas
within the explosive movements that are developed during a kumite. The selection of
kumite was not accidental. It was chosen because it challenges image processing in human
movement computing, and there is little scientific literature on modeling the psychomotor
performance in activities that involve the joint participation of several individuals, as
in a karate combat. In addition, the movements performed by a karateka in front of an
opponent may vary with respect to performing them alone through katas due to factors
such as fear, concentration or adaptation to the opponent’s physique (e.g., height).
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The results obtained from the training of the classification algorithms with the features
extracted from the recorded videos of different Kihon kumite postures and their application
to non labelled images have been satisfactory. It has been observed that the four algo-
rithms used to classify the features extracted with OpenPose algorithm for the detection
of movements (i.e., BayesNet, J48, MLP and DeepLearning4j in Weka) have a precision
of above 99% for the current (and limited) dataset. With this percentage of success, it is
expected that progress can be made with the inclusion of more Kihon kumite sequences in a
new version of the dataset to analyze whether they can be identified within a Kihon kumite
fighting exercise. In this way, the research question would be satisfied for the training level
of Kihon kumite.
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