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Abstract

The survival probability in a group of individuals may evolve in time due to the influence of a time-vary-
ing covariate. In this paper we present a model-based approach allowing the estimation of the functional
link between the survival probability and a time-varying covariate when data are grouped and time-period
censored. The approach is based on an underlying model consisting in non-stationary Markov processes
and describing the survival of individuals. The underlying model is aggregated in time and at the group level
to handle the group structure of data and the censoring. The aggregation yields a generalized non-linear
mixed model. Then, a Bayesian procedure allows the estimation of the model parameters and the descrip-
tion of the link between the survival probability and the time-varying covariate

This approach is applied in order to explore the relationship between the daily survival probability of
mosquitofish (Gambusia holbrooki) and their time-varying lengths (small mosquitofish die with a higher rate
than large ones because they are more affected by predation, cannibalism and environmental stress).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Survival probability and time-varying covariate

The daily survival probability (DSP) is defined as the conditional probability that an individual
survives at the day of interest given it was alive the day before. The DSP is one minus the so-called
hazard probability in discrete-time survival analysis [2]. Note that the content of this paper applies
for other time scales: one can consider survival probabilities for a second, a week, or a year. More-
over, one can consider, instead of the dichotomy alive/dead, dichotomies such as healthy/infected,
student/worker, or not parent/parent. Here, we consider the daily time scale and the dichotomy
alive/dead because of the application.

Depending on the context, the DSP can depend on time-varying (or time-dependent) covariates; in
such a case the DSP is non-stationary in time. For example, consider the outbreak of the severe acute
respiratory syndrome (SARS) in 2003, the DSP within the population of SARS in-patients was ex-
pected to be positively influenced by improvements, with time, of the knowledge about the disease
and the management of the authorities [28,29]. Other examples arise in prey-predator systems. In-
deed, the survival probability of preys may be affected for instance by (i) the time-varying count
of predators, (ii) the time-varying count of preys, (iii) the time-varying size of preys. In the case of
infectious diseases, the probability for an individual to stay healthy may be affected by the count
of infectious individuals at the date before (autoregressive process). In social science, the probability
for an individual to stay a student may be affected by the time-varying policy of the government.

1.2. Grouped and time-period censored data

In order to learn about the relationship between a DSP and a time-varying covariate, one can col-
lect data related to the phenomenon of interest and perform a statistical analysis of these data. But
collecting daily data and repeating the measures a large number of days may not be possible. Indeed,
each measure may be time and money consuming, and may affect the survival of individuals. That is
the reason why, instead of daily measures, one can choose to carry out for several groups of individ-
uals a few measures separated by several days, e.g. one initial measure plus a few additional mea-
sures. To get data corresponding to a large range of the time-varying covariate, the groups have
to be sampled for different ranges of the covariate. Such a structure for the data generates two prob-
lems: (i) the observations are time-period (or interval) censored and (ii) there may be group effects.
These two points should be taken into account when a statistical analysis of the data is performed.

Some of the models which have been developed in order to explore the link between survival of
individuals and time-varying covariates account for time-period censoring; see for instance
[8,17,19,20,23] when time is discrete and [6,13,21] when it is continuous. Among the references
adapted to discrete time, some ([17,20,23]) also deal with group effects.

1.3. Proposed approach
In this paper we base our approach on a model which can be viewed as an extension of the one

proposed in [23, chapter 3] in the nest survival context, and we combine it with a Bayesian esti-
mation procedure.
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The model was built by deriving a model at the individual level and day scale: daily survival
processes of individuals were modeled as non-stationary Markov processes depending on the
DSP; then the survival processes were aggregated at the group level and in time to obtain, for each
group, the conditional distribution of the count of surviving individuals at time #, given the count
of surviving individuals at time #; < ¢,. The DSP was modeled as a function of (i) a random group
effect, constant with time, and (ii) the time-varying covariate. The resulting model for the count of
surviving individuals conditional on the count of surviving individuals at the previous observation
day is a generalized non-linear mixed model [7,14,25].

This model was used to study the variations in the DSP of mosquitofish (Gambusia holbrooki)
with fish length: small mosquitofish die with a higher rate than large ones because they are more
affected by predation, cannibalism and environmental stress [1]. Accurate quantitative knowledge
about the link between the DSP and the length of mosquitofish is needed (i) for improving the
knowledge about life history traits of mosquitofish and, more specifically, (ii) for building an indi-
vidual-based model describing the dynamics of mosquitofish populations in experimental ecosys-
tems (mesocosms). This model, still under construction in research units of the National Institute
for Agricultural Research (INRA, France), is being developed to carry out studies in ecotoxico-
logy (mosquitofish is an experimental animal commonly used in ecotoxicology; see for instance
[5,9,10,15,24]). A first version of the individual-based model, presented in [12], describes at a daily
time step the early stages of the establishment of a mosquitofish population. In that earlier ver-
sion, the link between fish length and fish survival was modeled such that below a fixed threshold
a fish had constant DSP =; and above the threshold a fish had constant DSP 7, > x;.

A more realistic description of variations in the DSP with fish length is needed in order to im-
prove the individual-based model in its realism. We precisely propose such a description in this
article by performing a statistical analysis of experimental data using the model described in
the previous paragraph. As we will see in this paper, the accompanying Bayesian procedure allows
us to give strong insight into the relationship between the fish DSP and the fish length.

Section 2 presents the grouped and time-period censored data which were collected for the
study of the relationship between mosquitofish survival and fish length. Presenting the motivating
data allows us to highlight the problems occurring in the statistical analysis when the data are
grouped and censored. The survival model and the estimation procedure are detailed in Section
3. The methodology is applied to the mosquitofish survival data set in Section 4. The paper is
ended by a discussion in Section 5.

2. Motivating data
2.1. Experiments

Survival and mean length were measured for / = 38 groups of mosquitofish introduced in mes-
ocosms settled in the years 2002, 2003, 2004 and 2005 in the Agrocampus of Rennes, Brittany,
France (48N/1.7W). The mesocosms consisted of circular metal tanks (3.0 m diameter, 0.6 m
height) filled with various elements for building fish habitats. In January, the tanks were lined
up with polyethylene film (0.2 mm thick), filled with tap water (water depth: 45 cm), and sedi-
ments were introduced at a uniform layer (about 5 cm thick). The tanks then sat for a few months
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to allow for phyto- and zoo-plankton as well as macroinvertebrates to naturally settle in the tanks.
In April, pieces of Ludwigia peploide were introduced into the mesocosms. Then, at different times
in the summer, groups of mosquitofish were introduced in the mesocosms, one group per meso-
cosm, and nets with small mesh were installed to protect the fish from bird predation.

The initial sizes of the groups of mosquitofish varied from 5 to 150 individuals, and the initial
mean lengths of fish varied from 6.6 to 29.7 mm (see Table 1). In each group, individuals had the
same age and thermal history, so their lengths were about the same. For 6 groups (i = 33 in Table
1), fish were captured, counted, measured for length and released in the mesocosms two or three
times. Such an experimental procedure is particularly time-consuming because, as mosquitofish
survival can be affected by the stress of captures, fish must be captured and manipulated with care.
That is the reason why, for 32 other groups (i < 32 in Table 1), fish were captured, counted, mea-
sured for length only one time after their introduction in the mesocosms. Forty six captures were
done in total for the 38 groups of fish. For each capture we know: the mesocosm and the duration
in days since the last capture (or fish introduction), the initial and final fish counts, and the initial
and final mean fish lengths (see Table 1).

2.2. Time-period-censored observations

If daily data would have been obtained for each mesocosm 7, i.e. if the counts N;, and the aver-

age lengths X, of the surviving fish would have been measured at times #;...,t;+ ¢, then we
could have estimated the DSP 7, , in mesocosm i at day t =+¢+1,...,t;+ g; by
. Ni
Tt = .
N

Then, the functional link between the DSP and the expected length of fish could be inferred,
for example, by fitting a regression curve [18] to scatterplot Sy = {(X; 1, 7,):i=1,
o Lit=t+1,...,t+q;}.

Unfortunately, the procedure for counting fish and measuring their lengths has many difficul-
ties. First, fish were captured by using fish traps, and capturing all the fish of a mesocosm can take
a whole day. Second, the fish can hardly support the stress caused by frequent captures and
manipulations. Therefore, the data were obtained for each mesocosm i at days #;; < --- < t;x,
where #;; represents the day of fish introduction into the mesocosm. The number of captures,
K;, was often two and no more than four. The time between observations varied from 8 to 127
days. Thus, the observations of the survival process N; = {N; ,: t =0,1,2,. ..} and the time-varying
covariate X; = {X;,: t=0,1,2, ...} were time-period censored.

Despite the censoring, we could think about adapting the method proposed in the case of daily
observations by making the two following assumptions. First, assume that the DSP is constant
between consecutive observation days, then the fish DSP in mesocosm i at day ¢ between the k-
th and (k + 1)-th captures, which occur, respectively, at times ¢;; and ;. (k < K;), can be esti-
mated by

1
N. lik+1 ik
~ Ll et 1
Ty = —N .
itk
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Table 1
Mosquitofish survival data set
1d. i Ny N, X X A,
1 1 6 6 27.8 394 45
2 2 5 5 27.8 47.2 79
3 3 121 119 7.8 22.1 45
4 4 88 84 7.9 25.4 31
5 5 150 127 8.2 20.0 56
6 6 104 67 7.6 23.0 67
7 7 6 4 27.8 43.5 127
8 8 7 6 27.8 452 127
9 9 6 6 27.8 45.5 127
10 10 6 6 27.8 46.2 127
11 11 6 6 27.8 42.8 127
12 12 6 6 27.8 443 127
13 13 6 5 27.8 43.0 127
14 14 6 6 27.8 42.5 127
15 15 6 6 27.8 443 127
16 16 6 5 27.8 44.0 127
17 17 6 6 29.7 46.3 112
18 18 6 5 29.2 43.4 112
19 19 6 5 29.2 44.2 112
20 20 6 5 26.5 44.6 114
21 21 6 6 25.3 46.2 114
22 22 6 5 26.3 44.6 114
23 23 6 5 25.3 41.2 114
24 24 6 5 25.5 43.8 114
25 25 6 5 24.7 42.8 114
26 26 6 4 25.3 42.8 114
27 27 6 6 24.7 45.2 114
28 28 6 6 26.8 432 114
29 29 6 6 25.0 452 114
30 30 6 5 26.0 43.0 114
31 31 6 6 24.3 442 114
32 32 23 23 19.3 21.8 43
33 33 34 34 8.2 17.8 12
34 33 34 34 17.8 20.8 15
35 34 30 29 6.6 10.9 8
36 34 29 28 10.9 20.2 21
37 34 28 26 20.2 223 43
38 35 37 36 8.5 13.5 9
39 35 36 36 13.5 27.8 26
40 36 30 23 6.6 9.6 8
41 36 23 23 9.6 19.3 21
42 37 35 29 6.9 13.1 11
43 37 29 28 13.1 25.8 21
44 38 35 24 6.7 9.7 8
45 38 24 21 9.7 19.2 21
46 38 21 17 19.2 22.1 43

Id., identification number; 7, mesocosm; N, and N, initial and final counts of surviving fish; X, and X, initial and final
mean lengths of surviving fish; A,, duration in days separating the initial and final measurements.



S. Soubeyrand et al. | Mathematical Biosciences 210 (2007) 508-522 513

Second, assume that the fish length increases linearly between consecutive captures, then the ex-
pected length E(X;,) for fish in mesocosm i at day ¢ € {t4,...,t,+1} can be estimated by

L Xin — X
X;, = Xi-,ti_k + (t _ ti,k) bkl T blik
Likr1 — i

(a more realistic growth assumption will be made in Section 3.4). Using this material, we can plot
the fish DSP against the mean fish length: Fig. 1 shows scatterplot S; = {(X i1y Tig)
i=1,....,0t=t+1,..., t;x} (dots). It also shows scatterplot S, (circles) derived from S, by
only keeping, for each couple (i,k), the point (X;,_;,7;,) for which ¢ is the median day of
{tis—1,...,tix}. The estimation of the functional link between the DSP and the expected length
of fish could be done, as in the case of daily observations, by fitting a regression curve to scatter-

plot S; or S».
2.3. Mesocosm dependence and mesocosm effect

However, fitting a regression curve to scatterplots S; or S, as well as Sy in the hypothetical
case of daily observations, is problematic since there exists a temporal dependence between points
corresponding to the same mesocosm.

In addition, the daily survival probability of fish might be submitted to a mesocosm effect. In-
deed, the survival of fish is known to be affected, by the densities of predators and vegetation (fil-
amentous algae principally) [1,26]. These densities were precisely varying from mesocosm to
mesocosm in our experiments since the settlement process of predators and vegetation was natu-
ral. Consequently, motivated by building a realistic simulation model for the mosquitofish life, we
want to characterize the variability of the DSP due to the possible mesocosm effect.
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Fig. 1. Two representations of the fish DSP against the mean fish length. Dots, scatterplot S;; circles, scatterplot S,.
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3. Model and estimation method

We now describe the construction of the model and the estimation method which allowed us to
analyze the data set detailed above. Underlying assumptions are labelled A4,, 45, A3, ., A4. The
model and the estimation method allow the handling of time-period censoring and group effects.
In the following the context of fish survival is used to present the model; nevertheless, as men-
tioned in the introduction, the model can be applied in other contexts.

3.1. Underlying model at the individual and day scale

Let S;={S;, t=0.1,...} be the survival process of any fish in mesocosm i: at day O the
fish 1s alive and S;o =1, then S;, =1 as long as the fish is alive and 0 afterward. The process
S; is assumed to be (4;) a non-stationary Markov process with transition probabilities at day
t=12,...

I]:D[Si,t = 1|Si7t—l = 1] = Ty H:D[Szpt = 0!Si,t-1 = 1] =1- T

1
P[Si.t = O‘Si,t—l = O] =1 P[Si,t = I‘Si,z—l = 0] = 0; ( )

where m;, is the survival probability for any fish in mesocosm i between days ¢t — 1 and ¢ it is
called the daily survival probability (DSP) in ecology [4]. Note that 1-r;, is the so-called hazard
probability in discrete-time survival analysis [2].

Remark. ;, does not depend on the fish but only on the mesocosm where the fish is and the
day; so, fish in a given mesocosm are submitted to the same DSP.

3.2. Model for the count of surviving fish in a mesocosm

Let us now determine the conditional distribution of the count N;,, of surviving fish in meso-
cosm i at day #, given the count N;, of surviving fish in the mesocosm at day #; <1,.

From the Markovian assumption 4,, S;,, given S;, follows a Bernoulli distribution whose
probability is the conditional probability that a fish in mesocosm i is alive at day #, given it
was surviving at day ¢;. This probability is given by

Assuming that (A,) survival processes of fish are independent, N;,, given N;,, follows a binomial
distribution with size N,, and probability H?:t] 1Ty

5]
Ni,tz ’Ni,tl (and Bil’lomlal (Ni,tlu H TCM) . (2)

t=t1+1

3.3. Model for the daily survival probability

The DSP 7;, is modeled as (assumption 43 ,) a function of the expected length E(X;, ;) of fish
in mesocosm 7 at day ¢ — 1
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T = 7'[{0(,-, ﬁ? [E(Xl}l—l)}
= logit™'[oy + fH{E(X 1)},

where o; is a real parameter reflecting survival features in mesocosm i and f is a real-valued func-
tion parameterized by a vector p.

The observed mesocosms are considered as elements of a population and we are interested in char-
acterizing this population. Consequently, o, . . ., a;are viewed as random effects [14]. They are mod-
eled as (assumption 43 ) independent normal variables with mean 0 and standard deviation o.

The function f; is assumed (A43,) to take the form

fp(x) =B + ﬁzxﬁ3v (4)

where f = (81, f», f3)" is in R®. Note that when f, is zero, then f3; is no more identifiable and vice-
versa. Using Eq. (4) for f; provides a flexible form for the DSP in Eq. (3).
Thus, the model for the counts of surviving fish is a random-effects model, and Eq. (2) becomes

(3)

th—1
N;,|Niy o ~ Binomial <N,,,, T {8, [E(Xl,,)}) (5)

=t

This model is a generalized non-linear mixed model [7,14,25]. The non-linearity is with respect
to both the random effects and the regression parameters. It is due to the product of the DSPs
from day #; + 1 to day #,, and to parameter ff3. Compared with the model proposed in [23,
chapter 3], 5 is an additional parameter which provides more flexibility and allows a better
description of the relationship between the DSP and the time-varying covariate. (see Section
4).

Notation. For ny, n, in N and o in R, let p;' " (ny|n;, o; B) denote the conditional probability,

under model (5), that N;,, = n, given N;,, = n; and o; = a.
3.4. Bayesian estimation of the parameters via an MCMC algorithm

In this subsection, we motivate the choice of a Bayesian estimation procedure based on an
MCMC algorithm [7,16] to infer on the parameters of the survival model. The R code of the esti-
mation procedure can be asked to the corresponding author.

Under assumptions (4;) and (A4,) set in Section 3.2, conditional variables N;, [N, ,,
k=1,...,K, are independent random variables, and the counting processes of surviving fish
are independent from mesocosm to mesocosm. Consequently, the likelihood for ¢ and f is

I Ki—1
o, iN) =]] /R ¢(0) [P (N Niser 2 B)der, (6)
i=1 k=1

where N = {N,,:i=1,..., [,t =1, ..., tik,} and ¢(-;0) denotes the density function of a normal
random variable with mean 0 and standard deviation . In Eq. (6), [Tt} ' p/* ™" (N1, [N 14y, % B) is
the probability of the survival sequence Ny, , ..., N i, observed in mesocosm i, given & and 8. Since
ais considered as a random effect, this probability is integrated with respect to a.. Thus, the integrated
probability depends on f§ and the standard deviation ¢ of the random effects. We then multiply the

integrated probabilities for all the mesocosms to obtain Eq. (6).
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In statistics, the likelihood is often used to estimate model parameters. But two problems arise
for evaluating the likelihood given by Eq.(6). First, the probability p;* ' (N, ., |N.,,, % ) de-
pends on the daily expected values of the fish length E(X; ) = tifs---»tig+1, that are unknown
for the experiments. We only observe the sample means X, is, and X; ini Of the fish lengths at
the capture days ;4 and t,41. So, p/* "' (N, INi,,, % B) is computed by approximating
E(Xi) (t € {tiks-- s tir+1}) by

Ex o (XOO e 00 _Xi.t;_k+l t/(tikr1—ti) ,
(xi) ~ )| e . 9

This approximation was obtained by assuming that (A4) the expected fish length satisfies a Ber-
talanffy’s relationship

E(X:,) = E(Xim1) + o{X> — E(X: 1)}, t=1,2,...

where X°° is the maximum fish length and t is the growth rate. So, expression (7) corresponds to a
concave growth curve which interpolates observed mean lengths.

Second, although probabilities p;* ' (N, ., |Ni,,%; f) can be computed using the proposal
made above, likelihood (6) cannot be evaluated analytically because of the integrals over o. This
difficulty is circumvented in [23, chapter 3] by maximizing an approximation of the likelihood
where the integrals are assessed using Gaussian quadrature. Instead, we specify prior distributions
for ¢ and f and apply an MCMC algorithm yielding posterior joint distributions for o, f§ but also
the group effects o; (i=1,...,1).

The MCMC algorlthm 1ncludes a Metropolis—Hasting within Gibbs algorithm [16]. At each
iteration, the unknowns (i.e. loga, 1, 5>, 5 and the o;s) are updated using Gaussian transition
kernels. The kernels are centered on the values of the unknowns at the previous iteration and their
standard deviations were 0.1 for loga, f1, 3 and the o;s, and 5 for 5. The regression parameters
B1, Bo, 3 are updated simultaneously as well as the group effects a;s.

Compared with the estimation procedure used in [23], the Bayesian approach we propose has
two advantages. First, one obtains estimates for the random effects which can be used in a post-
analysis (using additional covariates) to better understand the mesocosms characteristics. Second,
the assessment of the uncertainty and the correlation structure of the parameter estimators are not
based on asymptotic results.

Remark. The model can also be fitted via a Monte—Carlo expectation-maximization (MCEM)
algorithm [27]. The uncertainty and the correlations of the parameter estimators can be assessed
by applying a parameteric bootstrap procedure [11]. Such an approach has the same advantages
than the Bayesian approach presented above, but it is much more time consuming.

4. Application to mosquitofish survival data
4.1. Estimation

We applied the Bayesian estimation procedure using constant improper priors for loga, 1, >
and f35. Fig. 2 shows the two-dimensional posterior distributions of the parameters. In each panel,
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Fig. 2. Bivariate histograms representing the two-dimensional posterior distributions of the standard deviation ¢ and
the regression parameters f3;, > and 5 (high densities are in black). White dots correspond to the posterior modes.

the posterior mode is marked by a white dot. The four-dimensional posterior mode corresponds
to ¢ =0.630, = (B, 2, f3) = (7.30,—295,—2.25). Note on the bottom right panel that the
MCMC runs for 5, and f3; are strongly dependent. This feature will be discussed in the perspective
of sensibility analysis (see Section 4.3).

Using the Bayesian procedure, we fitted the submodel with ¢ = 0 fixed (no mesocosm effect)
and the submodel with 3 = 1 fixed (f; s linear). We compared the fits using two criteria, the devi-
ance information criterion [DIC, 22] and the posterior expectation of the Akaike’s information
criterion [EAIC, 3]; lower these criteria are, better the fit is. We computed the DIC and AIC dif-
ferences, say ADIC and AEAIC, between the complete model and each of the two submodels. For
the complete model against the submodel with ¢ = 0: ADIC = — 39 and AEAIC = — 49. For the
complete model against the submodel with 3 = 1: ADIC = —15 and AEAIC = —11. Obviously
the complete model has lower criteria, and according to the rule given in [22], the differences
are large enough to state that the submodels have considerably less support than the complete
model. Consequently, both the mesocosm effects and the non-linearity of f; allows a more accu-
rate description of the relationship between the fish DSP and the fish length.

4.2. Residual analysis

We performed a residual analysis to check whether the parametric link we specified in Eqgs. (3)
and (4) is suitable or not. We used standardized residuals for the ratios N,, /N;, , (i=1,...,1and
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k=2,...,K;) and we plotted them against the estimated fish lengths (given by (7)) at the mean
time between #;,_; and t;.
Given «; and f, we define

it Niy,
ik Lk . B
[E <Ni‘[[,k*l }Nl,l‘,'vk,l 9 o‘m ﬂ)

V(5 W) 9
Niy, — Ni,zl-,k,l Vi‘k(az} ﬁ)
[N i Vi (0, BT = vis (o, B) 12
where (see Eq. (5))

tig—1

Vi,k(a7ﬁ) = H 7'C{O(, ﬁ? [E(Xlt)}

1=l k-1

r; x was computed for each vector («;f) obtained in the MCMC run, and the standardized residual
7:x we finally used is the posterior median of r;.

Fig. 3 (left) shows residuals 7;; obtained under the complete model. Fig. 3 (right) shows resid-
uals 7, obtained under the submodel with i3 =1, i.e. f3 is a linear function of the fish length. The
horizontal dashed lines are at quantiles 0.05 and 0.95 of the normal distribution (if fish counts are
large, 7;, approximately have centered normal distributions with variance equal to one). The
residual plot in the right panel suggests that the explanatory variable, i.e. the fish length, should
be transformed. Contrastively, the residual plot in the left panel does not suggest such a transfor-
mation. This qualitative observation partly explains the differences in the DIC and EAIC values
provided in the previous subsection. To conclude, the parametric link between the fish DSP and
the fish length we specified in Egs. (3) and (4) seems to be suitable.

Remark. There are three clusters of points at the right hand side of each residual plot. These
clusters correspond to observations with 0 (top cluster), 1 (middle cluster) or 2 (bottom cluster)
dead fish in small groups of fish (see Table 1).

Standardized residual
0
Standardized residual
0

10 15 20 25 30 35 40 10 15 20 25 30 35 40
Fish length (mm) Fish length (mm)

Fig. 3. Residual plots obtained under the complete model (left) and under the submodel with 3 =1 (right).



S. Soubeyrand et al. | Mathematical Biosciences 210 (2007) 508-522 519
4.3. Functional link between the DSP and the fish length

Let gg denote the conditional DSP for a fish with expected length x given the mesocosm effect is zero
g/i(x) = TC(07 ﬂax)
= logit™' {f;(x)}.

Fig. 4 shows g (solid line), where B is the posterior mode given in Section 4.1, together with the pos-
terior median (dotted line) and the 95%-credibility pointwise envelope of g4(x) for fish lengths x in
the range of observed fish lengths. This plot shows that the DSP quickly increases with the fish length
and once fish are larger than about 15 mm, their DSP is constant up to the mesocosm effect.

The estimate g, will be incorporated in the individual-based model mentioned in the introduction.
The present study also provides insight into how to analyze the sensibility of the model output with
respect to ff (one of the aims of the individual-based model is to see how variations of mosquitofish
life history traits (described by parameters in the model) influence population dynamics (i.e. model
output)). We saw in Fig. 2 that the MCMC runs for 5, and fi5 are strongly dependent. The sensiblity
analysis should account for this dependence. The linear regression model 3 = 0.75 — 0.521og(—f3,)
fitted to the MCMC runs reflects quite well the dependence (R* = 0.98). Thus, the sensibility of the
model with respect to the components of § can be performed with §; approximately varying in
[6.9,7.3], B> in [—1000,—200] and S5 satisfying the equation given above.

4.4. Illustration: paths of the count of surviving fish
To better understand the behavior of the fitted model, we simulated paths of the count of sur-

viving fish. For all the simulated paths, the count of fish at day 0 is 50, and the expected fish length
satisfies the Bertalanffy’s relationship

0.96
1

Daily survival probability
0.92
1 1

0.88
1

T T T T T T T

7 10 15 20 30 40 50
Fish length (mm)

Fig. 4. Estimate g; (solid line), posterior median (dotted line) and 95%-credibility pointwise envelope (dashed lines) of
gp for fish lengths varying between 6.6 and 47.2 mm.
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Fig. 5. Simulation, under the fitted model, of paths of the count of surviving fish (top right and bottom) given the daily
evolution of the fish length (top left). Top right: 20 paths corresponding to 20 different mesocosm effects drawn from the
law N(0,6); bottom: 20 paths corresponding to a mesocosm effect fixed at quantiles gy (0.975) = 1.10 (left),
dn(0.(0.5) = 0 (middle) or gy g4 (0.025) = —1.10 (right).

E(X:,) = E(Xim1) +{X> — E(X: 1)}, t=1,2,...

where the initial length is E(X;¢) = 7 mm, the growth rate is 7 = 0.013 mm per day and the max-
imum length is X°° = 50 mm. Fig. 5 shows the daily evolution of the fish length (top left). It also
shows simulated paths of the count of surviving fish: in the top right panel 20 mesocosm effects
were generated from the law N(0, ¢) and for each mesocosm effect a path was simulated; in the
bottom panels, the mesocosm effect was fixed at different quantiles of the law N (0, ¢) and 20 paths
were simulated for each value of the mesocosm effect.

Under the fitted model, the paths of the count of surviving fish can be very variable. For in-
stance, in the top right panel, there is a path without death during 200 days and another one with
about 25 deaths during the same period. The bottom panels show the strong influence of the mes-
ocosm effect. Including mesocosm effects in the individual-based model of Ref. [12] will allow the
authors to reflect a significant source of variability of the population dynamics.

5. Discussion

We have presented a generalized nonlinear mixed model and proposed a Bayesian estima-
tion procedure using an MCMC algorithm in order to learn about the relationship between
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the survival probability of individuals and a time-varying covariate when data are grouped
and time-period censored. The model was built by aggregating in time and at the group level
an underlying model adapted to the individual and day scale. Moreover, the model integrates
a flexible parametric form for the daily survival probability (DSP). Thus, the link between the
DSP and the time-varying covariate can be more accurately explored. The model we used can
be viewed as an extension of the nest survival model first developed in [8] and improved in
[23].

We have applied this approach in order to explore the relationship between the mosquitofish
DSP and the fish length. This study will be useful for improving the simulation model proposed in
[12] which includes, at present, a quite rough description of this function. The characterization of
the mesocosm effect will also be useful for improving the “realism” of the simulation model. Be-
sides, we saw that the results obtained can be used in the perspective of a sensibility analysis.

It would be interesting to assess what covariates could be linked with the mesocosm effects.
Plotting the estimated mesocosm effects against the experimentation years or the experimenta-
tion months did not result in a significant relationship (not shown). The possible link between
the mesocosm effect and the predator and vegetation densities [see Section 2 and references 1,26]
remain to be explored.

In the model construction we assumed that survival processes of individual fish are independent
(assumption A, in Section 3.2). In the context of mosquitofish this assumption is not strong, but in
other contexts it can be. For instance, instead of the occurrence of the death of a mosquitofish,
consider the occurrence of a transmissible disease affecting humans (e.g. AIDS, SARS), animals
(e.g. avian flu) or plants (e.g. wheat rusts), and suppose one aims to link the DSP (the time step of
interest can be different from the day) with the time-varying intensity of prevention measures for
example. In such a context, assumption A, is clearly not suitable. Indeed, the ““survival” process
of an individual can affect the “survival” processes of other individuals since the disease is trans-
missible. The model might be adapted by conditioning the transition probabilities (1) not only on
the past state of the individual of interest but also on the past states for the other individuals. The
consequences on the construction of the model and on the estimation procedure of such a mod-
ification should be explored.
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