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ABSTRACT Decorin binding protein A (DbpA) is a surface adhesin of Borrelia burgdor-
feri, the causative agent of Lyme disease. While DbpA is one of the most immunogenic
of B. burgdorferi’s nearly 100 lipoproteins, the B cell epitopes on DbpA recognized by
humans following B. burgdorferi infection have not been fully elucidated. In this report
we profiled ;270 B. burgdorferi-seropositive human serum samples for IgM and IgG reac-
tivity with a tiled DbpA 18-mer peptide array derived from B. burgdorferi sensu stricto
strains B31 and 297. Using enzyme-linked immunosorbent assays (ELISA) and multiplex
immunoassays (MIA), we identified 12 DbpA-derived peptides whose antibody reactivities
were significantly elevated (generally ,10-fold) in B. burgdorferi-seropositive sera, com-
pared to those measured in a healthy cohort. The most reactive peptide (.80-fold IgG,
10-fold IgM) corresponded to residues 64 to 81, which map to an exposed flexible loop
between DbpA’s a-helix 1 and a-helix 2. This loop, whose sequence is identical between
strains B31 and 297, overhangs DbpA’s substrate binding pocket. A second strongly reac-
tive antibody target (.80-fold IgG, 3 to 5-fold IgM) mapped to DbpA’s C-terminus, a ly-
sine rich tail implicated in attachment to glycosaminoglycans. We postulate that antibody
responses against these two targets on DbpA could limit B.burgdorferi’s ability to attach
to and colonize distal tissues during the early stages of infection.

IMPORTANCE The bacterium, Borrelia burgdorferi, is the causative agent of Lyme dis-
ease, the most reported tick-borne illness in the United States. In humans, clinical
manifestations of Lyme disease are complex and can persist for months, even in the
face of a robust antibody response directed against numerous B. burgdorferi surface
proteins, including decorin binding protein A (DbpA), which is involved in the early
stages of infection. In this study we employed ;270 serum samples from B. burgdor-
feri-seropositive individuals to better understand human antibody reactivity to specific
regions (called epitopes) of DbpA and how such antibodies may function in limiting B.
burgdorferi dissemination and tissue colonization.
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function

The bacterium Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) is the causative
agent of Lyme disease (LD) in the Northern Hemisphere, with Borrelia burgdorferi

sensu stricto (B. burgdorferi s.s.) being the most reported tick-borne illness in the United
States. In the absence of antibiotic intervention, LD can progress from a localized infec-
tion in the first days and weeks following a tick bite to disseminated manifestations
(e.g., neuroborreliosis, carditis) and/or Lyme arthritis months or even years later (1).
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B. burgdorferi infection is accompanied by a robust, antigen-specific serum IgM and
IgG response that arises within days. In fact, LD diagnostics involve tiered IgM and IgG
serologic assays to measure reactivity against a combination of B. burgdorferi sonicate,
B. burgdorferi proteins, and/or peptides (2–4). From the standpoint of immunity,
B. burgdorferi-specific serum antibodies are critical both in clearing B. burgdorferi through
complement-dependent and complement-independent borreliacidal activities (5–7) and
in Fc-mediated opsonophagocytosis (8, 9). However, the specific antibody subsets that
contribute to bacterial clearance and the resolution of LD remain unknown (6).

Decorin binding protein A (DbpA; BBA24) is a highly immunoreactive B. burgdorferi
protein, as evidenced by the appearance of high titer anti-DbpA serum IgG antibodies
in the early stages of experimentally infected mice (10, 11), nonhuman primates (12),
and human Lyme disease patients (13). Indeed, anti-DbpA IgM and IgG responses have
diagnostic value in LD (14). DbpA is a helical, surface-displayed lipoprotein of ;19 kDa
that promotes B. burgdorferi attachment to connective tissues and components of the
extracellular matrix (ECM), including glycosaminoglycans (GAGs), such as decorin, der-
matan sulfate, and heparin (15–24). By virtue of its ability to adhere to GAGs, DbpA
influences B. burgdorferi tropism for specific tissues and cell types (22, 25). DbpA is
expressed early during infection and stimulates the onset of antibodies in the absence
of CD4 T cell help (26). In a mouse model, anti-DbpA antibodies confer protection
against a B. burgdorferi challenge by needle injection, although there is some debate
as to whether the same holds true in a natural (tick) route of infection (10, 11, 18, 27).
Thus, the role of anti-DbpA antibodies in limiting B. burgdorferi dissemination and colo-
nization remains unresolved.

Despite DbpA being a primary target of the humoral immune response following
B. burgdorferi, little is known about the specific epitopes on DbpA recognized by human
patients. Arnaboldi and colleagues identified a 15-mer peptide corresponding to N-termi-
nal residues (;6 to 30) of DbpA that was reactive with serum IgM (but not IgG) from early
LD patients (28). It should be underscored that those antibody profiles were derived from
individuals who had been clinically diagnosed as having erythema migrans (EM), a hallmark
of early-stage Lyme disease. Another study identified a DbpA-derived peptide (residues 57–
71) reactive with serum IgG antibodies from Lyme neuroborreliosis patients, although the
sample size in that study was rather limited (29). Considering DbpA’s overall immunogenic-
ity in humans and the fact that B cell epitope prediction tools, such as Bepipred, identify
several DbpA peptides with a high propensity to be antibody targets (30, 31), we sought to
revisit the question of linear B cell epitopes on DbpA. Addressing this question was possible
because we had access to a large collection of de-identified serum samples that had been
designated seropositive for B. burgdorferi antigens via approved diagnostic tests. While the
diagnostic tests are not necessarily indicative of Lyme disease, they do afford a high degree
of confidence that an individual had experienced a B. burgdorferi infection.

Here, we report the screening of ;270 B. burgdorferi-seropositive serum samples
against a tiled DbpA 18-mer peptide array derived from B. burgdorferi strains B31 and
297. One of the most reactive peptides in our collection (A7) corresponds to the con-
served flexible linker that overhangs DbpA’s lysine-rich ligand binding pocket. Equally
reactive were peptides corresponding to the C-terminal tails of DbpA from B31 and
297, which have also been implicated in substrate recognition. The presence of anti-
bodies targeting these regions of DbpA would be expected to block DbpA-mediated
substrate recognition and limit B. burgdorferi colonization of distal tissues.

RESULTS
IgM and IgG reactivity with DbpA in B. burgdorferi-seropositive serum samples.

DbpA is one of the most immunogenic B. burgdorferi proteins in humans and nonhu-
man primates (12, 13, 32–34). To assess the relative reactivity of DbpA in our collection
of ;270 clinical samples, serum samples classified as IgM1/IgG2, IgM1/IgG1, and IgM2/
IgG1 reactive were subjected to a Luminex analysis with DbpA conjugated microspheres
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(Fig. 1). Reactivity was compared to a commercial panel of 87 serum samples obtained
from healthy individuals.

Within our panel of B. burgdorferi-seropositive serum samples, anti-DbpA IgM levels
(MFI) in all three clinical cohorts (IgM1/IgG2, IgM1/IgG1, and IgM2/IgG1) were signifi-
cantly elevated (4 to 7-fold) over those of the healthy controls, with the highest MFIs
found in the IgM1/IgG2 group (Fig. 1; Table S1). In the case of IgG, anti-DbpA levels
(MFI) were not significantly above those of healthy controls in the IgM1/IgG2 cohort,
but they were markedly elevated in the IgM1/IgG1 (;70-fold) and IgM2/IgG1 (;50-fold)
cohorts (Table 1; Fig. 1). This profile is consistent with the development of DbpA IgM
and IgG antibodies that begins in the early stages of B. burgdorferi infection. Moreover,
on an individual sample basis, anti-DbpA IgG levels were greater than IgM levels in the

FIG 1 Serum IgM and IgG reactivity with DbpA. Anti-DbpA (A) IgM and (B) IgG reactivity (MFI) in healthy (n = 86)
or B. burgdorferi-seropositive serum samples, as defined as IgM1/IgG2 (n = 78), IgM1/IgG1 (n = 71), or IgM2/IgG1

(n = 114). Significance was determined by Kruskal-Wallis test with Dunn’s post hoc test.

TABLE 1 DbpA peptide reactivity with IgG from Lyme disease patient serum samples

Healthy IgM+/IgG2 IgM+/IgG+ IgM2/IgG+

AAa #b MFI (SD) Index (SD) MFI (SD) P value Index (SD) MFI (SD) P value Index (SD) MFI (SD) P value
26-188 205.3 (324.9) 4.2 (7.7) 871.5 (1575) 0.85 68.8 (37.7)c 14128 (7750) <0.0001 48.2 (28.94)c 9887 (5940) <0.0001
28-45 B10 94.88 (85.49) 1.6 (3.1) 159.1 (297.2) .0.99 4.8 (6.8) 452.5 (650.4) <0.0001 3.4 (5.9) 323.5 (563.5) <0.0001
37-54 B11 74.50 (59.93) 4.6 (6.4) 347.0 (481.4) <0.0001 9.1 (12.5) 677.9 (934.0) <0.0001 9.4 (10.86) 704.1 (809.1) <0.0001
46-63 A5 216.0 (467.9) 3.1 (3.8) 686.7 (811.7) <0.0001 8.3 (7.9) 1797 (1717) <0.0001 7.7 (10.34) 1659 (2234) <0.0001
55-72 A6 128.8 (61.46) 0.4 (0.6) 55.36 (79.79) <0.0001 3.4 (7.0) 441.6 (902.5) 0.1801 2.4 (5.3) 304.8 (693.8) 0.2298

C1 168.9 (115.8) 5.6 (15.8) 944.3 (2675) <0.0001 6.9 (8.5) 1176 (1443) <0.0001 5.7 (8.3) 967.8 (1414) <0.0001
64-81 A7 33.72 (15.07) 2.5 (4.1) 85.67 (137.1) 0.47 84.6 (126.1)c 2853 (4251) <0.0001 59.7 (86.22)c 2013 (2907) <0.0001
118-135 B1 174.8 (111.6) 3.7 (4.4) 655.2 (775.8) <0.0001 10.0 (6.5) 1754 (1143) <0.0001 9.5 (8.8) 1658 (1543) <0.0001
136-153 B3 164.6 (352.5) 3.9 (5.9) 644.5 (987.0) <0.0001 7.4 (5.1) 1225 (842.5) <0.0001 7.3 (7.7) 1201 (1276) <0.0001

C4 71.44 (138.9) 7.2 (9.7) 514.4 (697.1) <0.0001 12.9 (9.4) 924.3 (678.4) <0.0001 15.7 (16.81) 1120 (1201) <0.0001
163-180 C6 29.44 (13.68) 1.3 (2.9) 37.65 (87.01) 0.0098 4.3 (11.8) 127.3 (347.0) <0.0001 3.7 (8.7) 109.8 (257.8) 0.1739
172-189 B7 408.5 (187.7) 0.4 (1.3) 198.3 (551.8) <0.0001 2.9 (5.7) 1213 (2348) .0.9999 2.9 (5.6) 1194 (2314) 0.0317

C7 44.28 (30.71) 2.5 (4.2) 108.7 (187.5) 0.79 83.5 (122.1)c 3698 (5407) <0.0001 58.3 (86.03)c 2583 (3810) <0.0001
aAmino acid residues. Residues 26-188 (top row) refers to full length recombinant DbpA used in this study that lacks the first 25 residues.
bPeptide names, as noted in Fig. 2. Underlines indicate 297-specific peptides. P values were derived from Dunn's multiple comparison tests following Kruskal-Wallis tests.
cPeptides with index values.20.
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IgM1/IgG1 and IgM2/IgG1 cohorts, which is indicative of the maturation of the immune
response with time (Fig. S1).

Reactivity of B. burgdorferi-seropositive serum samples with DbpA peptide array.
To identify linear B cell epitopes on DbpA of B. burgdorferi strains B31 (DbpAB31) and 297
(DbpA297), we generated 18-mer peptide libraries that encompassed each of the DbpA
variants. The DbpA amino acid sequences from B. burgdorferi strains B31 and 297 are
89% identical (16). As such, the final library consisted of a total of 31 peptides: 8 shared
between strains B31 and 297, 12 specific to DbpAB31, and 11 specific to DbpA297 (Fig. 2).

To assess which (if any) DbpA-derived peptides are reactive with B. burgdorferi-seroposi-
tive sera, the peptides were coated onto 96-well microtiter plates and probed with control
(n = 4) or seropositive (n = 23) human serum samples. IgM reactivity in the serum samples
was limited to a few peptides, while IgG reactivity was much more pronounced, with;60%
of the peptides displaying above background reactivity (Fig. S2). Based on this cumulative
reactivity profile by ELISA, a dozen DbpA peptides were chosen for detailed analysis by

FIG 2 DbpA peptide arrays for B. burgdorferi strains B31 and 297. (A) Tabular alignment of DbpA amino acid number (left
column), sequences (middle column), and corresponding peptide names for B. burgdorferi strains B31 (OspC Type A) and
297 (OspC Type K), as described in Materials and Methods. Residue differences between B31 and 297 are highlighted in
purple in the table and are (B) illustrated using PyMol and PDB ID 2LQU on the structure of DbpAB31. The final array
contained 31 peptides: 8 that were identical between sequences, 12 that represented B31 sequences, and 11 that
represented 297 sequences.
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Luminex with our larger B. burgdorferi-seropositive serum sample set. Included in our down-
selection were peptides identified by the Bepipred linear epitope prediction tool as having
a high likelihood of being a target of antibodies (e.g., residues spanning 55 to 78, 101 to
113, 126 to 136, and 165 to 187).

However, before performing the Luminex analysis, we examined antibody reactivity
by ELISA with peptide A1 (DbpA residues 1 to 18) in more detail, as a peptide spanning
residues 6 to 30 was recognized by sera from patients clinically diagnosed as having er-
ythema migrans (EM), an early manifestation of Lyme disease (28). In our study, IgM
and IgG reactivity with peptide A1 was 2- to 4-fold elevated over background, but this
was only observed in a fraction (14 to 16%) of the samples tested (Fig. S3). Thus, our
results are similar to those of Arnaboldi and colleagues in terms of IgM reactivity with
peptide A1, but they differ in that we observed IgG reactivity with the same peptide.
This discrepancy in IgG reactivity (low in the previous study, and detectable in our study)
may simply be reflective of different patient populations, as one represented early-stage
disease and the other a (two-tier positive) later stage. Overall, however, A1 antibody
reactivity was considered low and was not included in the Luminex analysis.

Multiplex profiling of B. burgdorferi-seropositive serum reactivity with DbpA
peptides. Based on peptide array profiling by ELISA, 12 highly reactive peptides were
synthesized with an N-terminal linker (-GGGSK) and a biotin-tag, then coupled to strep-
tavidin-coated Luminex beads. We then performed a multiplex analysis on samples from
all three clinical cohorts (IgM1/IgG2, IgM1/IgG1, and IgM2/IgG1). We established a
healthy cutoff value (MFI) using a commercial panel of 87 serum samples that displayed
low IgM and IgG MFI values for DbpA as well as the 12 DbpA peptides (Table 1; Fig. 1).

The Luminex analysis revealed that all 12 DbpA-derived peptides were recognized
by IgG from at least one of the three B. burgdorferi-seropositive cohorts (IgM1/IgG2,
IgM1/IgG1, and IgM2/IgG1). With two exceptions (peptides A7 and C7, which will be
discussed below), the increase in peptide reactivities ranged from 0.4- to 15-fold over
those of healthy controls (Table 1). Nine of the 12 peptides were also recognized by
IgM from at least one of the three B. burgdorferi-seropositive cohorts (IgM1/IgG2,
IgM1/IgG1, and IgM2/IgG1) (Table S1). Except for peptides A7 and C7, the IgM reactiv-
ities with the peptides were only marginally above background.

DbpA-derived peptides A7 and C7 stood out as being highly reactive with IgG in
the B. burgdorferi-seropositive serum panel (Table 1) and moderately reactive within
the IgM pool (Table S1). Specifically, IgG reactivity with peptide A7, which corresponds
to DbpA residues 64 to 81, was not significantly elevated in the IgM1/IgG- serum panel,
although it was 84-fold and 59-fold increased over background in the IgM1/IgG1 and
IgM2/IgG1 sample sets, respectively (Table 1; Fig. 3). In the IgM fraction, A7 reactivity
was significantly elevated (4- to 11-fold) in each of the three B. burgdorferi-seropositive
cohorts (IgM1/IgG2, IgM1/IgG1, and IgM2/IgG1) (Table S1). The proximal peptide, cor-
responding to residues 55 to 72, was largely nonreactive for DbpAB31 (peptide A6) and
moderately reactive for DbpA297 (peptide C1) (Table 1; Fig. 3). The reactivity of the dis-
tal flanking peptide (residues 73 to 90) was not examined by Luminex because the
peptide (A8) was deemed nonreactive in our preliminary ELISA screen (Fig. S2) and was
therefore not pursued further. Collectively, these results suggest that the A7 sequence
constitutes an immunodominant epitope within itself.

The other notable peptide was C7, which corresponds to the extreme C-terminus of
DbpA297 (residues 172 to 187). While C7 reactivity was not significantly elevated in the
IgM1/IgG2 serum panel, it was 84-fold and 58-fold increased over background in the
IgM1/IgG1 and IgM2/IgG1 sample sets, respectively (Table 1; Fig. 4). In the IgM frac-
tion, C7 reactivity was significantly elevated (3- to 5-fold) in each of the three B. burg-
dorferi-seropositive cohorts (IgM1/IgG2, IgM1/IgG1, and IgM2/IgG1) (Table S1). These
results clearly demonstrate that the 16 C-terminal residues of DbpA297 are targeted by
antibodies in B. burgdorferi-seropositive samples.

However, we found it curious that the analogous C-terminal peptide (B7) from DbpAB31

(residues 172 to 189) was only weakly reactive by Luminex, compared to peptide C7 from
DbpA297 (Fig. 4; Table S1), especially considering that B7 was one of the most reactive
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peptides in our preliminary ELISA screen (Fig. S2). Moreover, B7 is predicted to have a high
propensity to be a linear epitope, according to Bepipred. We reasoned that the subdued
response to B7 by Luminex might simply be related to the nature of the multiplexed bead
array itself, for reasons related to interference or surface coupling (35). We therefore per-
formed a comprehensive analysis of 30 control (healthy) and;270 B. burgdorferi-seroposi-
tive samples for peptide B7 reactivity by ELISA. Antibody reactivity with peptide B7 was
significantly higher in B. burgdorferi-seropositive serum samples, compared to that of

FIG 3 Reactivity of B. burgdorferi-seropositive serum samples with DbpA residues 55 to 81. IgG reactivity (MFI) in healthy (n = 86) or
B. burgdorferi-seropositive serum samples defined as IgM1/IgG2 (n = 78), IgM1/IgG1 (n = 71), or IgM2/IgG1 (n = 114) for DbpAB31 and
DbpA297 peptides spanning residues (A and B) 55 to 72 and (C) 64 to 81. Significance was determined by one-way ANOVA followed by
Tukey’s post hoc test. (D and E) PyMol images of DbpAB31 (PDB ID 2LQU) and DbpA297 (PDB ID 4ONR) with residues 64 to 81 are colored
firebrick red, and residues 55 to 63 are colored in shades of pink, with darker shades representing greater reactivity. The three lysine residues
implicated in decorin binding (K82, K163, and K170) are colored yellow/green.
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healthy controls (P , 0.001) (Fig. S4), thereby confirming our earlier observation that the
C-terminus (residues 172 to 189) of DbpAB31 constitutes an immunodominant linear
epitope.

Relationship between DbpA and peptide reactivity. To determine whether reactiv-
ity to a particular peptide was simply proportional to overall DbpA antibody titers in any
given individual, we determined the correlation coefficients between the DbpA MFI values
and the peptide MFI values for each of the;270 serum samples. As shown in Fig. S5, there
was no notable correlation between the two variables, except for peptide A7, which had an
R2 value approaching 0.4, indicating a weak to moderate relationship between DbpA and

FIG 4 Reactivity of B. burgdorferi-seropositive serum samples with DbpA C-terminal residues. IgG
reactivity (MFI) in healthy (n = 86), or B. burgdorferi-seropositive serum samples defined as IgM1/IgG2

(n = 78), IgM1/IgG1 (n = 71), IgM2/IgG1 (n = 114) for (A) DbpAB31 residues 172 to 189 and (B)
DbpA297 residues 172 to 187. Significance was determined by one-way ANOVA followed by Tukey’s
post hoc tests. PyMol images of (C) DbpAB31 (PDB ID 2LQU) with residues 172 to 189 colored pink and
DbpA297 (PDB ID 4ONR) with residues 172 to 187 colored firebrick red. Residues 172 to 187 in
DbpA297 are disordered and not visible in 4ONR. The three lysine residues implicated in decorin
binding (K82, K163 and K170) are colored yellow/green.
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peptide-specific antibody levels. This observation raises the possibility that anti-peptide anti-
bodies are elicited against DbpA breakdown products rather than intact (native) DbpA.

To better assess the relationship between DbpA and peptide recognition, we exam-
ined correlations between available MFIs for all serum samples. A correlation matrix of
serum IgG samples revealed four sets of peptides whose reactivity profiles tracked
with each other, even though the peptides were not necessarily overlapping or even
on adjacent regions of DbpA (Fig. 5). For example, the reactivities of A6 and C6 corre-
lated with each other, as did those of C7, A7, and DbpA. The largest cluster consisted
of B10, B11, B1, C4, and B3, which represent overlapping peptides (B10, B11), abutting
peptides (B1, B3), and a solitary peptide (C4). The same correlations did not hold when
IgM reactivity was examined, primarily because of much higher background values,
which confounded our ability to sort out specific versus nonspecific relationships (data
not shown). From this analysis, the correlation between the C7, A7, and DbpA reactiv-
ities was the most compelling, as those two peptides were identified as being highly
reactive in the serum panel examined (Table 1).

Native versus non-native linear B cell epitopes on DbpA. The elicitation of anti-
bodies against linear epitopes on a given protein antigen can occur in the context of the
antigen’s native conformation (e.g., by being displayed on the surface of the pathogen) or
non-native conformation, induced upon antigen release and/or degradation from the
pathogen (36). In an effort to distinguish between these two categories in the case of
DbpA, we reprobed four different peptide-coated microspheres in the absence and pres-
ence of a soluble recombinant DbpA (10mg/mL) competitor. We reasoned that the reactiv-
ity of human antisera with a native linear epitope would compete with soluble recombinant

FIG 5 Correlation matrix of antibody responses to specific DbpA peptides. Pearson correlations were
calculated for every possible combination of DbpA and peptide from the values presented in Table 1,
and the resulting P values were adjusted for multiple comparisons by the Benjamini-Hochberg method.
Correlations with significant adjusted P values are displayed in the matrices, while those with insignificant
P values are left blank. The color (per scale on right) and relative size of each dot correspond to the
strength of the corresponding correlation, and black rectangles around groups of correlations show the
results of hierarchical clustering of the peptides.
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DbpA, whereas reactivity to cryptic or non-native linear epitopes would not. Analysis of a
subset of human serum samples revealed an immediate trend. Specifically, the addition of
soluble DbpA had little or no inhibitory effect on antisera reactivity with A5, B3, and B7-
coated beads (Fig. 6). Peptides B11 and C7 served as controls for these studies, as competi-
tion was not expected from them in the first place, since these peptides are derived from
the B. burgdorferi strain 297 sequence and are sufficiently divergent from the DbpAB31

sequence (data not shown). Peptide A7 was different in that antibody reactivity was uni-
formly eliminated upon the addition of soluble DbpA in the B. burgdorferi-seropositive se-
rum samples tested. We interpret these results as an indication that peptide A7 (residues 64
to 81) constitutes a surface exposed linear B cell epitope on DbpA, while epitopes A5 and
B3 are cryptic in nature, with the caveat that we cannot fully exclude the possibility that the
recombinant DbpA used for the competition studies does not necessarily reflect the native
antigen when displayed on the spirochete surface.

DISCUSSION

DbpA is one of the most antigenic outer surface proteins of B. burgdorferi, and, as
such, has important implications for LD diagnostics and immunity (13, 14, 34, 37, 38).
Indeed, antibodies against DbpA have been shown to promote the resolution of early
B. burgdorferi infections (11). However, despite DbpA’s importance as an immune tar-
get, little is known about the specific epitopes on DbpA that are recognized by
humans. To begin to address this question, we profiled a collection of ;270 archived
human B. burgdorferi-seropositive serum samples for reactivity with a DbpA peptide
array derived from two geographically representative B. burgdorferi type strains, B31
(OspC Type A) and 297 (OspC Type K). Twelve of the original 31 peptides reactive by
ELISA were resynthesized with biotin-tags to enable multiplex analysis against the full suite
of healthy and B. burgdorferi-seropositive sera (IgM1/IgG2, IgM1/IgG1, and IgM2/IgG1) in
our collection. While the results revealed significant IgG (and some IgM) reactivity against
essentially all of the peptides examined, two stretches of DbpA stood out as being highly
immunoreactive, defined as displaying a .20-fold increase over the reactivity observed in
healthy controls. The first stretch corresponds to DbpA residues 64 to 81 (peptide A7), an
amino acid sequence conserved between DbpAB31 and DbpA297. The second corresponds

FIG 6 Recognition of recombinant DbpA by peptide-specific antibodies. B. burgdorferi-seropositive serum samples
were incubated without (2) and with (1) soluble DbpA (10 mg/mL), then mixed with four different peptide-coated
bead sets, as indicated in Panels A–D, and subjected to Luminex analysis. The relative reactivities (MFI; y-axis)
without and with DbpA are plotted with individual samples connected by a line. Included in the analysis is an
Accurun (1) sample indicated by the triangle (red). Only the reactivity of peptide A7 was reduced by the addition
of soluble DbpA, as reflected by a reduction in MFI in the (1) column compared to the (2) column. Significance
was determined by paired, two-tailed t-tests with Welch’s corrections. *, P # 0.05.
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to the respective C-terminal peptides of DbpAB31 (B7; residues 172 to 189) and DbpA297 (C7;
residues 172 to 187), which are notably divergent from each other. Identification of these
linear epitopes on DbpA may have utility in both Lyme disease diagnostics and, potentially,
a next-generation Lyme disease vaccine.

DbpA residues 64 to 81 (peptide A7) are conserved between B. burgdorferi strains B31
and 297. When mapped onto the solution structure of DbpAB31 (PDB ID 2LQU), as shown
in Fig. 3, the A7 peptide corresponds to the flexible loop between DbpA’s a-helix 1 and
a-helix 2 in proximity to three key lysine residues (K82, K163, and K170) associated with
heparin and decorin binding (16, 19). The peptide is similarly positioned on DbpA297,
although the actual loop is disordered in the DbpA297 crystal structure (PDB ID 4ONR). In
the case of DbpAB31, the two flanking peptides (A6 and A8) were only mildly reactive in
our arrays, as was the flanking C1 peptide (residues 55 to 72) for DbpA297, suggesting that
the central loop itself, rather than the adjacent a-helices, is the most immunoreactive.
Interestingly, Tokarz and colleagues identified this same region as being reactive with
antisera from patients with Lyme neuroborreliosis (IEDB ID 745110) (29). Thus, we propose
that the flexible loop between a-helix 1 and a-helix 2 (and certain flanking residues) con-
stitutes an immunodominant linear epitope on DbpA that is recognized in B. burgdorferi-
seropositive patients and possibly in LD. Indeed, the same loop and flanking regions are
predicted to contain conformational B cell epitopes, according to Discotope (39) and
ElliPro (40). Finally, it is also noteworthy that the A7 peptide contains a tripartite motif
(Thr-Gly-Ser) that is conserved in DbpA and DbpB from B. burgdorferi and B. garinii,
although the functional significance of this motif is unknown (41).

The flexible linker between a-helix 1 and a-helix 2 has been implicated in influenc-
ing DbpA’s affinity for GAGs, raising the possibility that antibodies directed against the
A7 peptide epitope block the interaction of DbpA and substrate (42–44). In the case of
DbpA from B. burgdorferi strain N40, shortening the linker via the deletion of residues
62 to 71 resulted in DbpA having a ;2-fold increased affinity for heparin and dematan
sulfate, an observation that is consistent with the loop physically occluding the GAG
binding pocket (43). Hook and colleagues have argued that DbpAB31 and DbpA297 resi-
dues 76 to 90 (corresponding to peptides A7 and A8 in our array) contain a decorin
binding site of their own. Specifically, they reported that a soluble peptide encompass-
ing residues 76 to 90 (PFILEAKVRATTVAE) was sufficient to competitively inhibit biotin-
labeled DbpA from adhering to immobilized decorin (45). In addition, antiserum raised
against this peptide reduced DbpA-decorin binding by ;50%. Collectively, these
results argue that human antibodies directed against peptide A7 would partially, if not
completely, inhibit DbpA attachment to the ECM. Those same A7-specific antibodies
would also presumably promote complement-mediated borreliacidal activity (6, 18, 27,
46). We are actively pursuing these hypotheses and have already demonstrated that the
immunization of mice with an A7-KLH conjugate gives rise to DbpA-specific antibodies,
confirming that residues 64-87 constitute a native linear epitope on DbpA. (E. Movahed
and N. Mantis, unpublished results).

Peptides B7 (residues 172 to 189) and C7 (residues 172 to 187) from DbpAB31 and
DbpA297, respectively, are also potentially consequential antibody targets, considering
that the C-terminus of DbpA has been proposed to contribute to attachment to GAGs
(15). Specifically, the C-terminal residues of DbpA are lysine-rich, with DbpAB31 and
DbpA297 sharing a common KKK core motif (residues 176 to 178). Benoit and colleagues
demonstrated that DbpA truncations were properly displayed on the spirochete outer
surface but that resulting strains were unable to attach to 293 cells or immobilized GAGs
(15). The available structures suggest that the DbpA’s C-terminus projects away from the
bacterial surface and is readily accessible to substrates (and antibodies). In our study,
peptide C7 was highly reactive with B. burgdorferi-seropositive serum, as measured by
Luminex and ELISA, whereas the B7 peptide was reactive by ELISA but not Luminex. It is
unclear whether the difference in B7 reactivity is due to the surface charge associated
with polystyrene beads versus polystyrene Maxisorb ELISA plates or whether the biotin-
tagged B7 peptide used for Luminex assumes a conformation not conducive to antibody
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recognition. Sorting this issue out has obvious implications, should B7 and other similar
peptides be used as possible diagnostic markers for serology (37, 47).

In conclusion, this study represents an early effort to begin to better understand
the human antibody response to DbpA and the role anti-DbpA antibodies play in
resolving infection (48, 49). Certainly, the immunogenic nature of DbpA alone is of in-
terest in terms of defining which pathogen-associated proteins stimulate B cell activa-
tion in humans and why this occurs (48, 49). DbpA is similarly immunoreactive in
experimentally-infected Rhesus macaques and other species (12). In mice, for example,
DbpA has been shown to be a T cell-independent antigen, indicating that it has the
capacity to activate B cells directly in the absence of CD4 T helper cells (26). Whether
this also applies to humans and/or contributes to the antigenicity of DbpA remains an
open question. It is also unclear to what degree antibodies are elicited to native DbpA,
as displayed on the bacterial surface, or to conformations of DbpA that may arise fol-
lowing bacterial lysis and protein release (50).

MATERIALS ANDMETHODS
Chemicals and biological reagents. Chemicals and reagents were obtained from Thermo Fisher,

Inc. (Waltham, MA), unless noted otherwise. PBS was prepared by the Wadsworth Center’s Cell and
Tissue culture core facility.

Cloning, expression, and purification of recombinant DbpA. DbpA from B. burgdorferi B31 (NCBI:
txid224326) was expressed in E. coli BL21 (DE3). The PCR amplicons for DbpA residues 26 to 188 were
subcloned into the pNYCOMPS-C-term expression vector, encoding a C-terminal deca-His tag. The trans-
formed E. coli BL21 (DE3) strain was grown at 37°C in TB medium until mid-log-phase (0.6 at OD600), after
which it was treated with 0.1 mM IPTG and cultured for 16 h at 20°C. The cells were harvested by centrif-
ugation and resuspended in 20 mM Tris-Cl (pH 7.5) and 150 mM NaCl. The cell suspension was sonicated
and centrifuged at 30,000 � g for 30 min. After centrifugation, the protein-containing supernatant was
purified by nickel-affinity and size exclusion chromatography on an AKTAxpress system (GE Healthcare),
which consisted of a 1 mL nickel affinity column followed by a Superdex 200 16/60 gel filtration column.
The elution buffer consisted of 0.5 M imidazole in binding buffer, and the gel filtration buffer consisted
of 20 mM HEPES pH 7.6, 150 mM NaCl, and 20 mM imidazole. Fractions containing pure DbpA were
pooled and subjected to TEV protease cleavage (1:10 weight ratio) for 3 h at room temperature to
remove the deca-His tag. The cleaved protein was passed over a 1 mL Ni-NTA agarose (Qiagen) gravity
column to remove the TEV protease, deca-histidine tag, and any uncleaved protein. DpbA was then
buffer exchanged into 20 mM HEPES (pH 7.5) and 150 mM NaCl.

Prediction of DbpA linear B cell epitopes. The sequence of DbpA from B. burgdorferi strains B31
(DbpAB31; UniProt ID O50917) and 297 (DbpA297; UniProt ID Q1W5I8) were analyzed using the linear B cell epi-
tope prediction tool Bepipred (set threshold 0.5) (30), available via the Immune Epitope Database (IEDB.org) (31).

DbpA peptide array. The DbpA sequences from B. burgdorferi strains B31 (OspC Type A; NCBI:
txid224326) and 297 (OspC Type K; NCBI: txid521009) are ;89% identical. Peptide arrays covering DbpA
from B. burgdorferi strains B31 and 297 were designed based on NCBI taxonomy ID sequences, as noted
above, and synthesized by NeoScientific (Woburn, MA). The final library consisted of 31 peptides, of
which 8 were identical between sequences, 12 were specific to B31, and 11 were specific to 297 (pre-
sented in Fig. 2). Each peptide was 18 amino acids in length and overlapped with the previous peptide
by 9 residues, with the omission of a single peptide corresponding to residues 10 to 27, which failed
Q/C. The peptides were solubilized in dimethyl sulfoxide (DMSO) at 10 mg/mL, and aliquots were stored
at 220°C. Aliquots were thawed as needed and diluted in PBS (1 to 10 mg/mL) for routine use. Of the 31
original peptides, 12 that were reactive with a subset of B. burgdorferi-seropositive samples were or-
dered with a C-terminal GGGSK extension that was biotinylated on the terminal lysine (Genemed
Synthesis, San Francisco, CA).

Commercial and B. burgdorferi-seropositive serum samples. Commercial Lyme disease seronega-
tive (Lot 10500586) and seropositive (Lot 10510438) pooled samples were used as controls throughout
this study (ACCURUN 810 and 130, respectively; SeraCare, Milford, MA). Healthy controls consisted of a
commercial panel of 87 serum samples collected in 2017 and 2018 (Access Biologicals, Vista, CA).
Primary clinical samples were obtained from the Wadsworth Center’s Diagnostic Immunology
Laboratory. Those samples were submitted for Lyme disease serology and subjected to two-tiered
testing consisting of (Tier 1) a C6 peptide screen (Immunetics; C6 Lyme ELISA) or Enzyme Linked
Fluorescent Assay (ELFA; bioMérieux, VIDAS Lyme IgG II, and Lyme IgM II; Durham, NC) followed by
(Tier 2) IgM and IgG detection by Western blotting (MarDX; Trinity Biotech, Carlsbad, CA). B. burgdor-
feri-specific IgM reactivity was defined as $2 positive bands, with IgG reactivity defined as $5 positive
bands. Serum samples were aliquoted, de-identified, and classified as IgM-positive/IgG-negative, IgM-
positive/IgG-positive, or IgM-negative/IgG-positive, based on the Western blot results. For this study,
we employed a total of ;270 serum samples.

ELISA and preliminary pepscan analysis. Nunc Maxisorb F96 microtiter plates (Thermo Fisher
Scientific) were coated with DbpA (0.1 mg/well) or DbpA peptides (1.0 mg/well) in PBS (pH 7.4), then
incubated overnight at 4°C. The plates were washed three times with PBS-Tween 20 (PBS-T; 0.1%,
vol/vol) and blocked with goat serum (2%, vol/vol, in PBS-T) for 2 h at room temperature before being
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probed with serum samples (1:100 dilution). Plate bound antibodies were detected with horseradish
peroxidase (HRP)-labeled goat anti-human IgG or IgM polyclonal antibodies (SouthernBiotech,
Birmingham, AL). The plates were developed with 3,3, 5,5-tetramethylbenzidine (TMB; Kirkegaard &
Perry Labs, Gaithersburg, MD) and analyzed using a SpectroMax 250 spectrophotometer (Molecular
Devices, Sunnyvale, CA).

Multiplexed DbpA and peptide microsphere immunoassays (MIA). Recombinant DbpA (5 mg) was
coupled to Magplex-C microspheres (1 � 106) using sulfo-NHS (N-hydroxysulfosuccinimide) and EDC (1-ethyl-
3-[3-dimethylaminopropyl] carbodiimide hydrochloride), as recommended by the manufacturer (Luminex
Corp., Austin, TX). Coupled beads were diluted in storage buffer (phosphate-buffered saline [PBS] with 1% bo-
vine serum albumin [BSA], 0.02% Tween 20, 0.05% azide, pH 7.4) to a concentration of 1� 106 beads/mL.

Biotin-labeled peptides were complexed to Megaplex-avidin microspheres, following protocols pro-
vided by the manufacturer (Luminex Corp.). Briefly, microspheres were washed and resuspended in
250 mL of PBS-BSA, then subjected to vortexing and sonication. A total of 1.0 � 106 beads in PBS-BSA
were mixed with biotin-conjugated DbpA peptides (;5 mg) and incubated for 30 min at room tempera-
ture. The microsphere suspensions were then washed three times using a magnetic separator, resus-
pended in 500 mL of storage buffer, and stored at 4°C until use. Samples were analyzed using a FlexMap
3D instrument (Luminex Corp.).

Statistical analysis. ANOVAs and Student’s t-tests were carried out using GraphPad Prism, V 9.1 (Systat
Software, San Jose, CA). Correlation matrices were prepared to examine correlations between MFI values of
all responses to peptides, separated into IgG and IgM responses, using the R package corrplot (51).

Molecular modeling. The open-source molecular visualization software PyMol (DeLano Scientific
LLC, Palo Alto, CA) was accessed at www.pymol.org and used for epitope modeling. Modeling was per-
formed using DbpA structures PDB ID 4ONR (strain 297) and 2LQU (strain B31), available from the
Protein Data Bank (rcsb.org) (19, 52).
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