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Abstract: There are numerous anticipated effects of climate change (CC) on agriculture in the
developing and the developed world. Pakistan is among the top ten most prone nations to CC
in the world. The objective of this analysis was to quantify the economic impacts of CC on the
agricultural production system and to quantify the impacts of suggested adaptation strategies at the
farm level. The study was conducted in the Punjab province’s rice-wheat cropping system. For this
purpose, climate modeling was carried out by using two representative concentration pathways
(RCPs), i.e., RCPs 4.5 and 8.5, and five global circulation models (GCMs). The crop modeling was
carried out by using the Agricultural Production Systems Simulator (APSIM) and the Decision
Support System for Agrotechnology Transfer (DSSAT) crop simulation models (CSMs), which were
tested on the cross-sectional data of 217 farm households collected from the seven strata in the study
area. The socio-economic impacts were calculated using the Multidimensional Impact Assessment
Tradeoff Analysis Model (TOA-MD). The results revealed that CC’s net economic impact using both
RCPs and CSMs was negative. In both CSMs, the poverty status was higher in RCP 8.5 than in RCP
4.5. The adaptation package showed positive results in poverty reduction and improvement in the
livelihood conditions of the agricultural households. The adoption rate for DSSAT was about 78%,
and for APSIM, it was about 68%. The adaptation benefits observed in DSSAT were higher than in
APSIM. The results showed that the suggested adaptations could have a significant impact on the
resilience of the atmospheric changes. Therefore, without these adaptation measures, i.e., increase in
sowing density, improved cultivars, increase in nitrogen use, and fertigation, there would be negative
impacts of CC that would capitalize on livelihood and food security in the study area.

Keywords: rice-wheat agricultural system; climate change; impact assessment; adaptation packages; Pakistan

1. Introduction

Climate change is real, and its observed effects on physical and biological systems have been
negative over time. Previous literature also demonstrated the disastrous impacts of climate change on
ecological and social systems [1–8]. Overtime and mean changes in climate factors such as temperature,
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precipitation, and sea level are observed across the globe. The impact of climate change on the intensity
and the frequency of disasters such as hurricanes, droughts, storms and cyclones, fires, heatwaves, and
epidemics vary around the world, depending on the current geographic climate conditions [9–13]

Agricultural activities and security in production depend mainly on environmental factors,
e.g., temperature, precipitation, and wind [14,15]. In developing countries, aggravated climate change
has major impacts on the livelihood and the food security of poor households living in rural areas
who are largely dependent on the agricultural production system [16–18]. This threatens the status of
food security and poverty around the globe, because farming is important to ensure these two most
important issues. The countries in South Asia are the most affected by climate change, and agriculture
is the largest part of the gross domestic product (GDP) in these economies, posing serious challenges
to social and economic conditions of the region [19–21].

In vulnerable regions of the world, climate-related factors are strong predictors of crop and animal
production, income, disease, and undernutrition [22,23]. Approximately 65% of Pakistan’s population
is living in rural areas, and their livelihoods are directly or indirectly dependent on the agricultural
sector. Agriculture contributes 18.6% to the national GDP, and it employs about 42% of the country’s
workforce [24]. Even with the high share of agriculture in the economy of Pakistan, no efforts have
been made to address the alarming situation of climate-induced problems and extreme weather events
in this sector [25,26]. Pakistan is one of the most affected countries due to climate change in South Asia
and around the world. In the period 1998–2012, the Global Climate Risk Index (GCRI) and the World
Bank report put Pakistan in seventh place in the index of countries facing climate extremes [27].

Uncertainty in climate impacts assessment includes the complexity of atmospheric models,
downscaling methods, greenhouse gas emission scenarios, and uncertainty in crop models [28–30].
Most of the studies used single emission scenarios, climate models that cannot characterize the climate
risk [31–34]. More robust climate change impact assessment is based on multi-climate model global
circulation models (GCMs) projections as well as multiple scenarios. The process-based crop models are
used for climate impact assessment and to reduce the uncertainty associated with climate scenarios [35].

Adaptation can manage the negative climate change impacts, but it cannot solve the climate change
problem on its own. Adaptation is referred to as changes in the human–environment mechanism
concerning current and predicted changing climatic conditions to minimize or neutralize the associated
risks that generate potential opportunities against climate change [36]. Adapting the agricultural
production system to climate change is critical in developing countries to ensure the livelihoods of
poor communities [3]. Adaptation strategies are effective to help the residents to cope with severe
weather and climate change events [7,37–40].

The strategies for adapting climate are context-specific and site-specific and evolve in dependent
communities [40,41]. The factors responsible for adaptive response variability across regions include
all the agro-ecological systems, socioeconomics, environmental effects, and existing infrastructure
and capability [14,42–44]. Multiple stakeholders should be involved in building adaptation strategies,
including policymakers, researchers, non-profit organizations (NGOs), communities, extension agents,
and farmers. These adaptations are predominantly location-specific and depend on local institutions
and socioeconomic conditions of the dependents [45]. Adaptation research needs to be solution-oriented
due to the impending existence of environmental problems. Adaptations help to address climate
change, but there is considerable uncertainty about the impacts and the adaptation effectiveness [38,46].

Generally, small and poor farmers across the globe and specifically in the South Asian region
have limited capabilities to invest in management practices and technology adoption [47]. The climate
instability coupled with other critical socio-economic pressures, e.g., being unable to buy and apply
inputs at required prices or within a reasonable timeframe, poor management of crops due to shortages
of labor, or competing for off-farm opportunities of livelihoods, farmers can be trapped in a cycle
of low adaptability and, therefore, vulnerability to climate change [48,49]. In contrast, adaptations
are observed by farmers in South Asia who experience and strive to tackle climate variations such as
different crop species selection, management practices, sowing dates, and use of irrigation to overcome
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drought and heat stress [50,51]. Not all farmers, however, are equally capable of responding to climate
fluctuations, particularly if the temperature or the precipitation change significantly. This highlights
the complexity and the risks associated with the cultivation of smallholders’ crops in tropical and
subtropical climates, a condition that needs mitigation to achieve sustainable growth [52,53].

The subsistence of resource-poor rural households is largely dependent on agriculture in
developing countries such as Pakistan, but this sector of the economy is the most vulnerable to climate
change and volatility. The households’ capacity to adapt to climate change effects, which threaten
households’ resources and sustainability, is uncertain due to poor socioeconomic conditions of the
agricultural community [2,8,54–56]. Rice and wheat are the two main staple cereal crops of Pakistan
and are grown under various climatic and hydrological conditions throughout all agroecological zones
of the country [8]. The concerns about the productivity of rice and wheat crops are very important,
because these two crops contribute approximately 20% and 75% of Pakistanis’ average daily calorie
intake [57].

Pakistani rice and wheat yield varied in the first decade of the millennium by up to 1.31 and
0.57 tons per hectare at the national level [58,59]. The socio-economic conditions of smallholder
farmers are prone to environmental and some other non-climatic threats to agriculture. Several studies
were carried out to measure the climate impact threats on the integrated rice-wheat cropping zone in
Pakistan, which showed that climate change has adverse effects on both crops’ productivity [8,47,60].
Climate change impact assessment needs to be investigated in all agro-ecological areas, and there is a
need for future adaptations to national climatic conditions. It also needs to be redefined to minimize
the dangerous impacts of climate change.

There is a need for different climate adaptation strategies in collaboration with other science
disciplines, extension and support services, and stakeholder’s engagement for rice and wheat crops.
Therefore, this study focused on assessing climate change sensitivity to Pakistan’s rice-wheat agricultural
production system and also incorporated the impact assessment of the planned climate change
adaptation package at the farm level. The adaptation package was drawn up following the needs of
both crops. The main features of these strategies were to change the sowing date patterns, modification
of the plant population, adoption of new sowing and harvesting technologies, and modernized
irrigation and fertilizer application methods.

2. Materials and Methods

2.1. Description of the Study Area

In Pakistan, Punjab is the most populated province and contributes a major share in the national
agriculture production. There are five major agro-ecological zones in the province of Punjab-Pakistan,
i.e., the rice-wheat zone, the cotton-wheat zone, the mixed-cropping zone, the low-intensity zone,
and the rain-fed zone. The rice-wheat zone was purposely chosen for the study because of its importance
in ensuring the food security of the country and the importance of export revenue earned through both
crops. The rice-wheat cropping system is the major one that accounts for a total of 2.2 million ha of
area, supporting the livelihood of 1.1 million farm families [61]. In Pakistan, the rice-wheat cropping
areas are mainly located in central Punjab. Main districts include Sheikhupura (SHK), Nankana Sahib
(NNS), Hafizabad (HFD), Gujranwala (GJW), Sialkot (SLK), Gujrat (GUJ), and Mandi Bahauddin
(MBD). The study covers the Rice Wheat Cropping System (RWCS) of Punjab province comprising the
seven famous strata mentioned earlier and forming a heterogeneous sample size, as shown in Figure 1.

2.2. Collection of Farm Surveyed Data

Both primary and secondary data were collected and used in this study. Primary data were
collected from farmers after taking their consent to provide information using a well-structured
questionnaire. For secondary data, different government sources and surveys, i.e., Soil Surveys,
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The agricultural population is heterogeneous; therefore, the methodology of multi-stage stratified
random sampling was used to collect the primary data following Naseer et al. [62]. In the first
stage, the RWCS was chosen purposely for this study due to its importance of both major crops,
rice and wheat, used as a staple food. In the second stage, all the seven rice-producing districts were
chosen from the RWCS, i.e., Sheikhupura, Nankana Sahib, Hafizabad, Gujranwala, Sialkot, Gujrat,
and Mandi-Bahauddin, which form the seven strata of the study. In the third stage, three villages
from each stratum were chosen randomly. In the last stage, ten respondents from each village were
chosen randomly, which made the total sample size of 210 respondents. All ethical considerations and
anonymity of the respondents were considered and assured to the respondents. Participation of the
respondents in the sample size was on a volunteer basis. The study aims and objectives were explained
to all respondents before data collection. Prior to data collection, training of the data collection team
was carried out. Data were collected by the students of Ph.D. and master’s degrees at the University of
Agriculture Faisalabad, Pakistan.

2.3. Climate Change Projections

A baseline daily weather dataset (1980–2009) was produced by using a well-developed climatic
methodology following the Coupled Model Intercomparison Project (CMIP5) [63]. Historical (baseline)
weather information from observations of local stations is the basis for model inter-comparison and
initial study of climate information and calibration of crop models. In the study area, a total of 4
weather stations (Nankana Sahib, Sheikhupura, Sialkot, and Mandi Bahauddin) were identified in
four different strata, in which all stations had a 30 year measured daily weather data. However, the
30 year daily weather data from the AgMIP Hybrid Baseline Climate Datasets (AgMERRA) for the
remainder in three strata (Hafizabad, Gujranwala, and Gujrat) were created following Ruane et al. [64].
NASA Modern Era-Retrospective Analysis for Research and Analysis (MERRA) was used to generate
daily maximum and minimum temperature, solar radiation, and precipitation for sites where it was
impossible to collect physical weather data [65].

In this analysis, forecasts were made in CMIP5 emission scenarios for the mid-century (2040–2069)
duration under RCP 4.5 (mild climatic conditions) and RCP 8.5 (harsh climatic conditions). Using the
delta method, future scenarios were developed. The rationale for selecting two RCPs, 4.5 and 8.5,
was the correspondence to the greenhouse gas (GHG) emissions scenario. RCP 4.5 reflects low GHG
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emissions and controlled demand for energy as well as the existence of climate change initiatives,
while RCP 8.5 has the highest GHG emissions owing to rising demand for energy and a lack of
climate change policies [66,67]. Statistical downscaling and climate change scenarios were produced
by Pakistan Metrological Department (PMD), a method described by Ruane et al. [68]. The carbon
dioxide concentration of 499 ppm was used for RCP 4.5 and 571 ppm for RCP 8.5 [69].

Using GCMs representing physical processes in the atmosphere, the ocean, the cryosphere, the and
land surface, future climate scenarios were developed. GCMs are currently the most advanced tools
available to simulate the global climate system’s response to increased concentrations of greenhouse
gases. For this study, the five best GCMs were used. These models were the same for both RCPs
(4.5 and 8.5) and are namely, BCC-CSM (cool wet), CCSM4 (cool dry), BNU-ESM (middle), CMCC-CM
(hot dry), and MIROC-ESM (hot wet). The selected GCMs were downscaled using a delta method
described by Ruane, et al. [68].

2.4. Crop Modeling

In this study, two famous crop simulation models (CSMs)—the Agricultural Production Systems
Simulator (APSIM) [70] version 7.5 and the Decision Support System for Agrotechnology Transfer
(DSSAT) [71,72] version 4.6—were used. The genetic coefficients of models were estimated for rice
and wheat cultivars with two years of field experimental data. Models were calibrated with first-year
field data and evaluated with the second year. The data on phenology (days to anthesis, maturity),
growth (leaf area index and total dry matter accumulation), yield, and biomass were collected for
model parametrization. Rice cultivars Super Basmati, Basmati 380, and Basmati-2000 were used in this
analysis, and wheat cultivars Sahar-06, Lasani-08, and Faisalabad-08 were calibrated and evaluated.
The calibration and the evaluation followed procedures published previously, such as Ahmad et al. [73].

After the model’s parametrization, the crop models were evaluated with farmer surveyed data.
Surveyed information on farmers’ fields included the wheat and rice cultivars that were grown,
initial conditions (previous crop sown, remaining crop, and root residue weight), and crop management
(sowing time, tillage, fertilizer and irrigation amounts, harvesting date, etc.). This farm management and
soil series data were used to create input files for DSSAT and APSIM using the QUADUI tool. The crop
models were run with one-year climate data, and the observed and the simulated yields were compared.

The sensitivity of models was estimated using carbon, temperature, water, and nitrogen (CTWN)
analysis. The detailed description is given by Ahmad et al. [74].

For climate impact assessment, current and future climate scenarios under RCP 4.5 and 8.5, farm
surveyed, and soil series data of each stratum were used as input in DSSAT and APSIM models.
The models were run with 30 years of current and future climate data.

Results from the crop model simulation provided insight into the biophysical effect in terms of
yield changes. Such findings were then incorporated into an approach to farming systems to evaluate
the impacts of climate change and the proposed adaptation package on the livelihoods of smallholder
farmers. The next section describes the use of an economic impact assessment model using crop
simulation outputs along with data from household survey data (e.g., farm size, off-farm income) and
other secondary information to quantify vulnerability and possible climate change gains and losses
under current and future conditions.

2.5. Economic Modeling

Economic assessment of climatic change sensitivity was done with the Tradeoff Analysis Model
for Multidimensional Impact Assessment (TOA-MD) version 6.1 in this study [75–77]. The economic
analysis was done on a per farm basis. All farm-based activities—major crops (rice and wheat),
minor crops (fodder), and livestock—were included for the true representation of the existing
socioeconomic conditions of the farming community of the surveyed farms. The analysis was
done for both CSMs (APSIM and DSSAT) and both RCPs (RCP 4.5 and RCP 8.5) for each GCM
simulation separately. The TOA-MD used simulated crop yields, price, and production patterns from
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global economic models [76–78]. It also provided an assessment of the potential benefits of a future
adaptation strategy.

This economic model measures the proportion of households susceptible to climate change-related
losses, subsequent gains and losses, as well as poverty rates and shifts in per capita income due
to climate change. In the case of planned adaptation packages or technology initiatives, it often
estimates a potential adoption rate. The participation of stakeholders directed the definition and the
development of adaptation strategies. In this study, we assumed that the consequences of climate
change on non-modeled crops (sorghum and maize) and livestock were dependent on secondary
information. Livestock is an important part of the system in this region.

To define the current production system, we used survey data and other secondary information,
including all economic activities in the farm (e.g. crop, livestock, household). Subsequently, we used
crop simulations to define changes in yields due to climate change or crop management to assess the
potential impacts on farm livelihoods, which we discuss further below.

The model considers farmers as economically rational beings to make decisions on the predictable
value, and that is why it uses binary codes [79]. The farmers may choose to stick to system 1, or they
can choose the alternative system 2. Normally, system 1 is described as the current production system
with base production technology and the current climate, whereas system 2 is described as the current
production system with base technology and the changing climate. The productivity of the system
depends largely on two factors, technology and climate. Farmers’ decisions of whether to operate in
system 1 or system 2 depend upon the opportunity cost (gains/losses) from switching.

ω = v1 − v2 (1)

Net returns from systems 1 and 2 are shown in Equation 1, v1 and v2, respectively. The cost of the
opportunity fits the distribution ofω. Farmers adopt system 2 if < 0, i.e., system 2 net income is higher
than system 1 net income. Alternatively, they must stay in system 1 (non-adopters) if > 0, i.e., system 2
net returns are lower than system 1 net returns.

The poverty line was set to USD 1.25/person/day (USD 1 = RS 103) (RS: Pakistani rupee, it can
also be written as PKR) in the analysis according to international standards, which were to check
the vulnerability level of households with respect to climatic changes [80]. For climate change
impact assessment (CC-IA) analysis, all the prices of inputs/outputs were site-specific according to the
production system(s), and net returns were evaluated accordingly.

The model parameters of TOA-MD for systems 1 and 2 were determined by every farmer in data
for the current time period following Valdivia et al. [81].

µ j(THH,γH) = βy0 ∗ y j0 (2)

µj (Tti, γt) = time-averaged mean of yields of farm j using technology Tti with climate γt; j = farm
index, j= 1, . . . , J farms in data sample representing the integrated assessment region study area;
Tti = technology and management used in period t=H or F, adapted to climate i=H or F; γjt = crop
yield in year t (kg/ha); βy0 = YH/Y0 = normalization factor used to scale survey data yields to the
current period mean; Y0 = mean of observed yields in the survey data for base year t=0; YH = mean of
yields averaged over all farms and years in the current period, obtained from secondary data in the
survey area.

R j21 = ρH ∗ a jH ∗ µ j(THH,γH) (3)

ajt = total crop area on the farm in period t (ha); Rjqs = time averaged revenue for part q and system s
(rupees per farm).

C j21 = βc0 ∗C jH (4)
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Cjt = production cost for period t (rupees per farm per time); βc0 = CH/C0 = normalization factor used
to scale production cost survey data to the current period mean.

V j21 = R j21 −C j21 (5)

Vjt = Rjt – Cjt = crop net returns for the farm (rupees per time); Vjqs = time-averaged net returns for
part q and system s (rupees).

µ j(THF,γH) = r j2 ∗ µ j(THH,γH) (6)

µj(Tti,γt) = time-averaged mean of yields of farm j using technology Tti with climateγt; Tti = technology
and management used in period t=H or F, adapted to climate i=H or F; γjt = crop yield in year t (kg/ha);
rj2 = sj (THF, γH)/ sj (THH, γH) = relative yield for analysis of part 2; sj(Tti, γt) = simulated crop yield
for farm j using technology Tti with climate γt.

R j22 = ρH ∗ a jH ∗ µ j(THF,γH) (7)

Rjqs = time averaged revenue for part q and system s (rupees per farm); ajt = total crop area on the
farm in period t (ha).

G j22 =
C j22

R j22
(8)

Gjt = Cjt/ Rjt = production cost relative to revenue (unit free); Gjqs = Cjqs/ Rjqs = time averaged
production cost relative to time averaged revenue for part q and system s; Vjt = Rjt – Cjt = crop net
returns for the farm (rupees per time); Vjqs = time averaged net returns for part q and system s (rupees);
RHO12= correlation between µj(THH, γF) and µj(THH, γH)

C j22 = G j22 ∗R j22 (9)

V j22 = R j22 −C j22 (10)

The TOA-MD incorporated the statistical correlation between environmental, social, and economic
impacts of technology adoption on Net Return (NR), Per Capita Income (PCI), and poverty in simulation.
The model simulates the impacts from 0% to 100% of the full range of adoption rates [82]. For a better
understanding of the reader, the methodological framework developed by the global AgMIP team
followed in this study is presented in Figure 2.
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2.6. Climate Change Adaptation Package

To overcome the climate impacts, it was observed that expert opinion should be needed for
possible climate change adaptation for rice and wheat crops. Adaptation refers to the transition of
natural or human systems of response to natural or anticipated climate stimuli or their consequences,
moderating harm or exploiting beneficial opportunities [83]. In this study, it was important to understand
how crop productivity under a changing climate would be influenced by changes in field management.
Therefore, three sessions with experts of agriculture and its allied disciplines and the farmers’ information
were recoded, and the probable adaptation packages were modeled with the existing data. The adaptation
strategies discussed with stakeholders were focused on increasing levels of application of nitrogen
fertilizers, changing plant population, and virtual cultivar. Therefore, this methodology of management
was used as the method of adaptation. After careful evaluation and estimation, the adaptation packages
for both major crop activities, i.e., rice and wheat in the survey area, were developed. The adaptation
package for wheat is given below in Table 1 and for rice in Table 2.

Table 1. Climate change adaptation package used for wheat.

Parameter /
Variable

Base Value
(S-1) Units Crop Model

(CM)
CM-
ID Describe Change Value

(S-2)

Improved
fertilizer method Broadcast - APSIM and

DSSAT AP002 Applied with
irrigation water -

Sowing density 330 No.
per m2

APSIM and
DSSAT Plpop Increase in plant

population by 10% 363

Climate resilient
cultivar - - APSIM and

DSSAT - Genetically
modified cultivar -

Source: author’s finding. APSIM: Agricultural Production Systems Simulator; DSSAT: Decision Support System for
Agrotechnology Transfer.

Table 2. Climate change adaptation package used for rice.

Parameter /
Variable

Base Value
(S-1) Units Crop Model

(CM)
CM-
ID Describe Change Value

(S-2)

Improved fertilizer
method Broadcast - APSIM and

DSSAT AP002 Applied with
irrigation water -

Sowing density 25 No.
per hill

APSIM and
DSSAT Plpop 10% increase in

plant population 28

Increase in nitrogen
(recommended
concentration)

97 kg/ha APSIM and
DSSAT 156

Recommended
nitrogen dose is

compulsory
-

Source: author’s finding.

3. Results and Discussion

3.1. Calibration and Evaluation of DSSAT and APSIM

CSM-CERES (crop environment resource synthesis) rice and wheat in DSSAT and APSIM-Oryza2000
and wheat were calibrated using field experimental data. The rice experiment was conducted on sowing
dates starting from 1 July, 15 July, and 30 July with rice cultivars, i.e., Super Basmati, Basmati-2000,
and Basmati-385. The crop models, DSSAT and APSIM, were calibrated starting at 1 July sowing dates
and evaluated on 15 July and 30 July for all cultivars. The models showed close agreement between
observed and simulated values for rice cultivar Super Basmati (Table 3). Both models showed similar
days to anthesis and maturity during the calibration of rice. A good association was recorded between
observed and simulated grain yield with an error of 2.9% for DSSAT and 4.9% for APSIM. The crop model
evaluation for rice also showed a good result (Table 4). Days to anthesis and maturity were simulated
well by DSSAT and APSIM with 1–3 days difference. The crop models simulated the grain yield very well
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with a root mean square error (RMSE) of 237 kg ha-1 for DSSAT and 202 kg ha-1 for APSIM. The wheat
experiment was conducted at various levels of nitrogen (0, 55, 110, and 120 kg ha-1) and wheat cultivars,
i.e., Faisalabad-2008, Sehar-2006, and Lasani-2008. The models were calibrated at 110 N kg ha-1 for all
cultivars. The calibration results showed a close match between observed and simulated values for all
parameters for wheat cultivar Faisalabad-2008 (Table 3).

Table 3. Calibration of DSSAT and APSIM for rice-wheat at various parameters using field.

Rice DSSAT APSIM

Parameters Obs. Sim. %
Error Obs. Sim. %

Error

Days to anthesis (days) 62 62 0.00 62 62 0.00
Days to maturity (days) 98 98 0.00 98 98 1.02

Grain yield (kg ha-1) 4828 4686 2.94 4828 4686 4.99
Biological yield (kg ha-1) 11881 11690 1.61 11881 11690 9.74

Wheat

Days to anthesis (days) 110 109 0.91 110 110 0.00
Days to maturity (days) 141 141 0.00 141 145 –2.84

Grain yield (kg ha-1) 4136 4366 –5.56 4136 4774 –15.43
Biological yield (kg ha-1) 10343 10398 –0.53 10343 11972 –15.75

Obs.: observation; Sim.: simulation.

Table 4. Percent error during the evaluation of DSSAT and APSIM at various parameters using field
experimental data.

Rice

Parameters Days to anthesis Days to maturity Grain yield Biological yield

Models DSSAT APSIM DSSAT APSIM DSSAT APSIM DSSAT APSIM
15 July –3.22 6.45 –4.04 0 4.45 0.007 1.07 0.62
30 July 1.69 5.08 –0.99 1.98 5.89 7.4 2.8 2.1

RMSE 1.58
day

3.54
day

2.91
day

1.41
day

237
kg ha-1

202
kg ha-1

247
kg ha-1

230
kg ha-1

Wheat

0 N kg ha-1 0 0.94 0.71 1.42 3 –26.4 2.3 29.91
55 N kg ha-1 0 0.94 0 0.7 6.9 –13.2 –1.7 18.25
120 N kg ha-1 –0.93 0 –0.7 0 –0.9 –7.2 –1.4 3.71

RMSE 0.58
day

0.41
day

0.82
day

0.61
day

176
kg ha-1

293
kg ha-1

278
kg ha-1

868
kg ha-1

RMSE: root mean square error.

Crop models simulated days to anthesis and maturity with 1–2 days difference during calibration.
The grain yield was simulated well by DSSAT mode with an error of 5.5%, while the higher error of
15% was recorded in APSIM as compared to DSSAT (Table 3). Model evaluation results indicated
that both models simulated well the anthesis and the maturity days with errors ranging from 0–0.9%
and RMSE of 0.41 to 0.82 days at all nitrogen levels. The grain yield was simulated well by DSSAT
at 0 and 55 N kg ha-1 with errors ranging 3–7%, while APSIM showed more errors ranging 13–26%.
The APSIM model under-simulated the grain yield at the zero nitrogen level. Overall, crop models
calibration and evaluation results for rice-wheat showed a close association and were accepted for
further climate change analysis.

3.2. Relative Yields of Crops

The TOA-MD model used relative yields estimated as the combination of expected predicted
yields and actual farm yields in both CSMs, APSIM and DSSAT, for economic analysis. The relative
yields given in Table 5 showed the variation in yield as a result of climate change, either positive
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or negative. For both major crops in the study area, i.e., rice and wheat, the relative yield showed
a declining yield pattern for both crop models, APSIM and DSSAT, considering all five GCMs [60].
The rice crop is more influenced by climatic changes as compared to wheat due to its vulnerability to
rising temperature and lack of water supply as per the needed quantity, as the rising temperature and
the growing concentrations of carbon provide a buffer for the wheat [47].

Table 5. Relative yields distribution of modeled crops for current climatic conditions.

Crops RCPs
Global Circulation Models (GCMs)

Cool Wet Cool Dry Middle Hot Dry Hot Wet

Rice

APSIM_4.5 0.75 0.74 0.71 0.67 0.68
APSIM_8.5 0.70 0.71 0.66 0.64 0.65
DSSAT_4.5 0.83 0.79 0.76 0.72 0.71
DSSAT_8.5 0.81 0.77 0.74 0.70 0.69

Wheat

APSIM_4.5 0.97 0.98 0.97 0.96 0.96
APSIM_8.5 0.96 0.94 0.94 0.92 0.93
DSSAT_4.5 0.98 0.99 0.97 0.98 0.97
DSSAT_8.5 0.97 0.95 0.96 0.94 0.94

RCPs: representative concentration pathways.

3.3. Climate Change Impact Assessment

For climate change impact assessment, APSIM and DSSAT crop models were used for five GCMs
under RCP 4.5 and 8.5. The results using APSIM showed that gains ranged from 14% to 15.9%,
and losses ranged from 28.4% to 32.2% for RCP 4.5. Under RCP 8.5, gains varied from 13.6% to 14.5%,
and losses ranged from 30.6% to 33.6%. The same pattern was also observed using DSSAT, where gains
in RCP 4.5 ranged from 14.3% to 16.5% and losses from 26.7% to 30.9%. Under RCP 8.5, gains ranged
from 13.9% to 15.9%, and losses ranged from 27.6% to 32.0%. Figure 3 showed the gains and the losses
as well as the net impact of climate change under both RCPs; crop simulation models were negative,
and these results are in line with the previous studies [60,84,85].

The variation in results between DSSAT and APSIM could be due to different assumption
parameters. The APSIM model showed more effect of climate change as compared to DSSAT.
The model empirically calculates the mean crown temperature to determine the thermal time from daily
maximum and minimum temperatures and calculates temperature stress by daily mean temperature.
A good model integrates all crop parameters and the effect of stresses on these parameters for final
grain yield [86]. Liu et al. [87] also pointed to the need to improve the heat response of APSIM-wheat.

The household vulnerability under RCP 4.5 ranged from 74.2% to 82.4% and 70.2% to 80.3% for
APSIM and DSSAT, respectively. Results found household vulnerability was higher with hot dry
conditions in GCM and lower with cool wet climate conditions in GCM [8,85]. The reported net returns
were RS 644,080 per farm with RS 100,924 per capita income without climate change. However, for crop
simulation model APSIM, net returns and per capita income with climate change ranged from RS
489,585 per farm to RS 535,793 per farm and RS 77,378 to RS 84,398, respectively, for RCP 4.5. The net
returns for DSSAT ranged from RS 503,041 per farm to RS 555,207 per farm and per capita income from
RS 79,289 to RS 87,467 for RCP 4.5. The overall results of the economic impacts of climate change on
the household are presented in Table 6 using RCP 4.5.

Table 7 shows the climate change impact on socio-economic factors in aggregate data for RCP
8.5. The susceptibility of RCP 8.5 to climate change for households in cumulative results ranged from
79.0% to 84.4% for APSIM and from 72.9% to 82.4% for DSSAT. The net returns per farm and per
capita income with climate change effect ranged from RS 475,905 to RS 509,203 and from RS 75,297 to
RS 80,391 for APSIM. Both socioeconomic indicators net returns per farm and per capita income for
DSSAT varied between RS 490,489 to RS 542,314 and RS 77,453 to RS 85,435, respectively.
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Table 6. Climate change impact on socio-economic factors in aggregate data for RCP 4.5.

CM GCM Vulnerable Farm
Household (%) NR with CC PCI with CC

APSIM

Cool Wet 74.2 535,793 84,398
Cool Dry 76.4 524,683 82,759
Middle 78.5 513,107 80,933
Hot Dry 82.4 489,585 77,378
Hot Wet 80.5 502,071 79,132

DSSAT

Cool Wet 70.2 555,207 87,467
Cool Dry 73.4 539,799 84,967
Middle 75.8 528,406 83,249
Hot Dry 80.3 503,435 79,358
Hot Wet 80.3 503,041 79,289

CM: circulation model; CC: climate change; NR: net return; PCI: per capita income.
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The poverty reported without climate change was 11.9 %, while climate change poverty in both
plant simulation models varied depending on climate conditions. The poverty rate in RCP 8.5 was
slightly higher than in RCP 4.5 in all crop modeling simulations [8,60]. Poverty in RCP 4.5 ranged from
17.7% to 21.5% in APSIM and from 15.7% to 20.1% in DSSAT. Poverty in RCP 8.5, however, ranged from
20.0% to 22.8% in APSIM to 16.3% to 21.0% in DSSAT (Figure 4). The highest poverty observed was for
GCM hot dry in the crop simulation model APSIM [8].
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Table 7. Climate change impact on socio-economic factors in aggregate data for RCP 8.5.

CM GCM Vulnerable Farm
Household (%) NR with CC PCI with CC

APSIM

Cool Wet 80.3 500,871 79,027
Cool Dry 79.0 509,203 80,391
Middle 82.4 488,209 77,193
Hot Dry 84.4 475,905 75,297
Hot Wet 83.1 486,057 76,672

DSSAT

Cool Wet 72.9 542,314 85,435
Cool Dry 74.9 532,241 83,771
Middle 77.8 517,433 81,584
Hot Dry 81.9 493,642 78,038
Hot Wet 82.4 490,489 77,453
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Figure 4. Impact of climate change in the current rice wheat cropping system on poverty.

3.4. Impact of Adaptation Package in RWCS

Table 8 shows the adaptation benefits of the current agricultural system using both DSSAT and
APSIM crop simulation models. The RWCS adoption rate for crop simulation model DSSAT was
about 78%, and for the second crop simulation model (APSIM), it was about 68.34%. The observed net
returns, the per capita income, and the poverty for the study area without adaptation were RS 644,080
per farm and RS 100,924, and 11.9%, respectively.

Table 8. Impact of climate change adaptations on the current rice-wheat agricultural production system
using DSSAT and APSIM.

Crop Models Adoption Rate (%) Net Returns
(RS/Farm/Annum)

Per Capita Income
(RS) Poverty (%)

DSSAT 77.99 837,267 129,445 6.31
APSIM 68.34 775,011 121,191 6.61

RS: Pakistani rupee.

However, net returns with adaptation were RS 837,267 per farm for DSSAT and RS 775,011 per
farm for APSIM. The per capita income of the survey area for DSSAT was RS 129,445 and RS 121,191
for APSIM with adaptation. As far as poverty is concerned, it reduced to 6.31% using DSSAT and
6.61% for APSIM because of the introduced adaptations.
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Comparison of results by both crop simulation models (DSSAT and APSIM) showed that,
in DSSAT, all indicators were more positive than APSIM’s adoption rate, net returns, per capita
income, and poverty [61,88]. This means that DSSAT is more sensitive than APSIM to the adaptation
package added.

Figure 5 shows the adoption curves for the farming system being observed as an aggregate for
both DSSAT and APSIM simulation models. APSIM’s adoption rate was around 68%, while DSSAT’s
adoption rate was around 78%.
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Figure 5. Adoption curve of climate change adaptation using crop models.

4. Conclusions

In this paper, we focused on the intention of adaptation strategies adopted by the farmers and its
impact on household poverty in the integrated rice-wheat agricultural production system of Pakistan.
Climate risks such as water stress and increased incidences of pests and diseases are present in the
study area. This study mainly focused on the current adaptation strategies that can benefit the farmers
by adopting some farm-level management. Therefore, the study was beyond the limits of future
adaptation strategies, e.g., insect pest management discussed earlier. These adaptations can be taken
as future research areas and the limitation of the present study.

The comparison of observed climate parameters in the year of study with medium-term patterns,
showed that rice and wheat yields were both negatively affected, indicating the risk of production and
the limited capacity of farmers to adapt within the season. Climate change is a persistent and pervasive
threat to traditional agricultural practices in farming communities. There is no other statement but
that Pakistan is one of the countries most affected by climate change. Due to limited financial and farm
mechanization, the harmful impacts of climate change are rising. The declining trend in relative yields
from crop modeling showed that climate factors such as erratic rainfall and rising temperatures have
negative effects on agricultural productivity [8,60,85,88].

The different responses between APSIM and DSSAT provide an insight into how the crop models
respond differently to combinations of temperature, precipitation, and interaction with the use of crop
management practices used in the study field. DSSAT, for example, shows that the effects of climate
change on yields across the various GCMs are relatively small compared to APSIM, which shows large
negative impacts. The causes of these differences need to be further studied, but this illustrates the
importance of using a multi-model approach to capture the spectrum of uncertainty that comes from
the models and the data.

The first part of the study was an impact assessment on climate change that claimed it would
adversely affect the area’s agricultural production. The second part stressed the importance of
adaptation approaches after evaluating the effect on the study area. The proposed adaptation package,
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such as an increase in the sowing density, improved method of fertilizer application (fertigation) and
improved cultivars for wheat. Similarly, for rice, an increase in the sowing density, the fertigation,
and the nitrogen application would lead farmers to cater to the adverse impacts of climate change
in the study area. Our findings suggest the importance of these adaptation strategies in Pakistan,
and generally in South Asia, aimed at increasing the resistance of cereal farmers.
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