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Background: Triple-negative breast cancer (TNBC) is a highly aggressive cancer with
poor prognosis. The lack of effective targeted therapies for TNBC remains a profound
clinical challenge. Fusion transcripts play critical roles in carcinogenesis and serve as
valuable diagnostic and therapeutic targets in cancer. The present study aimed to identify
novel fusion transcripts in TNBC.

Methods: We analyzed the RNA sequencing data of 360 TNBC samples to identify and
filter fusion candidates through SOAPfuse and ChimeraScan analysis. The characteristics,
including recurrence, fusion type, chromosomal localization, TNBC subgroup distribution,
and clinicopathological correlations, were analyzed in all candidates. Furthermore,
we selected the promising fusion transcript and predicted its fusion type and protein
coding capacity.

Results: Using the RNA sequencing data, we identified 189 fusion transcripts in TNBC,
among which 22 were recurrent fusions. Compared to para-tumor tissues, TNBC tumor
tissues accumulated more fusion events, especially in high-grade tumors. Interestingly,
these events were enriched at specific chromosomal loci, and the distribution pattern
varied in different TNBC subtypes. The vast majority of fusion partners were discovered on
chromosomes 1p, 11q, 19p, and 19q. Besides, fusion events mainly clustered on
chromosome 11 in the immunomodulatory subtype and chromosome 19 in the luminal
androgen receptor subtype of TNBC. Considering the tumor specificity and frameshift
mutation, we selected MFGE8-HAPLN3 as a novel biomarker and further validated it in
TNBC samples using PCR and Sanger sequencing. Further, we successfully identified
three types of MFGE8-HAPLN3 (E6-E2, E5-E3, and E6-E3) and predicted the ORF of
E6-E2, which could encode a protein of 712 amino acids, suggesting its critical role
in TNBC.

Conclusions: Improved bioinformatic stratification and comprehensive analysis identified
the fusion transcript MFGE8-HAPLN3 as a novel biomarker with promising clinical
application in the future.
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INTRODUCTION

Triple-negative breast cancer (TNBC) lacks the expression of
estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2) and accounts for
10% to 20% of the newly diagnosed breast cancer cases (1, 2).
While recognized as the most aggressive breast cancer subtype,
women with TNBC have larger tumors, a higher rate of node
positivity, and an increased likelihood of distant recurrence (3).
Chemotherapy is yet the primary mode of treatment for early
and advanced disease owing to the lack of molecular targets for
therapy. Although several targeted therapies are showing potent
efficacy, patients with TNBC have a worse prognosis compared
to those with other breast cancer subtypes (4–6).

Fusion genes, formed by chromosomal rearrangements that
juxtapose two different genes, can lead to abnormal activation of
one or both genes and drive tumorigenesis (7). Based on the
development of sequencing technologies and bioinformatics
approaches, a number of fusion genes have been revealed over
the past few decades (8, 9). Recently, fusion genes involving
ZNF384 have been identified in B-cell precursor acute
lymphoblastic leukemia; eight fusion partners have been
reported for the ZNF384 gene. Moreover, the clinical features
of patients depend on the functional defect of the fusion partner
gene of ZNF384 (10). Fusion transcripts, chimeric RNAs
encoded by fusion genes or generated through subsequent cis-
splicing and trans-splicing of mRNA in the absence of DNA
rearrangements, serve as frequent drivers in a wide range of
tumor types (11–13). Many fusion transcripts preferentially
present in tumors compared to normal tissues, and contribute
to tumor progression by enhancing cell proliferation and
invasion (14). Significantly, the discovery that cancers harbor
specific fusion genes or transcripts has enhanced the
development of novel diagnostic and therapeutic strategies. For
instance, tyrosine kinase inhibitors, such as imatinib, have been
highly effective in the treatment of cancers harboring kinase
fusions in leukemia and other cancers (15, 16).

Previous studies demonstrated that fusion candidates are
involved in the tumorigenesis and progression of breast cancer.
However, recurrent gene fusions have only been identified in rare
subtypes of breast cancer. For example, some secretory carcinomas
of the breast are driven by an ETV6-NTRK3 fusion resulted from
t(12;15)(p13;q25) chromosomal translocation (17). Similarly,
adenoid cystic carcinomas of the breast are largely driven by a
t(6;9)(q22-23;p23-24) translocation that forms a MYB-NFIB gene
fusion (18). In addition to fusion genes, several fusion transcripts
specifically present in breast cancer have been identified, including
CRTC1-MAML2, SCNN1A-TNFRSF1A, and CTSD-IFITM10 (19–
21). Interestingly, some of the recurrent fusion transcripts encode
membrane proteins, raising the possibility that they are breast
cancer-specific cell surface markers and could be targeted by
antibody drug conjugates (19). However, only little is known
about fusion genes or transcripts in TNBC.

In the present study, we comprehensively revealed the
landscape of fusion transcripts in TNBC. We also investigated
the characteristics, including recurrence, fusion type, clinical
relevance, and subgroup distribution. We discovered a novel
Frontiers in Oncology | www.frontiersin.org 2
fusion transcript MFGE8-HAPLN3 in TNBC, highlighting the
potential implications of fusion transcripts in cancer development
and response to therapy.
MATERIALS AND METHODS

Patient Cohorts
RNA-seq data used in the current study were downloaded from
the Gene Expression Omnibus (GEO) (GSE118527) (https://
www.ncbi.nlm.nih.gov/geo/) and The National Omics Data
Encyclopedia (NODE) (OEP000155) (http://www.biosino.org/
node). The RNA-seq data of 360 tumor tissues and 88 adjacent
normal breast tissues were obtained. In addition, the
corresponding clinicopathological characteristics, including age,
histological type of the tumor, tumor size, lymph node status,
histological grade, clinical stage and ER, PR, HER2, and Ki67
status, were collected (5). Our study was approved by the
independent Ethics Committee/Institutional Review Board of
Chongqing University Three Gorges Hospital.

Identification of Fusion Transcripts
in TNBC
RNA sequencing data were analyzed using ChimeraScan (22) and
SOAPfuse (23) algorithms, which identify gene fusion candidates
by detecting read pairs discordantly mapped to two different
genes. The RNA-seq data of 448 samples (360 tumor samples and
88 adjacent normal breast tissues) were analyzed in random order.
Fusion candidate that could be detected in at least one sample by
two different algorithms was defined as double-positive fusion
transcript (DPFT). We compared the frequency of fusion between
tumor tissues and normal breast tissues and also described the
characteristics, such as recurrence, fusion type, protein-coding
capacity, chromosomal localization, and TNBC subgroup
distribution, in all candidates. Subsequently, patients with DPFT
were divided into low-fusion transcripts (low FTs) and high-
fusion transcripts (high FTs) groups to evaluate the correlation
between the expression level of fusion candidates and the
clinicopathological features. Patients with fusion transcripts <4
were grouped as low FTs, while those with fusion transcripts ≥ 4
were grouped as high FTs.

Promising Novel Fusion Screening
We selected promising fusion transcripts according to the
following conditions: (1) recurrent fusion transcripts; (2) fusion
transcripts with different functions formed by promoter swapping
in the non-coding regions or frameshift in the coding regions;
(3) fusion transcripts whose partner genes are associated with
tumor; (4) fusion transcripts overexpressed in tumor tissue but
unexpressed or expressed in low amounts in the adjacent normal
breast tissue. We further predicted the open reading frame (ORF)
and protein-coding capacity of the fusion transcripts according to
the nucleotide sequence.

Statistical Analyses
The data distribution was characterized by frequency tabulation
and summary statistics. The data were examined for normality
June 2021 | Volume 11 | Article 682021
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using the Shapiro-Wilk test. The continuous variables with
normal distribution were assessed using the t-test or one-way
analyses of variance (ANOVA), while the variables that did not
meet the normal distribution were analyzed using the Mann-
Whitney Wilcoxon test or Kruskal-Wallis test; Pearson’s Chi-
square test or Fisher’s exact test was used to compare the
categorical variables. In addition, the correlations were
analyzed using the Pearson or Spearman test according to the
normality of the distribution. All tests were two-sided, and
P<0.05 indicated statistical significance. All statistical analyses
were performed using SPSS 25.0 or R Studio (version 1.1.463,
www.R-project.org).
RESULTS

Fusion Transcripts Screening
To detect fusion transcripts, RNA-seq data from a set of 448
frozen samples (360 tumor tissues and 88 adjacent normal
tissues) were analyzed (Figure 1A). A total of 203 fusion
candidates, confirmed to be DPFT, were identified from 123
samples (66 tumor samples and 57 adjacent normal tissues)
using both ChimeraScan and SOAPfuse algorithms (Figure 1B).
Among these, 166 fusion transcripts were tumor-specific, while
only 23 fusion transcripts were present in both tumor tissues and
adjacent normal tissues (Figure 1B and Supplementary
Table 1). Next, we investigated the frequency of fusion events
in each sample. Compared to the adjacent normal tissues, more
candidates were detected in TNBC tissues (mean fusions per
sample: 4.106 vs. 1.807, P<0.05, Supplementary Table 2). These
findings suggested that TNBC tissues are more likely to harbor
fusion events compared to adjacent normal tissues.

Characteristics of Selected
Fusion Transcripts
Next, we analyzed the characteristics, including recurrence,
fusion type, and protein-coding capacity of 189 candidates
(Figure 2) and found that 11.6% (22/189) of all candidates
were present in two or more tumor tissues. In order to
elucidate the mechanism, the fusion type was further analyzed
Frontiers in Oncology | www.frontiersin.org 3
using SOAPfuse algorithm. According to the relative locations of
fusion partner genes, five types of fusion transcripts
( INTERCHR-DS , INTERCHR-SS , INTRACHR-DS ,
INTRACHR-SS-OGO, INTRACHR-SS-RGO) were identified.
These transcripts involving sequences from the same
chromosomes constituted 81.5% of the total, thereby indicating
that the majority of the fusion events occur at the transcriptional
level. We also inferred the protein-coding capacity based on the
junction sequence. Among these, 141 candidates (including 86
frameshift and 55 in-frame variants) could encode chimeric
proteins, suggesting that the majority of the fusion transcripts
have the potential to encode functional proteins.

Clinical Association of Fusion Transcript
Frequency in TNBC
To explore the association between the frequency of fusion events
and clinicopathological features, we divided 66 patients with
TNBC into high and low FTs groups according to the number
of fusion transcripts. The difference in the clinicopathological
factors, including age, histological type of the tumor, Ki67 status,
and clinical stage, was not statistically significant between two
groups (Figure 3). Notably, an apparent discrepancy in the
A B

FIGURE 1 | Identification of fusion transcripts in TNBC. (A) Flowchart of fusion transcripts screening. (B) Venn diagram summarizing the fusion transcripts detected
using ChimeraScan and SOAPfuse algorithms.
FIGURE 2 | Characterization of fusion transcripts detected in TNBC. N/A,
noncoding.
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frequency of fusion events in different pathological grades
(P<0.05) indicated that fusion events preferentially expressed in
high-grade tumors.

Subtype-Specific Chromosome
Distribution of Fusion Transcripts
Furthermore, we found that fusion transcripts were not
randomly distributed on chromosomes (Figure 4). A
Frontiers in Oncology | www.frontiersin.org 4
disproportionately large number of fusion partner genes were
detected in some specific chromosomes (hot spot region,
chromosome arms 1p, 2p, 3q, 9p, 11q, 17q, 19p and 19q).
Conversely, only a few fusion partner genes appeared in the
cold spot region (chromosomes 10, 13, 21, and 22).

Jiang and colleagues preciously presented a multiomics profiling
of 465 Chinese patients with TNBCs, thus providing a large data set
of comprehensively profiled TNBCs (5). Herein, they classified the
FIGURE 3 | Association between frequency of fusion events and clinicopathological features. FTs, fusion transcripts; high FTs, patients whose fusion transcripts
equal to or greater than 4; low FTs, patients whose fusion transcripts less than 4; IDC, infiltrated ductal carcinoma; NA, not available. *p < 0.05.
FIGURE 4 | Chromosomal distribution of fusion partner genes. Green box indicates fusion partner genes in both tumor and para-tumor tissues; Orange triangle
indicates fusion partner genes especially in tumor tissues.
June 2021 | Volume 11 | Article 682021
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TNBCs into four mRNA subtypes with distinct molecular features:
1) luminal androgen receptor (LAR), 2) immunomodulatory (IM),
3) basal-like immune-suppressed (BLIS), and 4) mesenchymal-like
(MES). Then, the chromosome distribution of fusion transcripts
across different molecular subtypes was characterized (Figure 5).
The fusion accumulation at chromosome 11 in IM subtype and
chromosomes 17 and 19 in LAR subtype suggested a subtype
specificity of fusion candidates. Interestingly, our analysis indicated
that fusion events were enriched in chromosomes 7, 9, and 15 in
MES subtype and were rare in chromosomes 2 and 3. In addition,
the frequency of fusion transcripts was significantly different
between subtypes (Supplementary Table 3). BLIS subtype
contained a vast majority of candidates detected in TNBC
samples. Conversely, fusion transcripts were rare in MES
subtype. Overall, our analysis demonstrated that fusion
transcripts in specific chromosomes might exert isoform-specific
roles in different molecular subtypes of TNBC.

MFGE8-HAPLN3 Fusion in TNBC
To further explore biomarkers of clinical relevance, we selected
fusion transcripts from 189 observed fusion candidates,
according to the criteria described above. Finally, MFGE8-
Frontiers in Oncology | www.frontiersin.org 5
HAPLN3 (16.7% in TNBC tumor tissues vs. 3.5% in adjacent
normal breast tissues) was screened out. Milk fat globule-EGF
factor 8 protein (MFGE8) and Hyaluronan And Proteoglycan
Link Protein 3 (HAPLN3) were both located on the long arm of
chromosome 15 (15q26.1, Figure 6A), suggesting that this fusion
could be attributed to transcriptional read-through.

According to PCR and Sanger sequencing, three types of
MFGE8-HAPLN3 fusions, including E6-E2 (most frequently,
Figure 6B), E5-E3, and E6-E3, were identified. Further, we
successfully predicted an ORF of MFGE8-HAPLN3 (E6-E2)
that could encode a protein of 712 amino acids. Collectively,
these findings suggested that MFGE8-HAPLN3 fusion exists in
TNBC samples and plays a critical role in TNBC. The predicted
ORF of MFGE8-HAPLN3 and its function in vivo have yet to
be unambiguously characterized and need to be verified in
further exploration.
DISCUSSION

Gene fusions/transcripts are important driver events in neoplasia
and serve as valuable diagnostic biomarkers and therapeutic
A B

FIGURE 5 | Distribution of fusion partner genes in different molecular subtypes of TNBC. (A) Frequency of fusion partner genes in each chromosome. (B) Relative
locations of fusion partner genes. Intrachromosomal fusions are shown in red, and interchromosomal fusions are shown in blue. TNBC, triple-negative breast cancer;
BLIS, basal-like immune-suppressed; IM, immunomodulatory; LAR, luminal androgen receptor; MES, mesenchymal-like.
A B

FIGURE 6 | MFGE8-HAPLN3 fusion in TNBC. (A) Schematic representation of the MFGE8-HAPLN3 fusion transcript identified in TNBC. (B) PCR and Sanger
sequencing verified the MFGE8-HAPLN3 fusion.
June 2021 | Volume 11 | Article 682021
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targets in cancer. Aberrant fusions have been widely described in
multiple tumor types, such as non-small-cell lung cancer (24) and
lymphoid neoplasms (25). The current study comprehensively
explored the fusion transcripts in TNBC. We discovered 189 novel
fusion transcripts and identified MFGE8-HAPLN3 as a potential
biomarker in TNBC.

As reported previously, tumor samples displayed more
fusions than normal tissues. In accordance with these studies,
our analysis revealed that TNBC tumor tissues accumulated a
significantly higher number of fusion events than adjacent
normal breast tissues. Typically, tumor characterized by a high
frequency of fusion has been implicated in chromosomal
instability (26, 27). Structural chromosome rearrangements
effectuate the exchange of DNA sequences, inducing cancer
cell progression (28). For example, Mitani et al. contended that
MYB-NFIB gene fusion promoted the aggressive behavior in
adenoid cystic carcinoma (29). In addition to chromosomal
instability, aberrant regulation of the transcriptional process
may also result in fusion transcripts. Herein, we observed a lot
of fusion events involving genes on the same chromosome,
suggesting that abundant fusions occur at the transcriptional
level. An increasing number of studies supported that the
disturbance of transcriptional regulation in transcription
initiation, alternative splicing, or post-transcriptional
modifications also can generate transcriptional read-through
and contribute to tumor development (30–32). It is
noteworthy that RNA processing of transcripts encoded by
fusion genes makes splicing process significantly more
complex. Regulatory sites nearby and surrounding the fusion
junction sites are essential to the compatibility between
sequences and spliceosome, which is necessary to canonical
and alternative splicing (33). However, we could not
differentiate between the transcriptome-level and genome-level
changes. Fusion proteins that encoded by either fusion genes or
fusion transcripts play nearly identical biological roles. It will be
interesting to further explore the mechanism generating
these chimeras.

To better understand the mechanism of novel fusion
transcripts, we explored the fusion partner genes’ distribution
and found they were non-randomly distributed on the
chromosome. A majority of partners were enriched on
chromosomes 1p, 2p, 9p, 11q, 19p, and 19q. Chromosome 19
has been reported as a fusion “hotspot” for TNBC. All fusion
partners in TNBC mapped to clusters were located in the vicinity
of 19p13 or 19q13 (34). In addition, we observed a discrepancy in
chromosomal distribution between different TNBC subtypes.
Fusion events clustered on chromosome 11 in the IM subtype.
Differently, fusions are mainly located on chromosomes 17 and
19 in the LAR subtype. These findings demonstrated a strong
functional association between the formation of fusion events
and the TNBC subtypes.

Furthermore, we demonstrated the presence of a recurrent
fusion transcript MFGE8-HAPLN3. MFGE8, and HAPLN3 were
neighboring genes on the same strand, suggesting that the fusion
may be largely attributed to transcriptional read-through. Next,
we successfully predicted its ORF and corresponding chimeric
Frontiers in Oncology | www.frontiersin.org 6
proteins. MFGE8 is a kind of soluble glycoprotein found in
vertebrates and was initially discovered as a critical component
of the milk fat globule. MFGE8 has been studied as a key
regulator of various biological functions, including phagocytic
removal of apoptotic cells in many tissues, the maintenance of
intestinal epithelial homeostasis, and the promotion of mucosal
healing (35). Recent studies have clarified the effect of MFGE8 on
cell survival, adhesion, and migration in a wide spectrum of
tumor types, such as ovarian cancer (36) and hepatocellular
carcinoma (37). Consistent with these results, MFGE8 have been
found to play a critical role in breast cancer pathobiology and
clinical prognosis (38, 39). Furthermore, MFGE8 knockdown
significantly inhibited both migration and proliferation of tumor
cells, attenuating their tumorigenic properties (40). As for
HAPLN3, it has been identified as a novel diagnostic and
prognostic biomarker for prostate cancer (41). Besides, the
expression of HAPLN3 was shown to be significantly higher in
breast cancer tissues compared to the normal breast tissues. It
was associated with the metabolism dysregulation, mobility, and
migration of cancer cells in TNBC (42, 43). These imply the value
of MFGE8-HAPLN3 in guiding diagnosis and treatment choices
in cancer.

Inevitably, there are some limitations in our study. First, we
could not distinguish fusions occurring at the transcriptome level
from those at the genome level by algorithms we used. Future
studies are required for a comprehensive understanding of the
selected fusions. Second, due to the small sample size, it is
difficult to make any rigorous conclusions regarding the
subtype-specific distribution of fusion transcripts. Studies are
needed to point out the frequency of MFGE8-HAPLN3 in
different subtypes to distinguish patients with clinical benefit
from targeted therapy in the future. Furthermore, the predicted
ORF ofMFGE8-HAPLN3 and its pathologic and therapeutic role
in TNBC requires further experimental validation.

In conclusion, our large-scale analysis revealed a number of
fusion transcripts in TNBC for the first time. Remarkably,
MFGE8-HAPLN3 could be a candidate biomarker and
potential therapeutic target in TNBC. Further investigations
are required to elucidate the underlying mechanisms and their
biological functions.
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