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Abstract

We investigated the neural correlates induced by prenatal exposure to melodies using brains’ event-related potentials
(ERPs). During the last trimester of pregnancy, the mothers in the learning group played the ‘Twinkle twinkle little star’ -
melody 5 times per week. After birth and again at the age of 4 months, we played the infants a modified melody in which
some of the notes were changed while ERPs to unchanged and changed notes were recorded. The ERPs were also recorded
from a control group, who received no prenatal stimulation. Both at birth and at the age of 4 months, infants in the learning
group had stronger ERPs to the unchanged notes than the control group. Furthermore, the ERP amplitudes to the changed
and unchanged notes at birth were correlated with the amount of prenatal exposure. Our results show that extensive
prenatal exposure to a melody induces neural representations that last for several months.
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Introduction

Rather than being born as ‘blank slate’, a newborn has

surprisingly extensive experiences on the surrounding world. In

particular, newborns seem to react to sounds during the fetal

period (see [1] for a review) and respond distinctly to them after

birth. For example, newborns seem to recognize familiar

environmental sounds [2] and melodies [3] from the prenatal

environment, discriminate between the native language of the

mother and other languages [4], and recognize mother’s voice [5]

from voices of other females. It was suggested that prenatal

learning facilitates, for example, language learning in infancy [6]

and provides a basis for attachment [5].

Fetal auditory learning becomes possible soon after the onset of

hearing, in humans by the 27 weeks gestational age (GA) [7], when

external auditory input starts to reorganize the auditory cortex [8].

Initially it was suggested that fetal auditory learning was limited to

the discrimination of low-pitch sounds features, such as the rhythm

of music and prosodic features of speech [9], as external high-

pitched sounds are attenuated in the utero [10]. However, fetuses

might perceive and recognize even the high-pitched sounds as

adult listeners can recognize speech sounds when attenuated

similarly as the external sounds in utero [11].

It is challenging to determine what sound features fetuses have

learned prior to birth (for a review, see [12]). While behavioral

measures (e.g., head-turning, non-nutritional sucking) are one

possible approach, brain’s event-related potentials (ERPs) can

provide more specific information on the neural correlates of the

types and features of sounds the fetuses can learn [13].

In adults, ERPs have been used to study both the effects of

passive exposure to sounds and active auditory learning. For

example, mere 15 minutes of passive exposure to sounds enhanced

P2 ERP response in adults [14]. Furthermore, active auditory

discrimination training enhanced P2 ERP responses and this

enhancement increased after each training session, lasting months

after the last auditory experience [15]. Also 1-year old infants

participating in active musical training had more positive ERP

responses to musical sounds than infants participating in passive

musical training [16]. While newborns and fetuses cannot actively

participate in learning, newborns were shown to learn during sleep

[17].

The prenatal auditory learning may also be seen as an

enhancement of Mismatch Negativity (MMN), a component of

ERPs widely been used in studies of learning and development

[18]. MMN represents the brain’s automatic change-detection

[18], reflects the formation of long-term memory representations

(for a review, see [18]), and is elicited even in the absence of

attention [19]. While in adults MMN is seen as a negative

deflection within 200–300 ms from change onset in the deviant-

minus-standard difference waveform, in infants MMNs of both

positive and negative polarity have been reported [20–25].

However, the deviant-minus-standard difference waveform may

also include other components, such as the positive P3a responses

associated with involuntary attention shifting in adults (e.g. [26]),

confounding the genuine MMN. In infancy, however, increased

attention towards the sounds has been shown to elicit an additional

negative component in addition to the positive MMN response in

the infant deviant-minus-standard waveform while the positive
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response remains unchanged [27,28]. Previous studies utilizing

MMN to investigate infant auditory discrimination have shown

that infants can neurally discriminate, for example, pitch changes

in melodies [25].

Previously, neuroscientific research has focused on the imme-

diate outcomes of fetal auditory learning after birth (for a review,

see [12]). To our knowledge, previous follow-up studies of fetal

learning have only shown cardiac effects for a melodic contour 6

weeks after birth [29]. Here we investigate with ERPs fetal

auditory learning of a familiar children’s’ melody (Twinkle twinkle

little star). Furthermore, we determine the persistency of the

learning effects by following up the infants for 4 months after birth.

We expected to see two possible effects due to prenatal exposure to

music: a general enhancement in the ERPs to the stimuli used in

the experiment, and specific learning effects seen as the elicitation

and enhancement of MMR response to changed sounds in the

melody.

Methods

Participants and ethics statement
12 Finnish- and bilingual Finnish and Swedish -speaking

women with non-complicated singleton pregnancies participated

in the learning group. In addition, a control group of 12 healthy

newborn infants of Finnish- and bilingual Swedish and Finnish -

speaking families were recruited after birth. Only one woman in

both learning and control groups was bilingual. Four months later, the

same infants, including the ones whose data were rejected from the

initial experiment, participated in a follow-up EEG experiment.

The mothers or both parents gave an informed oral consent for

their infants’ participation in the study. The parents received a

small monetary compensation for participating in the study, and

this signed transaction, using the parents’ tax deduction card, was

used to formally document the oral consent. In addition, the

contact details of the families were taken in writing, should any

need to contact the family again arise. The Ethical Committees of

the former Department of Psychology and the Helsinki University

Central Hospital approved both the study and the consent

procedure. After removing participants due to hardware issues

and excessive movement from both experiments, the final learning

group consisted of 10 infants in the initial experiment and 10 infants

at the follow-up experiment (11 and 8 infants, respectively, for the

control group).

At birth, the hearing of the infants in both groups was tested

with Evoked Oto-Acoustic Emissions (EOAE, ILO88 Dpi,

Otodynamics Ltd., Hatfield, UK). All infants passed the test and

were considered healthy by a neonatologist. The gestational age,

birth weight, APGAR score and the age at EEG experiment are

listed in Table 1. No statistically significant differences between

any background variables were found between the groups either at

birth or at the age of 4 months.

Prenatal stimulation
Mothers in the learning group played a learning CD at loud

volume at home (approximately 75 – 85 dB SPL) 5 times each

week from GA 29+0 (Gestational age; weeks+days) onwards until

birth and were told to destroy the CD after giving birth. The CD

contained 3 short excerpts of several musical melodies, alternating

with speech phrases (total duration of 15 minutes). Several

melodies and speech phrases were included on the CD to make

the listening more pleasant for the mother and also to capture the

attention of the fetus by changes in the auditory stimulation, which

might facilitate learning. One of the melodies was a 54-second

long melody of ‘‘Twinkle twinkle little star’’, played with a Roland

A-33 keyboard in G-major and the other musical sounds on the

CD were extremely different from both ‘‘Twinkle twinkle little

star’’ and each other, being either melodies from the study of

Tervaniemi et al. [30] or a classical piece by Sibelius. The mothers

in the learning group played the CD between 46 and 64 times (mean

57). The ‘‘Twinkle twinkle little star’’ –melody was repeated 3

times on the CD, and the fetuses heard the melody between 138 to

192 times (mean 171).

Stimuli and procedure
In the EEG-experiments a modified version of the ‘‘Twinkle

twinkle little star’’ -melody was played to the infants 9 times. In the

modified melody, 12.5% of the notes in the original melody were

replaced at random with B (H in German notation) -notes (called

changed sounds from now on; the unchanged notes are referred to as

unchanged sounds; see Figure 1). The changes are key-preserving as B

belongs to G-major scale and thus are not more salient than

unchanged notes on basis of the key of the melody. However, a

listener who is familiar with the original melody can recognize the

changed sounds easily (see, e.g., [31], for a similar paradigm). The

melody was played with a 600 ms stimulus onset asynchrony

(SOA) between the sounds. With the exception of the changed

sounds, all characteristics of the experimental melody (e.g. tempo,

key) were kept identical with the melody the infants were exposed

to prenatally. Speech phrases and other musical sounds, similar to

those on the learning tape, were presented between the melodies.

Table 1. Participant background information for the learning (L) and control (C) groups.

Gestational age (weeks+days) Birth weight (grams) APGAR score Age at EEG experiment (days)

Initial experiment L: 41+0 (38+0242+0) C: 40+3
(37+5242+4)

L: 3834 (1975–4590) C: 3707
(3000–4700)

L: 9 (8–10) C: 9 (7–9) L: 16 (9–27) C: 13 (2–26)

Follow-up experiment L: 40+6 (38+0242+0)
C: 40+0 (37+5241+6)

L: 3703 (1975–4590) C: 3831
(3345–4700)

L: 9 (8–10) C: 8 (7–9) L: 144 (128–170) C: 133 (120–150)

Numbers denote means, the numbers in brackets denote minimum and maximum, respectively.
doi:10.1371/journal.pone.0078946.t001

Figure 1. An excerpt of the stimuli used in the experiment. The
image score above represents the original unchanged melody while the
score below shows the changed melody. Changed notes are marked
with asterisks.
doi:10.1371/journal.pone.0078946.g001
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During the newborn recordings, sounds were presented via

loudspeakers 20 cm to the left and to the right from the infant’s

head. In the four months follow-up recording the loudspeakers

were located one meter to the left and to the right of the infant due

to the infants being awake and possibly grabbing the loudspeakers

if they were placed too close to the infant. The sound intensity was

approximately 70 dB (SPL) at the infant’s head in both recordings.

ERP recording and data analysis
The newborn ERP recordings were conducted by trained nurses

at the Hospital for Children and Adolescents, Helsinki University

Central Hospital and the four-month follow-up recordings at the

Cognitive Brain Research Unit, University of Helsinki. Disposable

EEG electrodes were placed at F3, F4, C3, Cz, C4, P3, P4, T3,

and T4 scalp loci and the two mastoids according to the

international 10–20 system (T3 and T4 electrodes were omitted

from the four-month follow-up recording due to lack of signal in

the newborn recordings). EOG was monitored with electrodes

below and to the right of the right eye. EEG was recorded with a

sampling rate of 250 Hz through a band-pass filter of 0.1 to 40 Hz

using the NeuroScan recording system, referenced to the average

of the mastoid electrodes. During the recording the infants were

laying in a crib and the four-month-olds were either placed in an

infant car seat or in their parents’ or nurses’ lap.

The sleep stage of the infant was classified to be active (active

sleep, AS) when the EEG showed low-voltage high-frequency

activity, quiet (quiet sleep, QS) when it included either high-

voltage low frequency activity or trace alternants (high and low-

voltage slow waves alternating) and awake when the EOG

channels showed frequent and large eye movements or large

movement artefacts and on basis of the observations of a trained

nurse conducting the experiment (see, e.g., [32], for classification

criteria). The EEG data during which the infant was awake (even

for an occasional period of time), or with large artifacts, were

rejected during the visual analysis of the sleep stages

Offline, all the data were analyzed in sensor space. Initially the

data from newborns were first divided into sleep stages,

determined using the EEG, EOG, and the notes from the nurses.

AS is characterized by low-voltage high-frequency activity, QS by

either high-voltage low frequency activity or trace alternants (high

and low-voltage slow waves alternating), while during wakefulness

EOG channels show frequent and large eye movements or EEG

channels large movement artifacts [32]. The newborn wakefulness

was determined both on the basis of EEG and of the observations

of a trained nurse conducting the experiment. Because of extensive

artifacts, the data recorded during the infant’s wakefulness were

discarded from further analysis. The data collected during active

and quiet sleep were combined. The infants in the learning group

spent 0–100% (mean 64%) of their time in quiet sleep (27 – 100%,

mean 73%, for the control group), measured by the number of

accepted epochs in quiet sleep versus accepted epochs in active

and quiet sleep combined. By four months of age, the infants sleep

much less during the day than newborns do [33], and the four-

month old infants spent most of the experiment awake. Unlike

newborns, the four-month-olds did not move extensively during

the recording when awake, and thus these data were used as well,

after removing any data with movement artifacts.

During data analysis the two stimuli immediately following a

changed sound were discarded from the analysis. The data were

offline-filtered with a zero-phase band-pass filter (1 to 20 Hz) and

divided into epochs of 700 ms starting 100 ms prior to sound

onset. T3, T4, P3, and P4 electrodes were removed from further

analysis due to lack of signal. All epochs including movement

artifacts or those in which the amplitude on any of the channels

exceeded 6100 mV were excluded from further analysis. The

epochs for the unchanged and changed sounds were separately

averaged. To study MMRs, difference signals were formed by

subtracting the response to the unchanged sound from that to the

changed sound. Group-average signals were formed for un-

changed and changed sounds, and for difference signals, separately

for both learning and control groups. To improve the S/N ratio, the

signals from F3, F4, C3, Cz, and C4 electrodes were averaged

together.

ERP and MMR peak latencies were determined from the

group-average waveforms, separately for both groups and both

experiments. During the first year of life, unlike in adults, the most

salient component in the auditory ERP waveform is P350 response

[21,34]. To assess P350 for the newborns, the latency of the most

positive peak in the group-average waveforms between 100 and

600 ms was selected for analysis. In the four-month-olds, the

responses for the unchanged and the changed sounds between 100

and 600 ms showed two positive peaks, possibly corresponding to

P150 and P350 [21], both of which were analyzed further. In

newborns, the difference waveform showed a single positive

deflection while in four month olds the difference waveform

consisted of a low-amplitude negative deflection followed by a

positive peak (see also [35]), all of which were separately analyzed.

After determining the peak latencies, the mean ERP and MMR

amplitudes were calculated as a mean voltage in a 60-ms window

centered at the peak latency in the group-average signal. To

determine whether ERPs and MMRs were statistically significant,

the mean amplitudes were compared to zero using two-tailed t-

tests, separately for both groups. Two-tailed t-tests were used to

compare responses between the learning and control groups. Levene’s

test was used to assess the equality of variances and corrected t-

values were used in cases of unequal variances. Effect sizes

(Cohen’s d) were calculated for all between-group comparisons.

Pearson correlation was used to study whether the number of

times the infants had heard the melody affected response

amplitudes. For correlations, coefficients of determinations (R2)

are reported.

Results

In newborns and at the age of 4 months, statistically significant

ERPs (see Figure 2, upper and middle panels, and Table 1) were

elicited by all sounds in both groups, with the exception of the late

peak to the unchanged sounds in the learning group at the age of 4

months, which only tended to be statistically significant. Positive

MMRs to changed sounds between 200 and 300 ms after stimulus

onset were statistically significant both in newborns and at the age

of 4 months in both groups (see Figure 2, bottom panels, and

Table 2). The negative MMR peak in 4 month olds was not

statistically significant.

Between-groups comparisons showed that the responses to the

unchanged sounds were larger in the learning than control group both

at birth (t(19) = 2.11, p,0.049, d = 0.97) and at the age of four

months (t(16) = 3.33, p,0.004, d = 1.68). Furthermore, a correla-

tion was found showing that the more often the newborns had

heard the learning CD, the larger the amplitudes to the

unchanged (r = 0.74, p,0.015, R2 = 0.54) and changed sounds

(r = 0.68, p,0.032, R2 = 0.46) were. This effect was no longer seen

in the follow-up experiment (p.0.22 for all tests). For MMR

amplitudes, no group differences were found.

Discussion

We investigated the formation and retention of neural

representations induced by exposure to melodies during the fetal

Fetal Music Learning
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Figure 2. ERP and MMR amplitudes in both learning (dark bars) and control groups (light bars) at birth (left) and at the age of four
months (right). Responses to unchanged sounds were stronger in the learning than control group at birth and at four months of age. Asterisks
denote statistical significances, error bars denote standard errors of the mean.
doi:10.1371/journal.pone.0078946.g002

Table 2. Statistical significances of the ERP and MMR responses for the learning (L) and control (C) groups both at birth and at the
age of 4 months.

Experiment ERPs to unchanged sounds ERPs to changed sounds MMR

Newborns L: t(9) = 6.582*** C: t(10) = 6.827*** L: t(9) = 6.100*** C: t(10) = 6.144*** L: (t(9) = 2.610*
C: (t(10) = 3.279**

4-month olds Early peak L: t(9) = 7.988***
C: t(7) = 6.173***

Late peak L: t(9) = 2.191
C t(7) = 3.850**

Early peak L: t(9) = 6.475***
C: t(7) = 3.987**

Late peak L: t(9) = 4.280**
C: t(7) = 8.013***

L: t(9) = 4.277**
C: t(7) = 5.095***

Asterisks denote statistical significances.
*: p,0.05, **: p,0.01, ***:p,0.001.
doi:10.1371/journal.pone.0078946.t002
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period. At birth the learning group had larger ERPs to the melodies

they heard as fetuses than the control group for whom the melodies

were unfamiliar. This difference was still significant at the age of 4

months. Furthermore, ERP amplitudes for unchanged and

changed sounds at birth were correlated with the number of

times the infants in the learning group were exposed to the melody as

fetuses. These results show that fetal exposure to melodic sound

patters can form neural representations which last for several

months. Our results also suggest that the effects of prenatal

exposure are much more long-lasting than reported in the very few

studies conducted previously, which have shown effects from

prenatal exposure lasting for at least six weeks for a melodic

contour [29] with no additional stimulation after birth.

The larger ERPs in the learning than control group cannot be

exclusively explained by possible inborn differences in auditory

processing since ERPs to the changed and unchanged sounds were

correlated with the amount of prenatal exposure. The correlation

effects support the findings of previous studies on learning which

have shown infants and newborns to be extremely fast learners,

capable of learning, for example, statistical regularities of sounds in

2 minutes of stimulation [36]. Furthermore, mere 15 minutes of

unattended exposure to unchanged sounds enhanced the ERP

responses for those sounds in adults [14,37]. However, as the

amount of exposure was correlated with both responses to

changed and unchanged sounds, it may also reflect a nonspecific

effect of music on auditory processing instead of learning of

specific sounds of the melody pattern.

We also found that both the learning and control groups had

statistically significant MMRs to changed sounds in the melody.

Unlike the ERPs for unchanged sounds, the MMR amplitudes did

not differ between the groups. However, in adults the effects of

musical training on MMN are usually seen after active listening to

the melodies, not merely after exposure to melodies [38], and only

a modest enhancement of P2 response amplitude has been shown

after passive musical exposure to those sounds [39,40]. Thus, while

the exposure to melodies may modestly enhance ERP responses

for those sounds, active sensorimotor training seems to be much

more efficient in inducing these changes [39] and such training

might be required for MMR to be enhanced. Alternatively, the

statistically significant MMRs elicited by both groups may reflect

merely physical difference between the changed (all B-notes) and

unchanged notes (mostly other than B-notes).

Taken together, our results show that prenatal exposure to

music can have long-term plastic effects on the developing brain

and enhance neural responsiveness to the sounds used in the

prenatal training, an effect previously only demonstrated in animal

models [41]. Furthermore, we found that these plastic changes are

long lasting, as the effect of prenatal exposure persists for at least

four months without any additional stimulation. These findings

have several practical implications. First, since the prenatal

auditory environment modulates the neural responsiveness of

fetuses, it seems plausible that the adverse prenatal sound

environment may also have long-lasting detrimental effects [8].

Such environments may be, for example, noisy workplaces and, in

case of preterm infants, neonatal intensive care units. Further-

more, as prenatal exposure still affected the ERP responses months

after birth, additional fetal exposure to structured sound environ-

ments might be beneficial for supporting the auditory processing

of, for example, infants at risk for dyslexia in whom basic auditory

processing was shown to be impaired (e.g., [42]). Such effects have

previously been demonstrated in rat pups, showing benefits of

structured sound environments during pregnancy for cortical

organization and synaptogenesis [41], and enhancing their spatial

learning ability for up to 21 days after birth [43]. However, further

studies are needed to shed light on the specific mechanisms of

enhanced neural responsiveness induced by the prenatal stimula-

tion, and to determine whether such stimulation could be used to

alleviate the deficits in auditory processing.
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