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Could ROS signals drive tissue-specific clocks?
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Circadian clocks have emerged to fine-
tune the physiology of organisms 

to periodic changes in the environment 
in a dynamic fashion. Negative implica-
tions of circadian disruptions in humans, 
animals and plants have encouraged 
extensive studies of clock-controlled bio-
logical processes in various model species. 
Recently, it has been shown that the tran-
scription-dependent and -independent 
biological oscillators are largely driven by 
cellular oxidative cycles that are intrinsi-
cally linked with metabolism. Essentially, 
the clock is viewed as an integrated net-
work that encompasses cytosolic, genetic 
and metabolic dimensions. Furthermore, 
in multicellular organisms, the clock net-
work is organized in a tissue-specific man-
ner. Here we discuss questions that remain 
unanswered: How do these dimensions 
communicate with each other and how 
do tissue-specific clocks exchange tem-
poral information within multicellular 
organisms?

To ensure accurate timing, circadian 
clocks must be synchronized by exoge-
nous cues known as zeitgebers. Although 
light is the most common cue that tunes 
the clock, other non-photic zeitgebers 
exist such as temperature,1,2 sugars,3,4 and 
energy status.5 Upon synchronization, 
the circadian clock conveys temporal 
information to numerous output path-
ways. Specifically, metabolic regulation 
by the circadian clock has received signif-
icant interest due to the vast implications 
in human diseases.6,7 In plants, the clock 
regulates metabolic processes such as 
photosynthesis, isoprenoid biosynthesis, 
and starch, nitrogen and sulfur metabo-
lism.8,9 The tight interplay between the 

circadian clock and metabolism is associ-
ated with extensive cross-talk, such that a 
metabolic process acting downstream of 
the clock can convey its status through 
signaling molecules that feedback to the 
core clock circuitry and thus act as input 
signals for fine-tuning the clock.10,11

Further understanding of the role of the 
plants’ biological clock in metabolism was 
revealed by Lai et al.,11 showing that reac-
tive oxygen species (ROS) can act as input 
signals to the clock, hence providing evi-
dence of direct cross-talk between the cir-
cadian clock and metabolism.10 In contrast 
to light and temperature, ROS represent 
endogenous clock input signals that are the 
inevitable byproducts of aerobic metabo-
lism.12 Both mammals and plants not only 
scavenge ROS, but can also actively pro-
duce them, suggesting that ROS homeo-
stasis is under strict cellular control.12,13 
Furthermore, it was demonstrated that 
exogenous application of ROS-generating 
agents affected the transcription of several 
clock output genes. ROS homeostasis is 
influenced by other zeitgebers such as light 
and temperature in various organisms and 
might therefore have a more essential role 
in clock regulation.14-16 For example, in 
dormant seeds the clock is not running, 
but starts upon imbibition.17 As early as 
two days following seed imbibition, circa-
dian gene expression is manifested without 
any entraining cycles or prolonged light 
exposures.18 Although light and tempera-
ture cycles accelerate the appearance of 
rhythmicity, the authors suggested that 
during imbibition a synchronization sig-
nal is released. The nature of this signal 
has, however, remained elusive. Here we 
propose that ROS is a good candidate for 
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this signal as a ROS burst is commonly 
observed upon imbibition in many plants 
species.19 Supporting our notion, many 
clock components are at the expressional 
level responsive to ROS. In dark-grown 
Arabidopsis thaliana seedlings, clock core 
genes are lower expressed as compared 
with light-grown seedlings.20 However, 
when plants are grown in the presence of 
H2O2 in the dark, the expression level of 
several of these genes, including CCA1, 
LHY1 and PRR7, resembles those of light-
grown plants (Fig. 1). Nevertheless, the 
light-dependent clock output genes PIF4 
and PIF5 are not affected by H2O2 in the 
dark.

In plants, ROS themselves represent 
a clock-controlled output whose levels 
exhibit daily oscillations and more than a 
third of the ROS-responsive transcriptome 

is circadian regulated.11,21 
Moreover, in other organ-
isms, it is becoming increas-
ingly evident that ROS 
homeostasis is circadian con-
trolled. In mice, disruption 
of the core clock gene Aryl 
hydrocarbon receptor nuclear 
translocator-like protein 1 
(BMAL1) causes increased 
ROS levels and decreased 
expression of the master 
antioxidant regulatory fac-
tor Nuclear factor erythroid 
2-Related Factor 2 (Nrf2) and 
its targets.22 Furthermore, in 
Drosophila melanogaster, the 
response to acute oxidative 
stress depends on the time at 
which exposure occurs and 
the loss of the core clock gene 
PERIOD results in increased 
oxidative stress sensitivity.23 
Glutathione levels in Dro-
sophila also follow a diur-
nal rhythm.24 Additionally, 
ROS regulate light-inducible 
gene expression through the 
core clock protein WHITE 
COLLAR (WC) in Neuros-
pora crassa. ROS can directly 
affect the N. crassa clock as 
H2O2 promotes the dimer-
ization of WC-1 and WC-2 
in the absence of light and 
thereby stimulates a circadian 

rhythm and cellular redox homeostasis.25 
We showed in Arabidopsis that exogenous 
applications of ROS-promoting or -inhib-
iting compounds have profound effects on 
altering the phase of the circadian clock 
output gene FLAVIN BINDING, KELCH 
REPEAT, F-BOX1 (FKF1).11 These exam-
ples suggest conserved functions of ROS in 
the circadian network, whereby ROS can 
act as both zeitgebers as well as outputs of 
the clock.

As ROS are not evenly distributed 
throughout an organism, they may have 
local effects on tissue-specific oscillators. 
In plants, ROS accumulate to high levels 
in the vascular tissues, trichomes and to 
some extent guard cells.11 ROS are rap-
idly generated and propagated over long 
distances and act as a systemic warn-
ing signal to enable quick responses to 

external stresses.26 Therefore, it is possible 
for ROS to be a potential synchronizer 
of tissue-specific clocks as they can move 
rapidly through the vascular bundles in 
plants and from cell to cell.26 Indeed, such 
‘inter-tissue’ communication exists. In 
Arabidopsis, synchronization of the clocks 
between shoots and roots occurs.27 Syn-
chronicity in mammalian clocks is main-
tained by signals that travel across nerves 
where the brain’s central pacemaker syn-
chronizes daily signals between the dif-
ferent cells through neuropeptides.28 In 
addition, energy signals that are released 
rhythmically in peripheral organs, includ-
ing insulin, could also feedback to control 
suprachiasmatic nucleus rhythms.29 Inter-
estingly, hypothalamic energy sensing is 
closely linked to ROS generation where 
the elevation of ROS levels affect the 
responses in energy sensing neurons of the 
arcuate nucleus.30,31

Our perspective of the clock network 
continues to evolve; from metabolic oscil-
lations being a circadian output to being an 
autonomous pacemaker itself. The auton-
omous pacemaker consists of a biochemi-
cal oscillator driven by oxidation cycles of 
peroxiredoxins that act independent of the 
transcription/translation feedback loops.32 
Furthermore, it was shown that perox-
iredoxin rhythms are conserved across 
the eukaryotic, bacterial and archaeal 
domains, probably as they reflect endoge-
nous rhythms of ROS.33 Interestingly, the 
hyperthermophilic archaea Methanopyri 
that grow in anoxic environments lack 
ROS detoxification systems and circadian 
time-keeping.33 From a physiological point 
of view, redox oscillations may have caused 
the emergence of multiple clocks to allow 
temporal separation of incompatible pro-
cesses. This is, for instance, to restrict the 
expression of certain proteins to suitable 
redox environments.34 The acquisition of 
aerobic metabolism and evolution of cir-
cadian systems seem to have co-occurred. 
Future studies should perhaps focus on 
understanding clocks as interdependent 
timers that couple both metabolism and 
transcriptional processes in different cell 
and tissue types.
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Figure 1. H2o2 might synchronize the Arabidopsis clock in the 
dark. The gene expression data shown were extracted from 
microarray experiments performed on seedlings grown for 7 
d in the light or grown on 5 mM H2o2 in the dark as compared 
with dark grown seedlings.19 Among the core clock genes, 
CCA1 and LHY are modulated in a similar level by H2o2 as by 
light, while TOC1 is only modulated by light. H vs D: H2o2 treat-
ment vs. dark grown seedlings. L vs D: Light vs. dark grown 
seedlings. AGi codes: CCA1 (At2g46830); LHY (At1g01060); 
JMJD5 (At3g20810); TIC (At3g222380); TOC1 (At5g61380); 
RVE8 (At3g09600); PRR7 (At5g02810); ELF4 (At2g40080); PIF4 
(At2g43010); PIF5 (At3g59060).
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