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Discriminating single-bacterial 
shape using low-aspect-ratio pores
Makusu Tsutsui1, Takeshi Yoshida1, Kazumichi Yokota1, Hirotoshi Yasaki2, Takao Yasui2,3, 
Akihide Arima1, Wataru Tonomura1, Kazuki Nagashima4, Takeshi Yanagida4, Noritada Kaji2,3, 
Masateru Taniguchi1, Takashi Washio1, Yoshinobu Baba2,5 & Tomoji Kawai1

Conventional concepts of resistive pulse analysis is to discriminate particles in liquid by the difference 
in their size through comparing the amount of ionic current blockage. In sharp contrast, we herein 
report a proof-of-concept demonstration of the shape sensing capability of solid-state pore sensors by 
leveraging the synergy between nanopore technology and machine learning. We found ionic current 
spikes of similar patterns for two bacteria reflecting the closely resembled morphology and size in an 
ultra-low thickness-to-diameter aspect-ratio pore. We examined the feasibility of a machine learning 
strategy to pattern-analyse the sub-nanoampere corrugations in each ionic current waveform and 
identify characteristic electrical signatures signifying nanoscopic differences in the microbial shape, 
thereby demonstrating discrimination of single-bacterial cells with accuracy up to 90%. This data-
analytics-driven microporescopy capability opens new applications of resistive pulse analyses for 
screening viruses and bacteria by their unique morphologies at a single-particle level.

A resistive pulse method is a versatile technology widely utilized for discriminations of single-bioparticles of 
variable sizes from blood cells to polynucleotides1–4. It probes transient ionic current blockade associated with 
fast translocation of an individual particle passing through a fluid flow path at which objects of higher volume 
exclude more ions to render larger pulses. The last decade has witnessed resurgence of this electrical method led 
by advanced nanotechnology to increase the spatial resolution of the particle analyser by employing ultra-thin 
membrane materials down to single-atom level. Eventually, it led to the thickness-to-diameter aspect ratio of the 
conduit to be less than unity5–12. In such short channels, the amount of ionic current blockade is anticipated to 
be determined largely by the local volume of particles occupying the conduit, the characteristic of which would 
enable rapid 2D-scanning of their morphologies at nanoscale. Meanwhile, although employing thinner mem-
brane would provide higher spatial resolution to the sensor, it also poses additional challenges in interpreting the 
resistive pulse patterns. This is due to the concomitant increase in the relative significance of the ionic resistance 
outside the channel (access resistance) that makes the cross-membrane ionic current sensitive to physical features 
of particles including their fine shapes and the dynamical translocation motions13. Accordingly, despite the recent 
efforts14,15, the potential of the envisaged sensing ability remains to be demonstrated.

We herein report a novel concept of nanopore analysis that leverages the enhanced spatial resolution of 
ultralow-aspect-ratio pore sensors and machine learning algorithm to elucidate the physics underlies individ-
ual resistive pulse wave patterns and discriminate single-particles by its shape instead of the whole volume. The 
solid-state device consists of a micropore of diameter dpore = 3 μm sculpted in a SiN membrane of thickness 
Lpore = 40 nm on a Si wafer having aspect ratio AR ~ 0.01 (Fig. 1a). We used the pore channel for detections of 
Escherichia coli, potentially pathogenic bacteria ubiquitous in environment16, and Bacillus subtilis having rod-like 
shape and micrometer size similar to those of E. coli (Fig. 1b), by measuring the cross-membrane ionic current 
Iion in PBS buffer (10 times diluted with Milli-Q) under the applied dc voltage Vb of 0.05 V (Figs 1a and S1). The 
previous work exploited intermolecular-interaction-derived cell capture dynamics for discriminations of E. coli 
from other bacteria using a bionanopore system17. In contrast to the immunosensing approach, our aim here is to 
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distinguish the difference in the morphologies of the two bacteria. Ionic current spikes with height Ip and width 
td were observed, the parameters of which generally denote the amount of ion blockage and time-of-flight of the 
negatively-charged single-bacteria electrophoretically passing through the channel (Figs. 1c,d).

Results and Discussions
A standard approach for single-particle discriminations involve statistical comparisons of Ip and td variations18–20 
(Fig. S2). The distributions, however, overlap largely (Fig. S3) whereby failing to discern the two bacteria at dis-
criminability no better than 70% (Fig. S4) due to the biologically different yet physically resembled characteristics 
including the volume and the surface charge status (zeta potential: −37 mV (E. coli) and −38 mV (B. subtilis)). 
Here, the negative surface charges of the gram negative and positive bacteria come largely from the phospholipids 
and lipopolysaccharides covering the cell and the phosphates in teichoic acids on peptidoglycan, respectively. 
On the other hand, while the plots present little difference in the average properties of the bioparticles, we at the 
same time found a subtle difference in the Iion spike line-shapes, the variance of which anticipates not only the size 
and shape distributions of the two bacteria but also the stochastic nature of the capture dynamics because of the 
significant contributions of the ion transport in the external regions of the pore13,21,22, on the ionic blockage upon 
particle translocation.

The above results suggest a necessity of a rational approach to first find features relevant to a bacterial mor-
phology in the ionic current signatures to accomplish single-particle shape analysis using a low-aspect-ratio 
pore sensor. Pattern recognition is an intrinsic ability of animals that spontaneously acts to match perceived 
information with the memory stored in a brain. Analogously, here we used an artificial intelligence to inspect 

Figure 1.  Single-bacteria sensing using low thickness-to-diameter aspect-ratio pore channels. (a) Schematic 
illustration depicting resistive pulse measurements of Escherichia coli and Bacillus subtilis using a SiN micropore 
of diameter dpore and length Lpore. (b) False-colored scanning electron micrographs of E. coli (top) and B. subtilis 
(bottom). Scale bars denote 2 μm. Dark small circles are holes to filter ionic liquid and fix the bacteria on the 
substrate. (c,d) The cross-pore ionic current Iion versus time t two dimensional histograms constructed with 200 
ionic current spike signals obtained for (c) E. coli and (d) B. subtilis using a SiN pore with dpore = 3.0 μm and 
Lpore = 40 nm. Ip and td denote the pulse height and width, respectively.
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bacterial traits in the virtually featureless ionic current signatures obtained with a low-aspect-ratio micropore for 
statistically estimating the respective numbers of E. coli and B. subtilis. Specifically, we examined a resistive pulse 
line-shape analysis in a framework of a machine learning algorithm23,24 estimating non-parametric probability 
density on a feature space consisting of the height Ip and bluntness βapex of the ionic spikes (Figs 2a and S5; see 
also Supplementary Information 2.1). Noticeably, we found the precision Ppre exceeding 90% at Yth = 30% for 
the ultra-low aspect-ratio micropore of AR ~ 0.01, where Yth denotes the current level from the pulse maxima 
(Fig. S5). Meanwhile, ionic transport calculations based on a Poisson-Nernst-Planck-Navier Stokes model13 pre-
dict that the bioparticles are not yet getting inside a pore but still moving at the orifice until Iion reaches Yth = 25% 
from Ip (Fig. 2b)13,21. This indicates electrophoretic motions of the two bacteria at the pore exterior render no 
distinctive feature in the Iion traces useful for distinguishing the microbes. Conversely, the ionic current profiles 
below the level, i.e. βapex for instance, constitutes electrical fingerprints of single-bacteria wherein local shape 
of the microorganisms play a dominant role on the ion exclusion inside the pore channel, the finding of which 
exemplifies the potential of the data-driven analysis to discover physically valid Iion characteristics distinct to the 
analytes.

In order to verify the tomographic capability, we systematically studied the roles of pore geometry on the sens-
ing performance by carrying out the bacterial detections with 3 μm-sized micropores having variable depth from 
40 nm to 1500 nm (Fig. S6). The pattern recognition of Iion spikes revealed intriguing change in P that deteriorated 
5-fold upon increasing Lpore to 990 nm whereas further thickening resulted in recovery of the sensor performance 

Figure 2.  Statistical discriminations of single-bacteria by resistive pulse line shapes. (a) Definition of the pulse 
bluntness βapex. The time ti at which Iion crosses the current level Yth % above the pulse top is collected. βapex is 
defined as the deviations of ti. (b) Finite element analysis of ionic current blockage in a low-aspect-ratio pore 
by single-bacteria modelled as a microscale cylinder. (c) The accuracy Ppre for discriminating E. coli and B. 
subtilis through comparing statistical distributions of βapex and Ip via 5-fold cross validation plotted against Lpore. 
(d) A model used for finite element analysis of ionic current blockade by single-microbe. A bacteria-shaped 
cylinder of diameter 800 nm and length 2.6 μm with different curvature R was moved along z axis wherein axis-
translocation was assumed. (e) Normalized resistive pulses deduced from the finite element analysis for two 
micro-rods with R = 200 nm (blue) and 1100 nm (red) that mimic the sharp-edged and rounded shapes of E. coli 
and B. subtilis, respectively. Dotted line is at Inorm = 0.3 where βapex is extracted. The pulse bluntness is lower for 
cylinders with larger R. (f) Normalized resistive pulse bluntness βnorm plotted as a function of the roundness R of 
the cylindrical model of bacteria. βnorm is deduced from βapex of the theoretical Iion spikes normalized by that at 
R = 10 nm.
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(Fig. 2c). The non-trivial dependence can be interpreted as denoting mutual and competitive contributions of 
the access resistance and the resistance inside the pore. As the Lpore is less than the length of the bacteria, longer 
channels give larger change in the inner-pore resistance during single-bacterial translocation due to the larger 
amount of ions excluded in the pore thereby offering better sensitivity to the bioparticle volume as denoted by 
higher Ppre at Lpore ≥ 990 nm. Conversely, shorter micropores are expected to show degraded volume sensitivity. 
Nevertheless, they also possess higher spatial resolution to enable discriminating bacteria by difference in their 
shape. This is highlighted qualitatively in the feature parameter histograms (Figs S3 and S7) where we found less 
overlap in the distributions of βapex (Ip) with decreasing (increasing) Lpore whereby suggesting better statistical 
discriminability by the microbial shape (volume) in thinner (thicker) pore channels. In other words, whereas the 
ultra-low aspect-ratio pores and thick channels can distinguish the two bacteria with high Ppre through sensitive 
detections of the bioparticle shape and volume, respectively, the intermediate range of AR leads to deteriorated 
sensor performance as both the sensing capabilities become poor.

It is of interest to consider more precisely on what affects the apex line-shapes of resistive pulses. We 
herein explored influence of the bacterial morphologies by running the Iion simulations for translocation of 
bacteria-mimicking rod-shaped objects with various roundness R (Fig. 2d; see also S22). The estimations revealed 
increasing pulse bluntness with R (Figs 2e,f and S23), which is in qualitative accordance with the sharper Iion 
spikes obtained for E. coli having a rounder motif compared to that of B. subtilis (Fig. 1b). This in turn proves 
the analytical power of the machine learning approach to computationally discern the bioparticles by the 
submicrometer-scale body form difference through the Iion traces.

Besides the morphologies, the bacterial motility of the flagellated microbes may have caused distinct differ-
ence in the capture-to-translocation dynamics whereby facilitated to discern E. coli and B. subtilis by the resis-
tive pulse line-shapes. Considering the remote sensing capability of low-aspect-ratio pores to sense the analyte 
motions nearby the channel entrance, it is indeed worth investigating the possible influence of the swimming 
ability unique to the bacteria on the ionic signatures25,26. We therefore examined resistive pulse measurements for 
flagellated (wild-type) and non-flagellated (gene fliC inactivated mutant) E. coli using a 3 μm-sized SiN micropore 
of AR ~ 0.01 (Fig. S8). Contrary to the expectation, however, the results showed so little difference in the ionic 
spike forms that the machine learning based pattern analysis can discriminate the two by no better than 62%, 
suggesting no conspicuous roles of flagella on the translocation speed. It can be understood by considering pre-
dominant roles of the electrophoretic forces that overwhelms the flagellar motor power to affect the translocation 
motions.

Although the above results suggest the ability of ultra-thin micropores to acquire information concern-
ing morphologies of analytes, it requires more direct evidence to assure the high-spatial resolution of the 
microporescopy. Streptococcus is a suitable model system to test the geometrical sensitivity, which consists of 
micrometer-sized ellipsoidal cells connected in series27. We examined a resistive pulse analysis of Streptococcus 
salivarius28 (Fig. 3a), gram positive oral bacteria, using two SiN pores having same depth Lpore = 40 nm but dif-
ferent diameter dpore = 1.4 μm (AR ~ 0.03) or 3.0 μm (AR ~ 0.01). Whereas the large micropore provided only 
featureless ionic signatures (Fig. 3b), the bacterium-sized pore yielded peculiar Iion spikes with characteristic 
corrugations (Fig. 3c,d; see also Figs S3–S11). Ionic signatures with up to four bumps were detected in the course 
of measurement (Figs 3e and S12). Here, each dip is naturally ascribed to translocation of one unit cell (cocci) 
in the bacterial chain through the ultra-thin channel as the ion transport is blocked more (less) effectively at the 
moment when the cell-to-cell junctions reside in the pore. We performed multi-physics simulations13 of the ionic 
blockade during trafficking of the individual bacteria to verify this by modelling the ball-chain-like bacterial 
shape as microscale ellipsoidal objects connected in series (Figs 3f and S18–S20). The theoretical Iion traces repro-
duced the characteristic Iion oscillations observed experimentally, whereby unequivocally proving the potential of 
low-AR pores for 2D-scanning the nanoscale shape of single particles. Furthermore, the experimental ionic spikes 
revealed current changes of about 250 pA per translocation of one cocci. The numerical simulations, on the other 
hand, predicted the corresponding characteristic diameter of each ellipsoidal cell to be 800 nm and 280 nm at the 
thickest and the narrowest parts, respectively (Fig. S21). The current sensitivity to the radial size of the particles 
is therefore estimated to be 2 nm/pA. This yields a tentative estimation of the spatial resolution as 26 nm, which is 
comparable to the pore length of 40 nm, if we only take into account the influence of the rms current noise of 13 
pA on a source of error in determining the shape of bacteria (we would like to emphasize that this value is only a 
tentative one that may change depending on the size and shape of the particles measured).

Beyond the statistical non-parametric probability density estimation using the artificially-selected features, 
which has proven effective to assess the number of each bacteria species by using difference in their shape 
through comparing the sharpness of ionic signatures, we also examined a more general concept of informatics: 
single-spike identification by machine learning with feature selection based on arbitrary criteria. We employed 
the Waikato Environment for Knowledge Analysis (WEKA)29, a machine learning workbench widely used 
for data mining, with the Rotation Forest meta-classifier30 and forty different algorithms of its base classifiers 
together with 60 feature parameters including Ip, td, and βapex (Fig. 4a; see also Supplementary Information 2.2). 
Intriguingly, the F-measure score FMeas calculated through a 10-fold cross validation reproduced the Lpore depend-
ence of the bacterial discriminability (Figs. 4b,c; see Methods for definition of FMeas), whereby provided further 
evidence demonstrating the intrinsic sensor capability of low-aspect-ratio pores to sensitively identify minute 
difference in nanoscale morphologies of individual analytes. Moreover, it is noted that the analytical procedure 
can be in principle practiced in real-time: off-line learning of the classifiers required as short as 0.003 sec to 2 sec 
processing times by using a workstation equipped with Intel Core i7 CPU and 32GB RAM, and their on-line 
single-spike identification spent only 1 μsec to 200 μsec.

From practical viewpoints, it is of importance to evaluate the applicability of the machine learning assisted 
resistive pulse analyses to a mixture sample of various microbes. For this, we extended the WEKA-based 
single-bacteria identification to a solution containing E. coli and B. subtilis at different relative concentrations 
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using the same teacher data used in the assessments of FMeas (Fig. 4). The result revealed a monotonic increase in 
the relative number of signals assigned as B. subtilis rB with respect to that of E. coli with the nominal B. subtilis 
to E. coli concentration ratio CB (Fig. 5), thus validating the efficacy of the method to count specific bacteria in 
a mixture. Meanwhile, the concentration dependence was found to be quite intriguing: A sharp increase in the 
number of B. subtilis was observed upon increasing the relative concentration to 2. On the other hand, further 
increase in CB led to non-linear increase in the signal ratio. The non-trivial tendency would reflect the distinct 
difference in the capture dynamics between the two bioparticles: Compared to E. coli, which can be drawn into 
micropores relatively easily whereby giving higher rates of signal occurrence under increased bacteria concentra-
tions, signal detections of B. subtilis is less efficient presumably due to larger entropic barrier associated with the 
stiffer cell walls compared to those of E. coli31.

The present findings have proven the excellent compatibility of sensor informatics to resistive pulse analy-
sis for interfacing ionic current signals and analyte shape in low-aspect-ratio pores. Meanwhile, in light of the 
sensor performance of existing technologies such as cytometry32,33, the bacterial discriminability needs further 
improvements for practical applications. This would be achieved in part by employing thinner membranes to 
further enhance the spatial resolution on top of the efforts to bulk test the feasibility for identifying various targets 
of interest, wherein the emerging two-dimensional nanostructures such as graphene and MoS2 are expected to 
be a key material34,35.

Figure 3.  Sensitivity of a low-aspect-ratio pore to particle shapes. (a) Schematic and scanning electron 
microscopy images of Streptococcus salivarius. Scale bar denotes 0.5 μm. (b,c) Two-dimensional histograms of 
ionic spike overplots of S. salivarius in 50 nm thick pores with (b) dpore = 3.0 μm and (c) 1.2 μm. (d) Double-
peak pulse signal. The Iion corrugation depicts the characteristic motif of S. salivarius as represented in the 
insets. (e) Corrugated spikes showing up to four peaks at the apex. Insets illustrate the bacterial shape deduced 
from the spike forms. (f) Finite element analysis of the ionic current profiles during translocation of the beads-
chain-like microbes constructed with one (blue), two (red), three (green), and four (purple) cocci. The curves 
are shifted vertically for the sake of clarity.
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Figure 4.  Bacteria discriminations by single-shot pattern analysis. (a) Feature parameters characterizing the 
spike waveforms. θ is the angle at the pulse onset. AL (orange) and AR are the area of the pulse at left and right 
sides of the peak top, from which the total area A = AR + AL and the ratio rm = AL/AR are calculated. In addition, 
the inertia with respect to the longitudinal (Im) and transverse (Iw) axes are deduced through I t Ai im

2
lat,= ∑  and 

I h Aw i i
2

long,= ∑ , respectively, where Alat,i and Along,i are respectively the partial area at ti and hi. (b) F-measure 
score FMeas deduced by testing 4020 combinations of feature vectors and classifiers. (c) The highest F-measure 
scores (FMax) plotted against Lpore. Purple and blue arrows point toward increasing sensor sensitivity to particle 
shape and size, respectively. While Coulter counter principle predicts an optimal sensitivity to analyte size with 
a certain pore geometry, lower-aspect-ratio pore channels can benefit from the improved spatial resolution to 
boost the sensor performance through exploiting the tomographic capability when combined with machine 
learning based pattern analysis.

Figure 5.  Single-bacteria detections in mixture solution. The relative number of signals judged as B. subtilis rB 
with respect to the E. coli counter part plotted as a function of B. subtilis versus E. coli nominal concentration CB.
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Conclusion
Discriminations of single-bacteria shape was examined by analyzing individual resistive-pulse profiles in 
low-thickness-to-diameter aspect-ratio pore sensors. Ionic current fingerprints of bacterial morphologies were 
identified at the signal apex whereat volume-exclusion effects inside the pore by translocating single-bacteria 
becomes prominent. We also revealed excellent compatibility of a machine learning approach to extract the 
features relevant to bioparticle shapes in resistive-pulses, which provided data-driven designs of the nanosen-
sor for achieving better discriminability of single-particle shape. Such synergy between physical measurements 
and machine learning strategies will deliver a versatile strategy to study biology using nanotechnology, wherein 
biologically-important functions veiled in stochastic noise are identified by extracting relevant parameters from 
the statistical measurement results by computer in feature space.

Methods
Fabrication of low thickness-to-diameter aspect ratio micropores.  Solid-state micropore sensors 
were fabricated as follows. A four-inch Si wafer (0.3 mm thick) whose both sides covered with 50 nm thick SiN 
layers was first diced into 25 mm × 25 mm chips. Each piece of SiN/Si wafer was then treated with a reactive ion 
etching with etchant gas of CF4 to remove SiN of a small region (0.8 mm × 0.8 mm square) on one side of the 
surface, wherein a metal sheet was used as a mask. Subsequently, the SiN-removed area was exposed to aqueous 
solution of KOH at 100 degrees Celsius for deep wet etching of Si. As a result, a 40 nm thick SiN membrane of size 
150 μm × 150 μm was formed. Following the process, we delineated a circle pattern on the membrane coated with 
a resist ZEP520A by an electron beam lithography. After development, we dry-etched the SiN (CF4 etchant gas) to 
drill a pore. Finally, the substrate was immersed in N,N-dimethylformamide for overnight to remove the remnant 
resist. For thicker pores, additional SiO2 coating was performed on the both sides of the membrane by chemical 
vapor deposition to increase Lpore to 240 nm, 490 nm, 990 nm, or 1500 nm.

Resistive pulse sensing.  A micropore chip was sealed with two polydimethylsiloxane (PDMS) blocks from 
the both sides. On one side of the surface, a microchannel was formed by curing PDMS on an SU-8 mold. The 
pore substrate as well as the PDMS blocks were exposed to oxygen plasma in prior to the sealing, which served 
to activate the surface for eternal bonding of PDMS to SiN. After that, three holes were punched in each of the 
polymer blocks. Two of them were used as inlet and outlet for pouring PBS buffer in the micropore. Bacteria were 
added only on one side of the pore while the other side was filled only with buffer. The remaining pores were used 
to insert Ag/AgCl electrodes. A voltage Vb was applied to these electrodes to electrophoretically drive the bacteria 
to pass through a pore and record the temporal change in the cross-pore ionic current. A resistance-feedback 
current amplifier was used to amplify the current and a fast digitizer (NI-5922) backed by a RAID system (NI 
HDD-8264) was utilized to store the output data at a sampling rate of 1 MHz. All the measurements were carried 
out at room temperature in air.

Data analysis.  Two dimensional histograms of ionic current spikes were prepared by first extracting the local 
current minima using a computer program based on Visual Basic 6. Specifically, the open pore current was offset 
to zero by subtracting the base level through linear fit to 0.5 seconds long I − t curves cut from the whole data. 
A threshold of 60 pA was then used to find the current decrease onset in the offsetted ionic traces. Meanwhile, a 
rising edge at 10 pA was utilized to determine the region wherein a resistive pulse exist. The lowest current values 
within the peak region was assigned as the peak top of the ionic current spikes. Then, 20 milliseconds of the ionic 
current data before and after the local minima were collected, thereby obtaining ionic spikes larger than 60 pA. 
The current versus time two-dimensional histograms were constructed by binning the Iion and t at 1 pA and 0.1 
millisecond, respectively in the Origin Pro software.

Definition of resistive pulses.  An onset of a resistive pulse was searched by referring to the ionic current 
level at the point where the noise increases to above 5σ. Iion data were then extracted until the current fluctuations 
decreased to below 5σ. Here, 256 points long margins at both sides of the pulse were also collected. This defines 
the onset time ts for each ionic spike; i.e., 0.256 ms before Iion noise rises above 5σ. The number of thus obtained 
ionic spikes were 179 to 557 and differed among the tests (Table S1). For the machine learning analyses, 179 
pulses were randomly selected from each set of data.

Machine learning algorithm.  Several features of ionic current spikes were employed for statistical discrim-
inations of bacteria: e.g. the pulse height Ip and width td; the bluntness of resistive pulse apex βapex extracted by 
first normalizing the spike height by Ip as Inorm = Iion/Ip and width by the pulse onset te and the pulse endpoint ts 
as tnorm = (t − ts)/(te − ts), and then deduced as mt t t t1/ ( )apex d i

m
i s ave

2
1

2β = ∑ − −=  where ti is the time stamps Iion 
curves intersect the Iion level Yth % from the peak maxima, tave denotes the arithmetic mean of ti-ts and m is the 
number of intersecting time points; the onset angle θ defined by the slope 1/r from Inorm at te to r, where r is the 
pulse peak position; the area A calculated by dividing a pulse into n regions and taking summation of the average 
Inorm, hi, at each section; the ratio rm between the area at the peak onset and that after the peak maximum; the 
inertia Im and Iw calculated with respect to longitudinal and transverse axes, respectively (Detailed definitions of 
each parameter are described in Figs S14–S16). Each parameter (Figs S14 and S15) was coupled to the current 
vector and the time vector (Fig. S16) to create 60 feature vectors in total. The obtained feature vectors of 161 spikes 
for each of E. coli and B. subtilis (in total 322 spikes) were used as teacher data to judge the other 18 resistive pulses 
for a test. This procedure is repeated ten times by interchangeably changing the teacher data and the test data 
within the given 179 spike data, and the total accuracy of each classifier is provided by the average accuracy of the 
ten tests (ten-fold cross validation method). Data classifications were implemented by using the machine learning 
workbench WEKA with 67 Rotation Forest ensembles where each used a distinct base classifier. FMeas = 2PPrePRec/
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(PPre + PRec) was deduced for all of the 60 × 67 = 4040 combinations of the classifiers and the feature vectors, 
where PPre and PRec are the precision and recall calculated through TP/(TP + FP) and TP/(TP + FN), respectively, 
with TP, FP, FN being respectively the number of true-positive, false-positive, false-negative outputs. Sufficiently 
stable accuracies were provided over the ten tests (Supplementary Information 2.3 Statistical variability of the 
estimation).
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