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Abstract: Aromatic aldehydes are fundamental inter-
mediates that are widely utilised for the synthesis of
important materials across the broad spectrum of
chemical industries. Accessing highly substituted deriva-
tives can often be difficult as their functionalizations are
generally performed via electrophilic aromatic substitu-
tion, SEAr. Here we provide an alternative and mecha-
nistically distinct approach whereby aromatic aldehydes
are assembled from saturated precursors via a desatur-
ative process. This novel strategy harnesses the high-
fidelity of Diels–Alder cycloadditions to quickly con-
struct multi-substituted cyclohexenecarbaldehyde cores
which undergo desaturation via the synergistic interplay
of enamine, photoredox and cobalt triple catalysis.

Aromatic aldehydes are integral building blocks in organic
chemistry that, through their rich and diverse reactivity
profile, provide a handle to access a large number of bond-
forming strategies.[1] This powerful synthetic versatility
means they are often encountered as intermediates in the
preparation of high-value materials such as pharmaceuticals
and agrochemicals, as well as valuable end-products in the
fragrance and food industries (Scheme 1A).[2]

Despite their synthetic prominence, complex and multi-
functionalised aromatic aldehydes can still be challenging to

prepare. Simple derivatives can be accessed by carbon-
ylation (e.g. Vilsmeier–Haack reaction) of electron-rich
arenes or Friedel–Crafts functionalisation of benzaldehyde
derivatives.[3] These processes utilise electrophilic intermedi-
ates and therefore are restricted to the selectivity rules of
electrophilic aromatic substitution (SEAr) chemistry.[4] As an
example, Friedel–Crafts functionalization of benzaldehydes
usually delivers the meta products leaving unreacted the
ortho and para positions.[5] A common alternative approach
is firstly aromatic halogenation, followed by either Li/Mg-
exchange (and quench with DMF or other electrophilic
“CHO” synthons)[6] or Pd-catalysed carbonylation, to in-
troduce the aldehyde functionality.[7] However, these meth-
ods still require a prior SEAr reaction to introduce the
halogen, which poses related selectivity issues to the ones
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Scheme 1. A) Examples of high-value aromatic aldehydes and their
derivatives. B) Desaturative coupling of ketones and aldehydes: key
mechanistic blueprint. C) Mechanistic analysis on desaturation
chemistry for cyclic enamines.
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discussed above.[8] Furthermore, the use of pyrophoric
organometallic reagents as well as the potentially explosive
syngas at high temperatures and pressures can further limit
applications. [9]

We recently became interested in the possibility of
assembling substituted benzaldehydes from non-aromatic
precursors via a mechanistically distinct approach.[10] Our
group has previously reported the utilisation of dual photo-
redox-cobalt catalysis[11] for the preparation of anilines from
cyclohexanone and amine building blocks (Scheme 1B).[12,13]

The key aspect of this reactivity mode is the formation of a
redox-active enamine A that, through two sequences of SET
oxidation!deprotonation!dehydrogenation (formal re-
moval of 2H+, 2e� and 2H*), is converted first into a
dienamine B and then into a stable aromatic material C.

In this prior approach, the enamine functionality is a
constituent of the cyclohexene ring (i.e. endocyclic enamine
A) and therefore its C� N bond is incorporated in the final
aromatic product C. We questioned whether this desatur-
ative approach could be translated onto an exocyclic
enamine D as the formal removal of 2H+, 2e� and 2H*

would lead to an aromatic iminium ion E that could be
hydrolysed to furnish benzaldehyde F (Scheme 1C). This
proposal revealed the opportunity of exploiting the transient
condensation between a cyclohexanecarbaldehyde G and a
secondary amine organocatalyst H as a stepping stone into
redox chemistry for subsequent desaturation. However,
cyclohexanecarbaldehydes are somewhat difficult-to-make
with limited opportunity for site-selective functionalization.
Hence, we realised that unsaturation between the cyclohexyl

C3 and C4 positions would be ideal for our purposes,
providing Diels–Alder cycloaddition (I) as a retrosynthetic
tactic.[14] Indeed, this pericyclic reactivity could be used to
facilitate the selective and straightforward introduction of
substituents around the “future” benzaldehyde aromatic
ring, bypassing the aforementioned drawbacks of SEAr.
Herein, we describe the implementation of this proposal and
introduce a novel strategy for aromatic aldehyde synthesis
through the synergistic integration of enamine, photoredox
and cobalt catalysis.

The proposed mechanism for this desaturative strategy is
depicted in Scheme 2A. Condensation between aldehyde 1
and secondary amine H initiates the organocatalytic cycle by
the formation of exocyclic enamine D. In parallel, an
oxidative quenching photoredox manifold would be used to
enable single-electron transfer (SET) between a visible-light
excited [IrIII] photocatalyst [for Ir(dtbbpy)(ppy)2PF6: *E1/

2(IV/III)= � 0.96 V vs. SCE][15] and a [CoIII] cobaloxime [for
Co(dmgH)2(Py)Cl: E1/2

red= � 0.32 V versus SCE].[16] The
subsequently formed [IrIV] species [E1/2(IV/III)= +1.21 V
vs. SCE][15] ought to be able to engage in a second SET
event with D (for 3: E1/2

ox= +0.55 V vs. SCE)[16] to
regenerate the ground state [IrIII] and give J (via deprotona-
tion of the intermediate enamine radical cation, not
shown).[17] A H-atom transfer (HAT) reaction between the
17e� [CoII] metalloradical and J would set the first
desaturation furnishing the trienamine K and a putative
[CoIII]� H.[18] In the presence of a weak Brønsted acid,
[CoIII]� H can evolve H2, regenerating [CoIII].[19] K could now
be subjected to another round of photoredox oxidation, to

Scheme 2. A) Proposed synergistic enamine-photoredox-cobalt triple catalysis for the desaturation of 1 to 2. B) Optimized conditions for the
desaturation of 1 to 2 and relevant control reactions. [a] Reaction run at AstraZeneca. [b] Reaction run at r.t. [c] Reaction run with 1.2 equiv of
morpholine and 3.0 equiv of DABCO. [d] Reaction run with 1.2 equiv of morpholine.
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give L, and Co-mediated desaturation to give iminium E.
Hydrolysis of this species would close the organocatalytic
cycle and yield the desired benzaldehyde product 2.

As shown in Scheme 2B, this proposal for desaturative
aldehyde synthesis was first implemented by treatment of 1
with morpholine (20 mol%) as the organocatalyst, Ir-
(dtbbpy)(ppy)2PF6 (2 mol%) as the photocatalyst and Co-
(dmgH)2PyCl (5 mol%) as the cobaloxime. The use of this
tri-catalytic system under buffered conditions [DABCO
(1.0 equiv)+AcOH (20 mol%)] in CH3CN solvent and blue
LED irradiation at 60 °C gave 2 in a 74% (entry 1). These
conditions were successfully reproduced within the labora-
tory at AstraZeneca in a comparable yield of 71%, using a
Lucent360 photochemical reactor (entry 2). A yield of 60%
was observed after only 3 h, likely resulting from the high
photon-flux of the Lucent360 reactor.[16] Whilst the Support-
ing Information encompasses all the optimisation and the
control experiments, it is worthwhile highlighting that the
structure of the organocatalyst had a large impact on the
success of the reactivity. Indeed, performing the desatura-
tions with piperidine or pyrrolidine (as well as other
amines), in place of morpholine, led to significantly lower
yields (entries 3 and 4). To further support the proposed
mechanism for this process, we ran cyclic voltammetry and
performed Stern–Volmer luminescence quenching experi-
ments that support the proposed sequence of SET events in
the photoredox cycle.[16] Good reactivity could also be
achieved on the pre-formed enamine 3 (entry 5),[16] which
enabled clear detection of H2 by

1H NMR spectroscopy.
While cyclohex-3-enecarbaldehydes such as 1 are the

most versatile class of building blocks for scope evaluation,
we were interested to see if other types of precursors could
be engaged in this reactivity. Pleasingly, both Cy-CHO 4
and α,β-unsaturated 5 led to productive reactivity, albeit in
lower yields (entries 6 and 7). The successful formation of 2
from 4 and 5 suggests that enaminesM and O are also useful
intermediates in providing access to J for subsequent
desaturation.

With the optimised conditions in hand, we next looked
to evaluate the scope of our desaturative methodology in
the synthesis of poly-substituted aromatic aldehydes
(Scheme 3). We started by exploiting the Diels–Alder
reaction between 2,3-dimethyl-1,2-butadiene and several β-
substituted enals as entry into 2,4,5-trisubstituted
aldehydes,[16] which are often used in the preparation of
bioactive materials.[20] These saturated derivatives enabled
the synthesis of benzaldehyde derivatives with ortho alkyl
(6–9), aryl (10, 12 and 13) and ester (14) substituents in high
yields. The complementarity that this strategy might provide
to approaches based on standard aromatic chemistry, can be
realised considering 10. Despite its structural simplicity, this
building block requires a seven steps synthesis from 11,[21]

which can now be streamlined to just two steps by our
approach (Diels–Alder cycloaddition followed by desatura-
tion).

We then evaluated the use of other substrates prepared
by cycloaddition of 2-substituted butadienes with various
enals,[16] which enabled the selective assembly of 2,4-
disubstituted benzaldehydes. These examples are repre-

sented by products with two alkyl substituents (15 and 16) as
well as derivatives with two aryl groups (17 and 18).
Derivative 19 has been recently prepared by Taisho
Pharmaceutical (Japan) and Sanofi (EU) as part of a
MedChem program and required a 5 steps synthesis from 20
and 21 via the formation of organozinc intermediates.[22] Our
alternative strategy avoids the use of such reagents, high-
lighting the potential synthetic impact of this work. Com-
pound 23 was obtained by direct desaturation of the
fragrance compound lyral 22, which also demonstrates that a
tertiary alcohol functionality was tolerated.

Danishefsky’s diene is one of the most exploited building
blocks in Diels–Alder chemistry and its corresponding
cycloadduct 24 would be a convenient precursor for the
preparation of ortho,para-dihydroxylated aldehydes.[23] Sub-
jecting 24 to our desaturative conditions was possible but led
to the competing formation of 25. We believe that upon
enamine formation, a fast E1cB elimination takes place
removing the ortho OMe group, followed by dual photo-
redox-cobalt desaturation.[24]

To further explore the types of functionalisation patterns
amenable to this strategy, we looked at meta-functionalised
aldehydes that can be difficult to access by standard SEAr
chemistry. Pleasingly, desaturation enabled the preparation
of 26–29 in good to moderate yields. 27–29 represent a
challenging class of derivatives since meta-carbonylation of
electron-rich phenols is disfavoured, whilst meta-oxygen-
ation of aldehydes is possible but usually requires prior
nitration.[25]

Next, we looked at ortho-substituted derivatives and by
exploiting the simple functionalization chemistry of tetrahy-
drophtalic anhydride[16] we prepared 30–37 (also on gram-
scale) that are frequently encountered in the patented
literature on drug development. Importantly, these deriva-
tives demonstrated compatibility of several O-, N- and S-
based groups as well as HAT-labile positions[26] (31) and the
B(pin) functionality (36).

To further probe the chemistry on bioactive templates,
we took the terpene (� )-myrtenal (38), the NSAID
nabumetone (41) and the OTBS-protected neurosteroid
allopregnanolone (44) and converted them into the corre-
sponding dienes (1–3 steps).[27] Subsequent Diels–Alder
cycloaddition (39, 42 and 45) and catalytic desaturation
provided access to 40, 43 and 46 in moderate to good yields.

In terms of limitations, this approach could not be
extended to the desaturation of cyclohexene ketones 47 to
48. We currently believe that the more challenging enamine
formation does not enable integration with photoredox and
cobalt catalysis.[28] However, we pleasingly succeeded in
engaging vinylogous aldehyde 49 to obtain cinnamaldehyde
50 in moderate yield. We believe this example demonstrates
that upon dienamine P formation, photoredox oxidation
leads to the extended 9π e� system Q, from which cobalt-
mediated desaturation takes place.

In conclusion, we have demonstrated an alternative
approach for the preparation of substituted aromatic
aldehydes from easily accessible saturated cyclohexanecar-
baldehyde precursors. This strategy exploits the synergistic
interplay of three catalytic manifolds, that sequentially
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activate the aldehyde (organocatalysis), oxidise the corre-
sponding enamine (photoredox catalysis) and perform
desaturation (cobalt catalysis). Since cyclohexenecarbalde-
hydes can be conveniently prepared by Diels–Alder reac-
tivity, we hope that this strategy might become a comple-

mentary tool in the preparation of high-value aldehyde
materials.

Scheme 3. Substrate scope for the synergistic enamine-photoredox-cobalt catalytic desaturations.
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