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Abstract The frontotemporal cortical network is associ-

ated with behaviours such as impulsivity and aggression.

The health of the uncinate fasciculus (UF) that connects the

orbitofrontal cortex (OFC) with the anterior temporal lobe

(ATL) may be a crucial determinant of behavioural

regulation. Behavioural changes can emerge after repeated

concussion and thus we used MRI to examine the UF and

connected gray matter as it relates to impulsivity and ag-

gression in retired professional football players who had

sustained multiple concussions. Behaviourally, athletes had

faster reaction times and an increased error rate on a go/no-

go task, and increased aggression and mania compared to

controls. MRI revealed that the athletes had (1) cortical

thinning of the ATL, (2) negative correlations of OFC

thickness with aggression and task errors, indicative of

impulsivity, (3) negative correlations of UF axial diffu-

sivity with error rates and aggression, and (4) elevated

resting-state functional connectivity between the ATL and

OFC. Using machine learning, we found that UF diffusion

imaging differentiates athletes from healthy controls with

significant classifiers based on UF mean and radial diffu-

sivity showing 79–84 % sensitivity and specificity, and 0.8

areas under the ROC curves. The spatial pattern of clas-

sifier weights revealed hot spots at the orbitofrontal and

temporal ends of the UF. These data implicate the UF

system in the pathological outcomes of repeated
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concussion as they relate to impulsive behaviour. Fur-

thermore, a support vector machine has potential utility in

the general assessment and diagnosis of brain abnor-

malities following concussion.

Keywords Concussion � Impulsivity � Uncinate
fasciculus � Cortical thickness � Connectivity � Machine

learning

Introduction

Structures within the temporal lobe and frontal cortex form

a network involved in behavioural regulation (Brothers

1990), with dense connections between the anterior tem-

poral lobe (ATL), amygdala, hippocampus and or-

bitofrontal cortex (OFC) (Ghashghaei et al. 2007). Frontal

and temporal neural circuitry has been implicated in the

pathophysiology of behaviours such as impulsivity and

aggression (Weiger and Bear 1988; Snowden et al. 2001;

Winstanley et al. 2004). The uncinate fasciculus (UF) is a

major white matter (WM) tract that bidirectionally con-

nects the medial and lateral OFC with the ATL (Catani

et al. 2002; Schmahmann et al. 2007), and is implicated in

impulsivity, described in studies of frontotemporal de-

mentia (Piguet et al. 2011) and in schizophrenia (Hoptman

et al. 2002). Individuals having sustained concussions often

exhibit behavioural changes including impulsivity, de-

pression and aggression (Bigler 2007; Silver et al. 2009),

and the UF has been implicated in concussion (Smits et al.

2011). However, a link between the UF system, impul-

sivity, and concussion has not been established.

Task response inhibition serves as a proxy for the be-

havioural attribute of impulsivity. The OFC is an important

processing center with a proposed role in the inhibitory

control of behaviour. OFC lesions can affect emotion,

personality, and social behaviour (Kringelbach and Rolls

2004). Frontal gray matter volume is reduced in healthy

subjects with high impulsivity (Matsuo et al. 2009), and

response inhibition activates the lateral OFC (Horn et al.

2003). The ATL is a hub for semantic processing and social

cognition (Olson et al. 2007; Wong and Gallate 2012).

Both frontal and temporal lobe damage are implicated in

neuropsychiatric conditions including aggression (Wong

and Gallate 2012). Therefore, impaired frontotemporal

function may contribute to disinhibition and other neu-

ropsychiatric presentations that arise from functional and/

or structural deficits of the UF and connected regions. Such

deficits can be assessed with resting state functional con-

nectivity, cortical thickness and diffusion tensor imaging.

Here, our first aim was to determine the relationship

between response inhibition and related psychological

factors to the structural and functional properties of the UF

and frontotemporal gray matter in retired professional

athletes with a chronic history of multiple concussions. We

then used machine learning to test the predictive power of

diffusion imaging metrics within the UF to discriminate

these concussed athletes from controls. We hypothesized

that (1) athletes would exhibit neurocognitive deficits

linked with structural and functional abnormalities of the

UF and surrounding gray matter, and (2) diffusion tensor

WM metrics of the UF can be used in a machine learning

algorithm to distinguish concussed athletes from non-con-

cussed healthy individuals. This study has implications for

our fundamental understanding of the neural underpinnings

of impulsivity and their pathophysiological manifestations

in concussion. The novel machine learning approach rep-

resents a first step towards a potential prognostic tool for

classifying brain health in the context of multiple concus-

sions in contact sports.

Materials and methods

Participants

Twenty-two retired professional athletes from the Canadi-

an Football League (CFL), including one that played uni-

versity football, were recruited through information

provided by the CFL Alumni Association, and provided

informed written consent to experimental procedures ap-

proved by The University Health Network Research Ethics

Board. Of the 22 subjects, 19 were included in the final

analysis (19 males; mean age ± SD = 50 ± 12 years

with range from 30–74 years; mean education ± SD =

17 ± 1.8 years) after excluding those with contraindica-

tions to MRI or co-morbidity as listed below as exclusion

criteria. The number of self-reported concussions in ath-

letes ranged from 2 to 15. However, these numbers are

likely an underestimate because of recall bias, poor con-

cussion diagnostics in the past, and reluctance for reporting

by players. Thus, we were cautious in using number of

concussions as an index of severity. At least 12 out of 19

athletes reported their first concussion while in high school

and 8 athletes additionally experienced 2–4 non-sports re-

lated concussions. The athletes were closely matched for

age and education level to 17 healthy control subjects (17

males; mean age ± SD = 46 ± 10 years; mean educa-

tion ± SD = 16 ± 1.9 years) as well as sex, with no sig-

nificant differences between the groups.

Inclusion criteria for the retired athletes were as follows:

under 75 years old, fluent in English, and a history of

multiple concussions. Concussion exposure was based on

athletes self-report. Concussion was operationally defined

in accordance with the guidelines agreed upon by the In-

ternational Consensus statements (McCrory et al. 2013;
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Tator 2013). This method of self-reported concussion has

excellent test–retest reliability (intraclass correlation coef-

ficient = 0.90) and validity (Guskiewicz et al. 2007),

although anecdotal evidence suggests that professional

football players may use a higher threshold for classifying

an event as a concussion and thus concussions may be

under-reported in this population. In addition, all players

underwent a semi-structured interview to verify this in-

formation and to jog memory for any events they may not

have been initially recalled. Exclusion criteria for athletes

included: neurological disorders prior to concussions (e.g.

seizure disorder), systemic illnesses known to affect the

brain (e.g. diabetes and lupus), a history of psychotic dis-

order; known developmental disorders (e.g. attention defi-

cit disorder, dyslexia), other neurological conditions (e.g.

epilepsy, multiple sclerosis), and active engagement in

litigation. Inclusion/exclusion criteria for control subjects

were the same as above for athletes but the exception of

concussion history. Control subjects were interviewed to

verify they had no history of concussions or suspected

concussions.

All participants completed neuropsychological assess-

ment and neuroimaging over the course of two consecutive

days. Neuropsychological assessment, including clinical

interview, was completed by a psychometrist at a large,

urban teaching hospital in downtown Toronto and neu-

roimaging was carried out within the same institution. All

participants also underwent a neurological assessment by a

neurologist with extensive experience in concussion.

Neuropsychological measures

All participants completed the sustained attention to re-

sponse task (SART) (Robertson et al. 1997) and the Per-

sonality Assessment Inventory (PAI) as part of a larger

neuropsychological test battery. The SART is a comput-

erized go/no-go task that was designed to measure sus-

tained attention. The SART, in its original form with

random presentation of stimuli, has also been used to

measure response inhibition (Helton 2009; Helton et al.

2009; O’Connell et al. 2009; Carter et al. 2013). In the

SART used here, participants were presented with the

digits 1–9 in random order at a rate of every 1.15 s on a

computer monitor. Each digit was presented for 250 ms

followed by a 900 ms inter-stimulus interval (ISI) and

participants were required to respond to the appearance of

each digit by clicking the mouse (‘‘go’’ trials) except when

they saw the number 3, where they were asked to withhold

their response (‘‘no-go’’ trials). Participants were instructed

to respond as fast and accurately as possible. During the ISI

following each digit, the visual display consisted of a ring

with a diagonal cross in the middle. The task consisted of a

total of 225 trials (25 of each of the 9 digits) and lasted

approximately 4.3 min (Fig. 1). Errors on go/no-go tasks

were used to measure response inhibition (i.e. impulsivity)

(Carter et al. 2013) as was faster reaction time (Li et al.

2006; Sakai et al. 2013).

The PAI is a self-report questionnaire with good

demonstrated construct validity (Morey 2007). It consists

of 344 questions, with 11 clinical scales, including ag-

gression (Morey 2007). Aggression and mania were of

interest as outcome measures because of their relationship

with response inhibition (Vigil-Colet and Codorniu-Raga

2004; Swann et al. 2007; Strakowski et al. 2009).

Neuroimaging protocol

MRI acquisition

All subjects underwent brain imaging acquired with a 3

Tesla MRI system (GE Signa HDx, Milwaukee, WI, USA)

fitted with an 8-channel phased array head coil to obtain

high resolution structural images, diffusion-weighted im-

ages (DWI), and resting state functional MRI (rs-fMRI)

images. A high-resolution anatomical whole-brain scan

was acquired using a T1-weighted inversion recovery

prepped, 3-dimensional fast spoiled gradient echo (IR-

FSPGR) sequence, with the following parameters: 180

axial slices, 1 9 1 9 1-mm voxels, 256 9 256 matrix size,

25.6-cm field of view, flip angle = 158, echo time = 3 ms,

repetition time (TR) = 7.8 ms, inversion time = 450 ms.

Two DWI scans were obtained with diffusion gradients

applied across 60 spatial directions (b = 1,000 s/mm2)

as well as 10 non-diffusion weighted (B0) scans

(TR = 17,000 ms, 23-cm field of view, 96 9 96 matrix,

2.4 9 2.4 mm2 in-plane resolution, 2.4-mm thick axial

slices). Prior to the rs-fMRI scan, participants were in-

structed to close their eyes, not think of anything in par-

ticular, and to not fall asleep. The scan acquisition was

5 min 8 s using T2*-weighted echo-planar imaging with

the following parameters: TR = 2000 ms, TE = 30 ms,

250 ms     

7 X 4 
3 X 8 X 

900 ms 
250 ms     

900 ms 

250 ms     
900 ms 

250 ms     
900 ms X 

Fig. 1 Illustration of go/no-go task. Faster reaction time and more

errors were identified as an index of reduced response inhibition

Brain Struct Funct (2016) 221:1911–1925 1913

123



64 9 64 matrix, 20-cm FOV, flip angle = 858, 40 slices,

3.125 9 3.125 9 4 mm3 voxels.

Cortical thickness analysis

Cortical gray matter was assessed with cortical thickness

analysis (CTA) using Freesurfer software v.5 (http://surfer.

nmr.mgh.harvard.edu/). The details of these methods have

been described previously (Dale et al. 1999; Fischl et al.

1999; Fischl and Dale 2000). Pre-processing of T1-

weighted scans included transformation to Talairach space,

intensity normalization, hemispheric separation, and tissue

segmentation. The gray matter/WM and gray matter/CSF

border were identified and modelled as surfaces. Thickness

was calculated by the software as the distance between the

two borders along each point of the cortex in each hemi-

sphere. Each subject’s cortex was anatomically parcellated

and each sulcus and gyrus was labelled and aligned to

Freesurfer’s average surface map. A 6-mm full-width half-

maximum (FWHM) Gaussian spatial smoothing kernel was

applied to the dataset, and a corrected threshold of

p\ 0.05 was used based on Monte Carlo permutations

with 5000 iterations using AlphaSim (http://afni.nimh.nih.

gov/afni/) as previously used by our group (Moayedi et al.

2011; Erpelding et al. 2012). A general linear model

(GLM) was used to assess group differences, with age in-

cluded in the model as a variable of no interest. We also

included impulsivity, aggression and mania measures as

regressors of interest to determine the correlations between

gray matter and behaviour. An ROI approach based on

anatomical landmarks connecting the UF restricted the

analysis to a mask consisting of the OFC areas (Brodmann

areas 10, 11, 47) and temporal pole (Brodmann area 38)

obtained from the cortical parcellation atlas (Brodmann) in

Freesurfer.

Diffusion data preprocessing

Preprocessing was performed with Functional MRI of the

Brain Software Library (FSL, v.4.1.8; http://www.fmrib.

ox.ac.uk/fsl) (Smith et al. 2004). Affine registration trans-

formation matrices were used to correct for eddy current

and motion artefact using the FSL Diffusion Toolbox

(FDT) (Jenkinson et al. 2012). The two runs of DWI data

for each subject were averaged to a single volume for

greater signal-to-noise ratio. Diffusion images and T1-

weighted images were skull-stripped using the Brain Ex-

traction Tool (Smith 2002). Then, the preprocessed images

were fit with a diffusion tensor model using DTIFIT in the

Diffusion Toolbox. Fractional anisotropy (FA) and mean

diffusivity (MD) maps were created, and axial diffusivity

(AD) and radial diffusivity (RD) were obtained from the

images of the eigenvalues representing the magnitude of

diffusion in the three principal directions [AD = k1,
RD = (k2 ? k3)/2].

Probabilistic tractography

To evaluate the DTI metrics of the UF, we first delineated

the UF in each subject using probabilistic tractography. To

do this, we performed tractography from a seed region (i.e.

a region of interest (ROI) consisting of 3–4 voxels) ap-

proximately midway between the ATL and OFC in each

subject’s native diffusion space on the axial slice FA and

colour orientation maps. Two exclusion masks were drawn

on the sagittal slice over the anterior commissure as well as

the inferior longitudinal fasciculus that enters the ATL and

projects posteriorly. As a control tract, we also performed

tractography on the superior longitudinal fasciculus (SLF).

The seed for the SLF was drawn on the coronal section

posterior to the postcentral gyrus. Exclusion masks were

drawn on the internal and external capsule to avoid the

corona radiata and on the inferior longitudinal fasciculus.

The selection of the ROIs was overseen and inspected by

two other authors who are experienced in neuroimaging

and neuroanatomy.

Fiber tracking was performed using probabilistic trac-

tography (probtrackx) in FSL based on Bayesian estima-

tion of diffusion parameters obtained using sampling

techniques (Bedpostx). Fiber tracking from each seed

generated 5000 streamline samples, step length of 0.5 mm

and curvature threshold of 0.2. Tractography of the left

and right sides were run separately, and created

probabilistic maps of the connections between the voxels

in the seeds to the rest of the brain. The tractography maps

were normalized to take into account the number of

voxels in the seed by dividing the number of streamline

samples in the voxels in the tract maps by the way-total

(i.e. the total number of streamline samples not rejected

from the exclusion masks). The resultant tract maps for

the UF were thresholded to 20 % of the 95th percentile of

the intensity values’ distribution in the voxels within the

tract. To do the same for the SLF tracts, threshold of 40 %

was used to exclude connections not part of the tracts and

background noise. The tract maps of each subject were

averaged to produce a group map.

Registration of tractography maps for machine learning

analysis

The FSL Tract-Based Spatial Statistics (TBSS) software

tool (Smith et al. 2006) was used to compensate for spatial

variations in WM anatomy across subjects, producing maps

of each participant’s FA, MD, AD and RD metrics spatially

co-registered and aligned to a common space for direct

comparison. TBSS is a widely used tool that achieves
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superior WM alignment in two stages. First, each subject’s

FA map is nonrigidly transformed to MNI space and in-

terpolated to a higher resolution of 1 9 1 9 1-mm in the

common space. Second, a peak-finding algorithm locates

the peaks in FA corresponding to the core ‘‘skeleton’’ of

WM sheets in each patient, maps them through the non-

rigid transformation, and then performs a further alignment

that brings all subjects’ sheets into correspondence on a

single, common skeleton. Any desired metric can then be

mapped from its location on each subject’s individual WM

skeleton to a corresponding location on the common

skeleton for comparison across individuals. Alignment of

WM core skeletons and restriction of analyses to metrics

on these skeletons helps to reduce the potentially delete-

rious consequences of misalignment and partial volume

effects.

The common skeleton and accompanying DTI metrics

from each subject were restricted to the UF by transform-

ing probabilistic tractography-based segmentations of each

subject’s left and right uncinate (described above) into

standardized space, averaging and thresholding them, and

finally taking their intersection with the TBSS skeleton

mask. In addition to the coordinates for each voxel, the 4

DTI metrics were also recorded for each voxel in each UF

tract.

Resting state fMRI

Resting-state processing steps were performed with FSL

v.4.1.8, MATLAB v.7.12.0 (MathWorks), and fMRISTAT

(Worsley et al. 2002). Using FSL’s FEAT, we deleted the

first 4 volumes, and performed motion correction

(MCFLIRT), brain extraction (BET), and linear registra-

tion (FLIRT) between functional, T1-weighted anatomical,

and standard MNI152 space (2 mm3 resolution) images.

Removal of physiological and scanner noise was achieved

using CompCor (Behzadi et al. 2007; Chai et al. 2012).

This involved segmenting the T1-weighted image and

registering WM and CSF partial volume maps to fMRI

space. The maps were eroded (i.e. removal of voxels with

low probability of being WM or CSF) by thresholding and

retaining the top 198 and 20 cm3 of voxels with the highest

probability of being WM and CSF, respectively (Chai et al.

2012). Voxels within these WM and CSF maps were

masked with the 4D fMRI data and principal component

analysis was run. The top five WM and CSF components as

well as six motion parameters were regressed out. The data

were smoothed using a 6-mm FWHM kernel and bandpass

temporally filtered (0.01–0.1 Hz).

Based on the anatomical end points of the UF, we were

interested in examining the functional connectivity be-

tween the ATL and OFC in athletes and controls. The ROI

for the temporal lobe was based on the significant

difference in cortical thickness observed in the left ATL

between groups obtained from Freesurfer CTA (see ‘‘Re-

sults’’). This is based on work showing abnormal resting

state functional connectivity in regions with lower gray

matter density and cortical thinning, suggesting morpho-

metric effects on functional network integrity (van Tol

et al. 2013). The labelled region was transformed from

Talairach to MNI space and then to a binary ROI. The

mean time course from the ROI was extracted and entered

into a GLM. The ROI for the OFC was taken from (Kahnt

et al. 2012) who performed parcellation of the human OFC

into anatomical subdivisions based on resting-state con-

nectivity with the rest of the brain. The left medial OFC

(mOFC) was defined as 2-mm-diameter spheres (MNI co-

ordinates: x = -17, y = 42, z = -12). In addition to us-

ing the cortical thinning finding in the left ATL and OFC

coordinates as ROIs, the whole ATL region was defined by

masks from cortical parcellation atlas in Freesurfer

(aparc2009), as well as for the OFC (aparc2009) to ex-

amine left ATL-OFC and right ATL-OFC functional con-

nectivity. Pearson’s correlations were calculated between

each pair of ROIs and converted to Fisher Z values.

Machine learning

A machine learning analysis was undertaken to assess the

predictive power of the DTI metrics confined to the UF to

(1) discriminate the athletes from controls, and (2) inter-

rogate the spatial pattern of this predictive power over the

extent of the tracts. A support vector machine (SVM)

classifier (based on the LibSVM implementation) (Chang

and Lin 2011) was trained on all voxels in the UF (832 left,

940 right) for each combination of the four DTI metrics and

two hemispheres, for a total of eight. In each case, a leave-

one-out cross-validation protocol was employed to assess

accuracy in an unbiased manner, by selecting features and

training the classifier on all but one of the 19 athlete and 17

control subjects and testing on the one left out. Within each

fold, feature selection was performed to identify the subset

of voxels most likely to yield the best results by computing

an F-statistic for each voxel (Chen and Lin 2006) and re-

taining a specified fraction of the highest scoring voxels.

Training and testing were repeated with linear, polynomial,

and radial basis function (RBF) kernels. Each classifier’s

performance was optimized over its hyper-parameters by

executing a 2D (linear and polynomial) or 3D (RBF) grid

search over the fraction of optimal features retained, the

SVM cost parameter, and for the RBF kernel, the scale or

gamma parameter of the kernel.

Machine learning algorithms achieve their superior ac-

curacy through the selective application of bias in exchange

for reduced variance (Hastie et al. 2009). The applied bias

typically takes the form of a regularization penalty, and the
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various methods are distinguished by the form of the

penalty they apply. Since it is generally not possible to

determine which technique will perform best on a specific

problem in advance, we also applied a sparsity-based lo-

gistic regression classifier (LRC) with an ElasticNet penalty

(Zou and Hastie 2005), using the GLMNet coordinate

descent algorithm (Friedman et al. 2010), and a structured

sparse total variation LRC (Baldassarre et al. 2012) im-

plemented using the ADMM algorithm (Boyd et al. 2011).

Leave-one-out cross-validation was again used to assess

accuracy, while hyper-parameter optimization over the

lasso parameter was performed using the GLMNet path

algorithm, and over the ElasticNet parameter and sparse

total variation parameters using grid search (for further

details, see Friedman et al. (2010) and Boyd et al. (2011).

To assess each classifier’s statistical significance, the

entire training, cross-validation and grid search procedure

was repeated 10,000 times, in each case with a different

randomly permuted assignment of the concussion/control

labels. The fraction of these repetitions that produced

classifiers with equal or superior performance to the correct

labelling was taken as the statistical significance of the

classifier. Receiver operating characteristic (ROC) curves

were generated using the MATLAB (MATLAB and

Statistics Toolbox Release 2009b, The MathWorks, Inc.,

Natick, MA) PERFCURVE function.

For linear classifiers whose predicted response is formed

as a linear combination of predictor variables multiplied by

weight coefficients, it is common practice to visualize the

resulting spatial pattern of coefficients as maps wherein

each weight is overlaid on the voxel it multiplies and is

colour coded to indicate its sign and magnitude (Pereira

et al. 2009). However, recent work suggests that in the case

of binary classifiers, visualization of the covariance be-

tween predictors and responses provides a more inter-

pretable alternative (Haufe et al. 2014). We, therefore,

examined both kinds of maps to address both possibilities.

For the covariance map, the covariance between each UF

tract voxel and group (-1 for controls, ?1 for athletes) was

computed, and statistical significance was assessed using

threshold-free cluster enhancements (Smith and Nichols

2009) as implemented in FSL’s randomise function. For

the linear classifier coefficient maps, the mean value of the

coefficient for each voxel over 10,000 bootstrap (Efron and

Tibshirani 1994) repetitions of GLMNet and sparse total

variation training was computed.

Statistical analyses

Statistical analyses were conducted using Statistical Pack-

age for the Social Sciences (SPSS v. 19). A two-sample

t test (two-tailed) was used to test for differences between

groups on the imaging data, go/no-go task and PAI out-

comes. Pearson’s correlation coefficients were used for

parametric correlations to obtain relationships between

behavioural outcomes and the DTI metrics, cortical thick-

ness, and functional connectivity measures. Partial corre-

lations were calculated for DTI and cortical thickness
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Fig. 2 a go/no-go (SART)

results for reaction time and

number of errors (out of a

possible number of 25). Athletes

had faster reaction time and

greater number of errors

compared to controls

(p\ 0.05). b PAI results

indicated higher aggression and

mania in athletes versus

controls. Data are presented as

mean ± SEM; *p\ 0.05
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relationships with behavioural scores to control for age at

time of testing. Correlation analyses of the multiple be-

havioural and imaging outcomes were performed as an

exploratory analysis, with the significance level set at

p\ 0.05 (two-tailed).

Results

Behavioural findings

On the go/no-go task, the athlete group had faster reaction

times and made more errors compared to the control group,

indicative of reduced response inhibition (p\ 0.05;

Fig. 2a). Additionally, the athlete group had significantly

higher mania and aggression scores on the PAI than the

controls group (p\ 0.05; Fig. 2b), although the elevated

values did not reach levels high enough to be considered

clinically significant.

Cortical thinning of the ATL and OFC thickness

correlates with errors and aggression

The CTA restricted to masks of the OFC and ATL (Fig. 3a)

revealed two main findings, one at the group level and the

other as a function of behaviour.

At the group level, cortical thickness of the left ATL

was reduced in the athletes as compared to controls

(3.2 mm in athletes vs. 3.5 mm in controls; p\ 0.05,

corrected for multiple comparisons, 228 significant vertices

based on a cluster threshold of 108) (Fig. 3b). However,

there was no correlation between the cortical thickness of

the left ATL in the athletes and SART (reaction times,

errors) or PAI outcomes. The right ATL thickness though

was not significantly different between groups.

To examine relationships between cortical thickness of

the OFC with behaviour, we extracted values for medial

and lateral OFC thickness for each subject using the De-

sikan-Killiany Atlas (aparc.annot), obtained from cortical

parcellation in FreeSurfer. In the athletes, cortical thick-

ness of the mOFC bilaterally was negatively correlated

with SART error rate (r = -0.514, p = 0.035 for left,

and r = -0.517, p = 0.034 for right) (Fig. 3c). However,

there were no significant correlations between the mOFC

thickness and reaction time or PAI outcomes in athletes.

Cortical thickness of the right OFC (medial ? lateral)

was negatively correlated with aggression scores in ath-

letes (r = -0.561, p = 0.015), but not with mania or

SART outcomes (Fig. 3c). Left OFC thickness (medi-

al ? lateral) was not significantly correlated with the

SART or PAI outcomes in athletes. No correlations be-

tween OFC thickness and SART or PAI variables were

observed in controls.

UF abnormalities correlate with behaviour

At the group level (group average UF tractography depicted

graphically in Fig. 4a), there were no statistical differences

for any of the 4 DTI metrics (FA, AD, RD or MD) between

athletes and controls. However, AD of the UF was related to

three behaviours in the athletes: (1) the right UF AD was

negatively correlated with aggression (r = -0.543;

p = 0.02; Fig. 4b), (2) the left UF AD was negatively

correlated with the number of errors on the SART (r = -

0.558, p = 0.02; Fig. 4c), and (3) there was a trend towards

a positive correlation between the left UF AD with reaction

time (r = 0.475, p = 0.054; Fig. 4c). No correlations be-

tween FA, RD, or MD with SART or PAI variables were

observed in athletes and there were no statistically sig-

nificant correlations between DTI metrics of the UF and

SART or PAI outcomes in control subjects. In addition, DTI

metrics of the SLF (a control tract) did not correlate with

SART or PAI outcomes in athletes or controls.

Abnormal ATL-OFC resting state functional

connectivity

We determined the resting state functional connectivity of

the ATL with the OFC based on the region of cortical

thinning (see above) in the left ATL in athletes (Fig. 5).

We found that the athletes had increased functional con-

nectivity of this region in the left ATL with the left mOFC

compared to controls (p\ 0.05; Fig. 5). This finding was

spatially specific for the region we found to show cortical

thinning because there was no statistically significant dif-

ference in functional connectivity between the whole left

ATL-left OFC and right ATL-right OFC, although left

ATL-OFC functional connectivity was non-significantly

elevated in athletes compared to controls (0.74 ± 0.04 vs.

0.49 ± 0.04, p = 0.088). Furthermore, the left ATL-left

mOFC functional connectivity was not correlated with

impulsivity or PAI variables in athletes or controls, and

there were no significant correlations between the whole

left ATL-OFC and right ATL-OFC functional connectivity

with SART or PAI outcomes observed in either group.

Machine learning

The results of the classifier training and testing procedure

are summarized in Table 1 and illustrated in Fig. 6 for the

radial basis function SVM. Out of the linear, polynomial,

and RBF kernels that were tested, the RBF kernel achieved

the highest accuracy and statistical significance, exceeding

the performance of both the linear ElasticNet logistic re-

gression classifier and the sparse total variation classifier.

Two of the eight SVM RBF classifiers were statistically

significant at p\ 0.05. These two classifiers, trained on the
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MD and the RD of voxels in the right UF, achieved ac-

curacies of 83 and 81 %, respectively. The FA in the left

UF was trending toward significance with a p value of

0.067 and an accuracy of 78 %. Only the MD of the right

UF yielded a significant result with the ElasticNet classi-

fier, achieving an accuracy of 81 %. The sparse total var-

iation classifier did not perform as well as the ElasticNet,

and in any case achieved its highest accuracy as the total

variation penalty approached zero, making it equivalent to

the ElasticNet with no ridge penalty.

Since multiple classifiers were able to achieve good

accuracy with statistical significance when trained on MD

of several hundred voxels along the right UF, it was of

interest to examine which parts of the tract were most

strongly associated with differences between concussed

athletes and controls. We took two approaches toward this

query. First, Haufe et al. (2014) have recently presented

compelling evidence arguing that spatial maps of classifier

coefficients do not reveal the amount of signal (group

difference in this case) present in each voxel. Indeed, they

claim that these maps may reveal little of interest regarding

the underlying signal. Instead, they have argued that in the

case of two-group classification, the more appropriate

measure is the covariance between each voxel and the

grouping variable. We have, therefore, computed these

quantities and rendered the associated spatial maps (see

Fig. 7). Interestingly, despite the fact that none of the

voxels or clusters in this map reached the level of statistical

significance when controlled for multiple comparisons, our

classifiers were still able to utilize this information to make

accurate and statistically significant predictions of indi-

vidual group membership. The spatial distribution of co-

variances suggests that athletes possess increased MD

versus controls at the orbitofrontal end of the right UF, but

decreased MD compared to controls at the anterior tem-

poral end.
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Fig. 3 a Masks used in the

cortical thickness analysis

(CTA) were restricted to the

orbitofrontal cortex (OFC;

Brodmann Area 10, 11, 47) and

anterior temporal lobe (ATL;

Brodmann area 38) shown in

blue. b Cortical thinning of the

left ATL in the athletes

compared to controls in a region

of the ATL (blue cluster)

(p\ 0.05, corrected for

multiple comparisons). Data are

presented as mean ± SEM;
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number of go/no-go errors was
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(r = -0.517, p = 0.034) and
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Despite the above noted objections, the rendering of

classifier coefficients into spatial maps nonetheless remains

a widespread practice, so it was also of interest to examine

the relationship between these coefficients and the covari-

ance map. The SVM RBF classifier attained the highest

accuracy in our study, but the discriminant function of this

classifier achieves its performance by combining the

measurements from individual voxels in a complex non-

linear relationship that makes it difficult to assess both the

sign and the magnitude of each voxel’s contribution (Per-

eira et al. 2009). As a tractable alternative, we therefore

examined the weight coefficients computed by the Elas-

ticNet linear classifier when trained on the MD of the right

UF. Since ElasticNet coefficients have a tendency to be

somewhat unstable (Hastie et al. 2009), we examined the

mean of the coefficients from 10,000 bootstrap resampled

training runs.

Sparse classifiers have a tendency to select only one out

of a group of highly correlated predictors, setting all other

coefficients in the group to zero (Tibshirani 1996). While

the positive effect this strategy has on prediction accuracy

is well-established, it tends to produce sparsely populated

spatial coefficient maps with few, disconnected non-zero

voxels sporadically distributed over the image. In this

study, for example, only 8 of 941 voxels had non-zero

coefficients, making the resulting Elastic Net coefficient

map difficult to interpret. Nonetheless, upon comparing the

values of the ElasticNet coefficients with the most sig-

nificant covariances between voxels and group, we did find

that they a had a close correspondence: (1) covariances and

coefficients for each voxel always had the same sign; (2)

their values were strongly correlated (r = 0.76, p\ 10-6);

and (3) the voxels with the greatest magnitude covariances

that were statistically significant at p\ 0.05 (uncorrected)

also had the largest coefficients computed by the ElasticNet

classifier.
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UF axial diffusivity (AD) was

correlated with more aggression
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p = 0.02). c Left UF AD
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graph depicts higher functional connectivity (FC) between the left

ATL and left medial OFC in athletes versus controls (p\ 0.05). L left
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Discussion

This study is the first to associate diminished response

inhibition (a proxy for impulsivity) in athletes with a his-

tory of multiple concussions to structural and functional

abnormalities of the UF and connected gray matter.

Specifically, compared to controls, retired professional

football players had (1) behavioural signs of impulsivity as

evidenced by reduced go/no-go response inhibition, and

increased aggression and mania, (2) cortical thinning of the

ATL, (3) OFC thickness that negatively correlated with

task errors and aggression, (4) UF axial diffusivity that

correlated with task errors and aggression, and (5) in-

creased resting state functional connectivity between the

left ATL and left mOFC. Furthermore, a machine learning

algorithm trained on UF diffusion imaging metrics could

differentiate the athletes from healthy controls and a spatial

pattern of classifier weights revealed hot spots at the or-

bitofrontal and temporal ends of the UF. Taken together,

our findings suggest a role for the UF frontotemporal sys-

tem in impulsive and aggressive behaviour and the utility

of machine learning for the diagnosis of brain injury fol-

lowing concussions.

Impulsivity can be defined as ‘‘the tendency to delib-

erate less than most people of equal ability before taking

action’’ (Dickman 1990), often resulting in fast and inac-

curate responses. Bechara et al. (2000) identified motor (or

behavioural) and cognitive (or choice) impulsivity,

whereby behavioural impulsivity is analogous to response

inhibition and has been studied using go/no-go designs

(Horn et al. 2003). Therefore, our behavioural findings that

indicate impulsivity may relate to diminished response

inhibition, in line with previous studies in traumatic brain

injury (TBI) of increased impulsive betting behaviour

(Salmond et al. 2005), and impulsivity in decision making

(McHugh and Wood 2008). The go/no-go task was initially

utilized to examine learning and decision making after

frontal lobe damage (Drewe 1975). Lesions in the ventral

Fig. 6 Receiver operating characteristic (ROC) curves from SVM

radial basis function classifier training on the two significant DTI

metrics (Table 1) measured at voxels of the right uncinate fasciculi.

The actual ROC curves are depicted in red. Shown in grey scale is the

proportion of 10,000 ROC curves from classifiers trained on data with

the control/patient labels randomly permuted, as indicated by the

vertical bar at right. The black lines are contours of this null

distribution at p = 0.01, 0.05, and 0.1. Red ROC curves that penetrate

the 0.05 contour are considered to be statistically significant

Table 1 Results of classifier training on four DTI metrics within voxels of the uncinate fasciculi

Left uncinate Right uncinate

Accuracy P AUC Accuracy P AUC

Fractional anisotropy 0.78 0.0664 0.7183 0.64 0.3868 0.5635

Mean diffusivity 0.72 0.2032 0.6687 0.83 0.0184 0.8050

Axial diffusivity 0.67 0.32 0.6223 0.53 0.7884 0.2910

Radial diffusivity 0.64 0.386 0.6285 0.81 0.0404 0.7957

Accuracy indicates the proportion of held-out cases classified correctly by the classifier trained on the remaining cases under a leave-one-out

cross-validation protocol. P values indicate the proportion of data sets with randomly permuted labels whose classification performance was

equal or superior to the correctly labelled data. AUC indicates the area under the receiver operating characteristic (ROC) curve, a measure of

performance that is agnostic to the trade-off between sensitivity and specificity

Statistically significant results are shown in bold
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medial prefrontal cortex (vmPFC), insula and anterior

cingulate cortex have also been associated with impulsivity

(Clark et al. 2008). Patients with OFC lesions perform

worse on self-reports and cognitive/behavioural tests of

impulsivity (Berlin et al. 2004). The OFC is polymodal,

receiving inputs from all sensory modalities and is in-

volved with cognitive processing and emotional and be-

havioural control (Stuss 2011). The OFC and ATL are

directly connected through a bidirectional monosynaptic

pathway via the UF, a long-range association fiber bundle

(Schmahmann et al. 2007). The UF interconnections be-

tween the OFC and temporal lobe form a pathway in me-

diating impulsive choice, and lesions in the basolateral

amygdala have been shown to disrupt the functioning of

neurons in the OFC during a go/no-go task (Schoenbaum

et al. 2003).

The UF is implicated in impulsive and aggressive be-

haviour in psychiatric disorders. Lower FA in ventromedial

prefrontal WM has been shown to correlate with motor

impulsivity in schizophrenia/schizoaffective disorder pa-

tients (Hoptman et al. 2004), and higher trace diffusivity in

inferior frontal WM was associated with aggressiveness in

schizophrenic males (Hoptman et al. 2002). While con-

ventional neuroimaging methods often underestimate the

extent of damage after concussions, DTI techniques in mild

TBI (mTBI) have revealed neuropathological disruptions

in widespread WM tracts including the corpus callosum,

SLF, cingulum, fornix, and UF (Kraus et al. 2007; Niogi

et al. 2008). Niogi and colleagues (2008) showed that DTI

abnormalities in the UF correlated with performance on

memory tasks. As well, UF structure predicts behavioural

deficits in paediatric TBI (Johnson et al. 2011). However,

UF WM changes in concussions and the relationship to

impulsivity has not been previously investigated. Our

findings of correlations between AD and impulsivity and

aggression suggest aberrant frontotemporal structural con-

nectivity in athletes with a history of concussions. Most

studies of DTI in concussion have focused on changes in

FA (for reviews on neuroimaging of mTBI see Shenton

et al. 2012; Bigler 2013), and fewer have reported AD, and

the latter may be more representative of axonal pathology

(Song et al. 2003). Importantly, AD did not correlate with

impulsivity in the SLF, a WM tract also vulnerable to

concussion injury indicating specificity to the UF. Our ROI

approach provides an advantage for detecting subtle WM

changes in concussed individuals whereas recent work

shows that whole-brain analysis does not detect WM ab-

normalities in acute mTBI (Ilvesmaki et al. 2014). Our

findings indicate that dysfunction in this circuitry between

the frontal and temporal cortices plays a role in impulsive/

aggressive behaviour.

The frontal cortex and temporal lobe are often damaged

in focal and diffuse brain injury (Bigler 2007; Zappala

et al. 2012). We showed significant cortical thinning in the

left ATL in athletes compared to controls. This is a novel

finding in contrast with previous observations of medial

temporal lobe damage in mTBI (Umile et al. 2002). Re-

duced gray matter volume in chronic mTBI has been found

in frontal and temporal cortices (Gale et al. 2005). In mild

and moderate/severe brain injury patients, Newcombe et al.

(2011) reported a higher impulsivity index assessed by the

Cambridge Gambling Task that was associated with an

increase in the DTI apparent diffusion coefficient in the

Fig. 7 Contrasts of the spatial pattern of mean diffusivity (MD)

along the right uncinate fasciculus (UF) for athletes versus controls

are shown. The figure is a 3 9 2 grid of renderings of the right

hemisphere white matter skeleton and UF from two different

viewpoints: the lateral view of the right hemisphere from the anterior

right side of the subject (left column), and medial view of the right

hemisphere from the left of the subject (right column). The top row

shows the entire right hemisphere WM skeleton as computed by

TBSS, with the probabilistic tractography-based segmentation of the

UF mostly obscured by other tracts. The 2nd row makes the non-UF

white matter transparent to reveal the position of the UF in context.

The bottom row is a magnification of the UF to better reveal the

pattern of covariances between the MD at each voxel and group (-1

for controls, ?1 for athletes), represented by the colour. A region of

high positive covariance (red), indicating higher MD in athletes than

in controls, can be seen at the orbitofrontal end of the tract. A region

of high negative covariance (blue), indicating lower MD in athletes

versus controls, can be seen at the anterior temporal end
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OFC, insula and caudate. Abnormalities in brain structure

linked with impulsivity have also been noted in bipolar

disorder. Reduced gray matter in prefrontal and medial

temporal lobe has been associated with greater impulsivity

assessed by the Barratt Impulsivity Scale (Soloff et al.

2008). In the present study, cortical thinning in the left

ATL did not correlate with impulsivity, suggestive of in-

volvement of the ATL in other putative functions (Bi et al.

2011). However, the negative correlations between OFC

thickness with task errors and aggression reported here are

in line with evidence of OFC damage and impulsivity

(Berlin et al. 2004; Wood and Thomas 2013) and frontal

lobe involvement in anger and aggression (Potegal 2012).

Our finding of enhanced functional connectivity be-

tween the area of cortical thinning in the left ATL and the

left mOFC in athletes links gray matter abnormalities with

altered functional regulation, possibly due to a more tem-

porally coherent pattern of activity in the frontotemporal

connectivity. This connectivity increase in athletes may

also be due to underlying changes in WM as well as de-

creased variability in functional connectivity. Measurement

of functional connectivity variability in this population is

an area for future study since intrinsic inter-subject vari-

ability in functional connectivity and associated individual

performance variability across various cognitive domains

exists (Mueller et al. 2013).

The application of machine learning to DTI metrics in

concussed athletes represents a novel approach towards

damage prediction. Although Aribasala et al. (2010)

achieved good accuracy using SVM with MD, they used

only 16 predictors comprised MD averages over large

ROIs. Hellyer et al. (2013) applied SVM to individual

voxels in the entire TBSS WM skeleton and achieved very

high accuracy, but subjects in their classifier study included

those with severe TBI and all had microbleeds, making the

classification task arguably easier. Nonetheless, in agree-

ment with our results, they did find that their classifier

exploited decreased values of DTI metrics in some regions

versus increased values in other regions rather than ho-

mogenous increases or decreases over the whole cortex.

Our results of a heterogeneous distribution of MD/RD in

the UF (Fig. 7) may reflect the underlying anatomy

wherein the temporal segment originates from the anterior

temporal convolutions (area 20, 38), the uncus (area 35)

and cortical nuclei of the amygdala (area 28, 34, 36)

(Ebeling and von Cramon 1992). Cell bodies reside in the

temporal segment and the tract runs upward over the lateral

nucleus of the amygdala, through the limen insula, and then

passes through the extreme and external capsule. The

frontal fan-shaped portion passes in the orbital region (area

11, 47), which branches and terminates in the lateral OFC

and frontal pole (Catani et al. 2002; Von Der Heide et al.

2013). Zhou et al. (2013) also reported the training of

highly accurate classifiers for discriminating mTBI patients

from controls, but employed a wide array of imaging

modalities in their classifier concurrently. To the best of

our knowledge, ours is the first study to investigate the

predictive power of DTI metrics in voxels of a specific

WM tract for discriminating concussed patients from

controls. Our findings, together with the other studies cited,

indicate that machine learning methods can reveal sig-

nificant group differences that are undetectable with tra-

ditional, univariate approaches.

Limitations of our study include a cohort effect with

possible self-selection to participate in the study as well as

restrictions on generalizability of the findings to others in

this unique cohort of individuals with very high concussion

and sub-concussion exposure, but not to people with a

single or a few concussions. Future studies with a greater

sample size will allow for a larger network analysis of

other brain regions as well as address mechanistic issues of

the relationship between structure, atrophy, connectivity

and impulsivity. Another limitation pertains to interpreta-

tion of the SART data as relating to inhibitory control.

Inhibitory control plays an important role in normal cog-

nition and in clinical disorders and thus we used the go-

no/go task to gain insight into participants’ abilities to

suppress a pre-potent response. In this task, an inter-rela-

tionship between faster speed and accurate inhibition may

exist and it is thus possible that the increased error rate in

the athletes may have been due in part to faster responding.

However, in addition to fast responding, high error rates

may arise from reduced response inhibition. Previous work

suggests that impulsive individuals appear unable to inhibit

pre-potent responses because their inhibitory responses are

slowed and not because their pre-potent responses are re-

markably faster (Logan et al. 1997). We acknowledge that

the source of errors may have been contaminated with

factors other than reduced response inhibition. Thus, future

studies could investigate the generalizability of our find-

ings through other measures of impulsivity and response

inhibition.

Finally, our machine learning approach is novel in its

application to concussion and provides a new avenue with

which to further study brain abnormalities in concussed

individuals. This represents a step towards development of

a tool with the potential for clinical utility to predict re-

covery and assess clinical treatment.

In summary, we have shown heightened impulsive/ag-

gressive behaviours in concussed athletes, with associated

microstructural changes in the UF, in addition to cortical

thinning in the ATL, OFC thickness that negatively cor-

relates with higher aggression, and enhanced resting state

connectivity between the left ATL and left OFC. Machine

learning on DTI metrics is a useful technique to dis-

criminate and potentially diagnose concussion. Future use
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of these strategies may also be useful for examining the

brain structure and function related to cognitive changes in

the progressive development of neuropathological changes

in concussed individuals (Hazrati et al. 2013; Tator 2014).
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