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Abstract: Interleukin-6 (IL-6) can cause pro- and anti-inflammatory effects via different signaling path-
ways. This prospective study investigated the perioperative kinetics of IL-6, soluble IL-6 receptor (sIL-
6R), and soluble glycoprotein 130 (sgp130) in elective patients undergoing cardiopulmonary bypass
(CPB). IL-6, sIL-6R, and sgp130 were measured simultaneously and consecutively at 19 timepoints
until the 10th postoperative day (POD). The proportion of pro- and anti-inflammatory pathways
were determined by calculating sIL-6R/IL-6 and sIL-6R/sgp130 ratios. We analyzed 93 patients.
IL-6 increased during surgery with reaching a plateau two hours after CPB and peaking on POD
1 (188.5 pg mL−1 (IQR, 126.6; 309.2)). sIL-6R decreased at the beginning of the surgical procedure,
reaching a nadir level on POD 2 (26,311 pg mL−1 (IQR, 22,222; 33,606)). sgp130 dropped immediately
after CPB initiation (0.13 ng mL−1 (IQR, 0.12; 0.15)), followed by a continuous recovery until POD10.
The sIL-6R/IL-6 ratio decreased substantially at the beginning of the procedure, reaching a nadir
on POD 1 (149.7 (IQR, 82.4; 237.4)), while the sIL-6R/sgp130 ratio increased simultaneously until
6 h post CPB (0.219 (IQR 0.18; 0.27)). In conclusion, IL-6 exhibited high inter-individual variability
reflecting an inhomogeneous inflammatory response. Pro-inflammatory effects and overwhelming
inflammation were rare and predominantly anti-inflammatory effects were found.

Keywords: cardiac surgical procedures; cardiopulmonary bypass; cytokine receptor gp130; inflam-
mation; interleukin-6; receptors; interleukin-6

1. Introduction

Interleukin- 6 (IL-6) is a widely discussed biomarker in conjunction with extracorporeal
circulation and inflammation during cardiac surgical interventions [1–7].

Beside inflammation, IL-6 is involved in various processes with a complex signaling
physiology based on two pathways [8]. In both pathways, a ligand/receptor complex is
formed combined with a type I signal transducer protein glycoprotein (gp) gp130 [9].

The classic-signaling process is limited to cells with a membrane-bound IL-6 receptor
(IL-6R), which is only found on hepatocytes and several leukocyte subpopulations [10,11].
The IL-6R and its ligand form an IL-6•IL-6R complex, which then associates with membrane-
bound gp130. Gp130 is expressed ubiquitously on every cell. The classic-signaling process
is associated with regenerative or anti-inflammatory effects [9–12].
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The trans-signaling process is mediated by a soluble form of the IL-6R (sIL-6R) and
occurs in all cells expressing gp130. Most of sIL-6R is formed by shedding of membrane-
bound IL-6R into the circulation after proteolytic cleavage [13]. Alternatively, some minor
fraction of IL-6R is generated by splicing of the IL-6R mRNA [14]. sIL-6R binds free IL-6
and forms IL-6•sIL-6R complexes, which again bind to membrane-bound gp130 and cause
IL-6 trans-signaling. Trans-signaling mediates pro-inflammatory effects of IL-6 such as
higher endothelial permeability [10,15].

Similar to sIL-6R, a soluble form of gp130 (sgp130) is circulating in plasma [16,17].
Sgp130 is able to bind and neutralize the IL-6•sIL-6R complex and consequently specifically
inhibits pro-inflammatory effects [18]. This natural IL-6 buffer is dependent on the sIL-6R
levels and is therefore able to antagonize low levels of circulating IL-6 [19]. In physiological
conditions, IL-6, sIL-6R, and sgp130 are in equilibrium [9].

This complex IL-6 signaling physiology and balance in pro- and anti-inflammatory
effects has been investigated in several studies concerning cardiac patients. Imbalances
were found in patients with severe chronic heart failure [20], in the local and circadian
inflammatory reaction in the coronary blood stream of the ischemic heart [21,22]. Moreover,
a small study in 31 patients investigated the effects of cardiopulmonary bypass (CPB) on
IL-6, sIL-6R, and sgp130 in patients undergoing coronary artery bypass graft [7].

The aim of this study was to investigate the perioperative kinetics of IL-6, sIL-6R, and
sgp130 in order to characterize pro- and anti-inflammatory IL-6 effects and the natural
buffer system in a close-meshed perioperative timeframe in patients undergoing elec-
tive cardiac surgery with cardiopulmonary bypass (CPB). Additionally, we investigated
the association between the changes in the balance between pathways/mediators and
perioperative fluid balance and cell membrane integrity.

2. Materials and Methods

In this prospective, observational, single-centre study, we included 100 elective cardiac
surgical patients with planned CPB. The study was performed at the Division of Cardiac
Thoracic Vascular Anaesthesia and Intensive Care Medicine at Medical University of Vienna
and conducted between 31 October 2016, and 26 January 2018.

We excluded patients who were less than 18 years of age, patients who were pregnant,
patients with a body mass index <18, C-reactive protein >20 mg L−1, and patients with
pre-operative chronic renal failure on renal replacement therapy. Moreover, we excluded
patients who were receiving chemotherapy or diagnosed with any disease state associated
with leukopenia, receiving anti-leucocyte drugs, immunosuppression, or TNF- α blockers.
Patients undergoing emergency procedures, transplantation surgery, pulmonary throm-
boendarterectomy, and elective cardiac assist device implantation or patients receiving
postoperative extracorporeal membrane oxygenation were also excluded. Finally, patients
who did not provide their written informed consent to participate were excluded.

This study was approved by the Ethics committee (Ref: 1518/2016) of the Medical
University of Vienna, Vienna, Austria (chairperson: Dr. Jürgen Zezula) on 7 July 2016.
Written informed consent was obtained from all the subjects participating in the trial.

2.1. Outcome Variables

The primary outcome was the change in IL-6, sIL-6R, and sgp130 levels in the peri-
operative course. As secondary outcomes, we investigated the change in sIL-6R/IL6 and
sIL-6R/sgp130 ratio levels in the perioperative course, changes in intra- and postoperative
fluid balances, and differences in postoperative phase angle, a marker of cell membrane
integrity measured by bioelectrical impedance analysis (BIA).

2.2. Procedure, Data and Sample Collection

We collected pre-operative patient data, comorbidities, surgery- and procedure-related
factors, and post-operative data (Table 1). Data collection was performed with the help of a
case report form.
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Table 1. Demographic and surgical characteristics.

Preoperative Risk Indicators

Male 59 (63.4)
Female 34 (36.6)
Age (y) 69.0 [60 to 76]
Height (cm) 172 [165 to 178]
Weight (kg) 81.0 [69 to 88]
Resistance 386.5 [345 to 463]
Reactance 43.0 [34.0 to 50.8]
Phase angle 5.7 [4.7 to 7.2]
Frailty scale 2.0 [2 to 3]

Comorbidities

Asthma 4 (4.3)
COPD 15 (16.1)
NIDDM 14 (15.1)
IDDM 4 (4.3)
Chronic kidney disease 6 (6.5)
Cardiac decompensation 1 (1.1)
PAOD 6 (6.5)
Atrial fibrillation 26 (28)
Angina pectoris

Absent 68 (73.1)
Stable 23 (24.7)
Unstable 2 (2.2)

LVEF
>50% 65 (69.9)
30–50% 23 (24.7)
<30% 5 (5.4)

Surgical characteristics

Procedure
CABG 14 (15.1)
Combined 26 (28)
Valve 53 (57)

Reoperation 16 (17.2)
Anaesthesia duration (min) 395 [339 to 457]
Surgery (min) 307 [255 to 542]
CPB (min) 148 [111 to 192]
AoCC (min) 98 ± 44
Balanceintraoperative (mL) 4460 [3767 to 6096]
PRBC (units) 0 [0 to 1]
Platelets (units) 0 [0 to 0]
Fresh frozen plasma (units) 0 [0 to 0]
Fibrinogen (g) 0 [0 to 2]
Coagulation factors (I.U.) 0 [0 to 0]

Postoperative risk indicators

SAPS 3 41.1 ± 11.6
SOFA on ICU admission 7 [6 to 9]
Length of ICU stay (d) 2 [1 to 4]

Values are presented as number (n) and percentage (%), mean ± standard deviation for normally distributed
or median [interquartile range] for non-normally distributed. Abbreviations: AoCC, aortic cross-clamp; CABG,
coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; CPB, cardiopulmonary bypass; ICU,
intensive care unit; IDDM, insulin-dependent diabetes mellitus; LVEF, left ventricular ejection fraction; NIDDM,
non-insulin-dependent diabetes mellitus; PAOD, peripheral artery occlusive disease; PRBC, packed red blood
cells; SAPS, simplified acute physiology score; SOFA, sepsis-related organ failure assessment score.
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Patients were enrolled the day before surgery after giving informed consent. Patient
data were collected prospectively at the time of enrolment and followed until their hospital
discharge or for a maximum of 10 days.

Blood sample time points:

1. After induction of anaesthesia-before skin incision
2. Before start of CPB-after sternotomy/thoracotomy
3. 30 min after start of CPB
4. 120 min after start of CPB
5. After end of CPB-before protamine administration
6. 60 min after end of CPB
7. 120 min after end of CPB
8. 240 min after end of CPB
9. 360 min after end of CPB
10. –19. Postoperative Day (POD) 1–10

Blood samples were taken from central venous lines in all patients until the line was
removed or the patients were discharged from hospital. Blood samples were drawn in
pyrogen-free vials, centrifuged at 3000 rpm and the resultant supernatant was immediately
stored frozen at −80 ◦C for further analysis in several aliquots. Quantitative measurements
of IL-6, sIL-6R, and sgp130 concentrations were conducted with 96-well plate ELISAs
(Human IL-6 Quantikine ELISA Kit, Human IL-6R alpha Quantikine ELISA Kit and Hu-
man soluble gp130 Quantikine ELISA Kit, R&D Systems® Inc., Minneapolis, MN, USA),
according to the manufacturer’s protocol. The reported coefficients of variability in the
used ELISA Kits are 4.2%, 8.6%, and 5.5% for intra-assay precision and 6.4%, 6.4%, and
5.2% for inter-assay precision, respectively.

2.3. Bioelectrical Impedance Analysis

We performed BIA by using 800 µA at 50 kHz with a single-frequency bioimpedance
analyzer (Model BIA 101; Akern-RJL, Pontassieve, Italy). The skin was cleaned, and adhe-
sive pre-gelled electrodes (Bianostic AT; Data Input GmbH, Wedemark, Germany) were
placed on the hand and the foot of the right side while patients where in a recumbent posi-
tion with the limbs abducted from the body. Measurements were performed preoperatively
before induction of anaesthesia and once daily postoperatively until POD 10 or hospital
discharge. The measured BIA variables were resistance (R), reactance (Xc) and the phase
angle (arctanXc/R).

2.4. Statistics

Demographic and clinical baseline data are presented as mean and standard deviation
(SD) or median with inter-quartile range (IQR) for metric variables and absolute frequencies
for categorical variables. Differences between groups were analysed using the Student’s
t-test for normally distributed variables and the Mann–Witney U-test for non-normally
distributed continuous variables. The Shapiro–Wilk test was used to test normality. The
χ2 test was used to test categorical variables. A paired t-test was used to compare depen-
dent samples, autocorrelation was used to test the time dependency and correlation of
serial measurements.

To analyse the difference in clinical effects (perioperative fluid balance and postop-
erative BIA) of pro-inflammatory IL-6, we selected the period of increasing inflammatory
reaction beginning with the start of CPB up to 6 h after CPB (timepoints 3–9). Within
this period, we divided all patients to deciles and formed 3 different groups: patients
with (a) continuously highest decile; (b) continuously lowest decile; (c) and continuously
between lowest and highest (intermediate) perioperative sIL6-R/IL-6 ratio. Since sIL6-
R/IL-6 ratios were changing dynamically within the observed time period, we determined
that patients had to be at least 50% or more of timepoints within the highest or lowest
sIL6-R/IL-6 ratios to be selected to the respective group.
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The consecutive emerging clinical effects of inflammation were analysed by differences
between these groups in the postoperative course. For the non-parametric longitudinal
testing of differences within the respective groups, we used the Friedman test.

A p-value of <0.05 was considered statistically significant. No adjustment for multiple
testing was performed. Statistical analysis was performed, and plots were drawn using the
statistical environment R 3.4.3 (http://www.R-project.org/).

3. Results
3.1. Patient Characteristics

A total of 132 patients were screened for eligibility. Of these, 29 patients were excluded
(Figure 1). We approached 103 patients, and three of those declined informed consent.
After including 100 patients, seven dropped out. Finally, 93 patients were included in
the analysis.

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 5 of 13 
 

 

continuously highest decile; (b) continuously lowest decile; (c) and continuously between 
lowest and highest (intermediate) perioperative sIL6-R/IL-6 ratio. Since sIL6-R/IL-6 ratios 
were changing dynamically within the observed time period, we determined that patients 
had to be at least 50% or more of timepoints within the highest or lowest sIL6-R/IL-6 ratios 
to be selected to the respective group. 

The consecutive emerging clinical effects of inflammation were analysed by differ-
ences between these groups in the postoperative course. For the non-parametric longitu-
dinal testing of differences within the respective groups, we used the Friedman test. 

A p-value of <0.05 was considered statistically significant. No adjustment for multiple 
testing was performed. Statistical analysis was performed, and plots were drawn using 
the statistical environment R 3.4.3 (http://www.R-project.org/). 

3. Results 
3.1. Patient Characteristics 

A total of 132 patients were screened for eligibility. Of these, 29 patients were ex-
cluded (Figure 1). We approached 103 patients, and three of those declined informed con-
sent. After including 100 patients, seven dropped out. Finally, 93 patients were included 
in the analysis. 

 
Figure 1. Selection and exclusion criteria for patients enrolled to the study. 

The median age of our patients was 69.0 years (IQR 60.0 to 76.0 years), and 37% (n = 
34) were females (Table 1). CABG, valve, and combined procedures were performed in 
15% (n = 14), 57% (n = 53), and 28% (n = 26) of patients, respectively. The median procedure 
time was 307 min (IQR 255–542 min). A simplified acute physiology score (SAPS) 3 of 41.5 
(IQR 34.8–49.0) was found after admission to intensive care unit (ICU) and the median 
length of ICU stay was two days (IQR 1–4 days). Follow-up of blood samples was de-
creased on postoperative day (POD) 4. Either patients’ central venous lines were removed, 
or patients were consecutively discharged from hospital. 

  

Patients screened
N=132

Not eligible, N=29
• Included in other studies, N=10

• Missed inclusion criterias, N=18
• Absent, N=1 

Dropout, N=7
• Postoperative ECMO, N=1

• Needed immunosuppression, N=1
• Studyteam not available, N=1

• Preoperative CPR after recruitment, N=1
• Resigned, N=1

• Elevated CRP after recruitment, N=2

Declined, N=3

Patients recruited
N=103

Patients included
N=100

Patients analyzed
N=93

Figure 1. Selection and exclusion criteria for patients enrolled to the study.

The median age of our patients was 69.0 years (IQR 60.0 to 76.0 years), and 37% (n = 34)
were females (Table 1). CABG, valve, and combined procedures were performed in 15%
(n = 14), 57% (n = 53), and 28% (n = 26) of patients, respectively. The median procedure time
was 307 min (IQR 255–542 min). A simplified acute physiology score (SAPS) 3 of 41.5 (IQR
34.8–49.0) was found after admission to intensive care unit (ICU) and the median length
of ICU stay was two days (IQR 1–4 days). Follow-up of blood samples was decreased on
postoperative day (POD) 4. Either patients’ central venous lines were removed, or patients
were consecutively discharged from hospital.

3.2. Laboratory Measurements

IL-6: Median baseline IL-6 was 3.0 pg mL−1 (IQR 2.0–4.3 pg mL−1). IL-6 increased contin-
uously during the procedure with reaching a plateau two to six hours after CPB with highest
median IL-6 concentration on POD 1 (188.5 pg mL−1 (IQR 126.6–309.2 pg mL−1)). The mean
difference between POD 1 and baseline was 256.5 pg mL−1 (95% CI, 209.8–303.1 pg mL−1;
p < 0.0001). The decline of IL-6 started on POD 2 and was maintained until the end of ob-
servation period, not returning to baseline values (Figure 2 and Supplementary Figure S1).
The sequentially measured IL-6 values had a positive autocorrelation of 0.76 and 0.51 one
timepoint and two timepoints prior, respectively.

http://www.R-project.org/


J. Clin. Med. 2022, 11, 590 6 of 13

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 6 of 13 
 

 

3.2. Laboratory Measurements 
IL-6: Median baseline IL-6 was 3.0 pg mL−1 (IQR 2.0–4.3 pg mL−1). IL-6 increased con-

tinuously during the procedure with reaching a plateau two to six hours after CPB with 
highest median IL-6 concentration on POD 1 (188.5 pg mL−1 (IQR 126.6–309.2 pg mL−1)). 
The mean difference between POD 1 and baseline was 256.5 pg mL−1 (95% CI, 209.8–303.1 
pg mL−1; p < 0.0001). The decline of IL-6 started on POD 2 and was maintained until the 
end of observation period, not returning to baseline values (Figure 2 and Supplementary 
Figure S1). The sequentially measured IL-6 values had a positive autocorrelation of 0.76 
and 0.51 one timepoint and two timepoints prior, respectively. 

 
Figure 2. Exaggeration of IL-6, sIL-6R and sgp130. The figure displays individual time course (left) 
and corresponding boxplots (right) of perioperative levels of IL-6, sIL-6R and sgp130 levels. The 
lines on the left are displayed on a a logarithmic scale. Asterisks (*) mark significant differences 
compared to baseline at p less than 0.05. In the boxplots, the lower boundary of the box indicates the 
25th percentile, a black line within the box marks the median, and the upper boundary of the box 
indicates the 75th percentile. Whiskers above and below the box indicate the 10th and 90th percen-
tiles. Points (°) above and below the whiskers indicate outliers outside the 10th and 90th percentiles 
(IL-6 outliers above 1200 pg/mL are not shown). Red, blue and green lines indicate IL-6, sIL-6R and 
sgp130 levels, respectively. Abbreviations: CPB, cardiopulmonary bypass; POD, postoperative day; 
sgp130, soluble glycoprotein 130; sIL-6R, soluble interleukin-6 receptor. 

sIL-6R: Median baseline sIL-6R was 30,859 pg mL−1 (IQR 25,874–37,980 pg mL−1). sIL-
6R significantly decreased from baseline to a nadir 30 min after CPB start of 26,161 pg 
mL−1 (IQR 22,151 to 32,408 pg mL−1) with a mean difference of −4083.7 pg mL−1 (95% CI, 
−5674.0–−2493.4 pg mL−1; p = 0.0019) compared to baseline. This was followed by an in-
crease until 6 h after CPB, with a mean difference of 5794.2 pg mL−1 (95% CI, 3756.3–
7832.1pg mL−1; p = 0.0002) compared to 30 min after CPB start. This increase was followed 
by a continuous decrease on POD 1 and POD 2, with a mean difference of −4205.4 pg mL−1 
(95% CI, −5588.2–−2822.6 pg mL−1; p < 0.0001) and −5930.6 pg mL−1 (95% CI, −7801.1–
−4060.1 pg mL−1; p < 0.0001) compared to 6 h after CPB, respectively. This was followed 
with a consecutive recovery until POD 4 (Figure 2). The sequentially measured sIL-6R 
values had a positive autocorrelation of 0.75 and 0.67 one timepoint and two timepoints 
prior, respectively. 

sgp130: Median baseline sgp130 was 179.6 ng mL−1 (IQR 157.9–213.1 ng mL−1). sgp130 
significantly decreased from baseline to a nadir at the end of CPB of 133.7 ng mL−1 (IQR 
117.7 to 153.7 ng mL−1) with a mean difference of −42.8 ng mL−1 (95% CI, −50.0–−35.6 ng 
mL−1; p <0.0001) compared to baseline. This decrease was followed by a continuous recov-
ery until the end of the observational period (Figure 2). The sequentially measured sgp130 

Figure 2. Exaggeration of IL-6, sIL-6R and sgp130. The figure displays individual time course (left)
and corresponding boxplots (right) of perioperative levels of IL-6, sIL-6R and sgp130 levels. The lines
on the left are displayed on a a logarithmic scale. Asterisks (*) mark significant differences compared
to baseline at p less than 0.05. In the boxplots, the lower boundary of the box indicates the 25th
percentile, a black line within the box marks the median, and the upper boundary of the box indicates
the 75th percentile. Whiskers above and below the box indicate the 10th and 90th percentiles. Points
(◦) above and below the whiskers indicate outliers outside the 10th and 90th percentiles (IL-6 outliers
above 1200 pg/mL are not shown). Red, blue and green lines indicate IL-6, sIL-6R and sgp130 levels,
respectively. Abbreviations: CPB, cardiopulmonary bypass; POD, postoperative day; sgp130, soluble
glycoprotein 130; sIL-6R, soluble interleukin-6 receptor.

sIL-6R: Median baseline sIL-6R was 30,859 pg mL−1 (IQR 25,874–37,980 pg mL−1). sIL-
6R significantly decreased from baseline to a nadir 30 min after CPB start of 26,161 pg mL−1

(IQR 22,151 to 32,408 pg mL−1) with a mean difference of −4083.7 pg mL−1 (95% CI,
−5674.0–−2493.4 pg mL−1; p = 0.0019) compared to baseline. This was followed by
an increase until 6 h after CPB, with a mean difference of 5794.2 pg mL−1 (95% CI,
3756.3–7832.1pg mL−1; p = 0.0002) compared to 30 min after CPB start. This increase
was followed by a continuous decrease on POD 1 and POD 2, with a mean difference of
−4205.4 pg mL−1 (95% CI, −5588.2–−2822.6 pg mL−1; p < 0.0001) and −5930.6 pg mL−1

(95% CI, −7801.1–−4060.1 pg mL−1; p < 0.0001) compared to 6 h after CPB, respectively.
This was followed with a consecutive recovery until POD 4 (Figure 2). The sequentially
measured sIL-6R values had a positive autocorrelation of 0.75 and 0.67 one timepoint and
two timepoints prior, respectively.

sgp130: Median baseline sgp130 was 179.6 ng mL−1 (IQR 157.9–213.1 ng mL−1). sgp130
significantly decreased from baseline to a nadir at the end of CPB of 133.7 ng mL−1 (IQR 117.7
to 153.7 ng mL−1) with a mean difference of −42.8 ng mL−1 (95% CI, −50.0–−35.6 ng mL−1;
p < 0.0001) compared to baseline. This decrease was followed by a continuous recovery
until the end of the observational period (Figure 2). The sequentially measured sgp130
values had a positive autocorrelation of 0.72 and 0.63 one timepoint and two timepoints
prior, respectively.

sIL-6R/IL-6 ratio: Median baseline sIL-6R/IL-6 ratio was 9870.0 (6340.0–16,323.7).
The ratio decreased substantially from baseline to 120 min after start of CPB with a mean
difference of −10,831.38 (95% CI, −12,660.1–−9002.7; p < 0.0001). The nadir of 149.7 (IQR
82.4–237.4) was found on POD 1, followed by a consecutive increase until the end of the
observational period, not reaching the baseline ratio (Figure 3a).
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Figure 3. sIL-6/IL-6 and sIL-6R/sgp130 ratio. The lines show the perioperative levels of (a) sIL-6/IL-6
and (b) sIL-6R/sgp130 ratio at different time points. Red lines indicate patients with continuously
lowest levels, blue lines indicate patients with continuously highest levels and grey lines indicate
patients with intermediate levels of perioperative sIL6-R/IL-6 ratio measured between timepoint
3 and 9. Abbreviations: CPB, cardiopulmonary bypass; POD, postoperative day; sgp130, soluble
glycoprotein 130; sIL-6R, soluble interleukin-6 receptor.

sIL-6R/sgp130 ratio: Median baseline sIL-6R/sgp130 ratio was 0.17 (IQR 0.14–0.21).
The ratio increased from baseline to a peak of 0.22 (IQR 0.18–0.17) six hours after the end
of CPB with a mean difference of 0.05 (95% CI, 0.04–0.06; p < 0.0001). On POD 1, the sIL-
6R/sgp130 ratio decreased again to 0.18 (IQR 0.14–0.21), with a mean difference of −0.04
(95% CI, −0.05–−0.03; p < 0.0001) followed by an increase until the end of the observational
period (Figure 3b)

3.3. Pro-Inflammtory Effects on Fluid Balance and BIA

We found a more pronounced decrease of sIL-6R/IL-6 ratio in patients with high
IL-6 levels during this period (Figure 3a). Those patients with the continuously lowest
sIL-6R/IL-6 ratios were also found with a significant steady increase of sIL-6R/sgp130
ratios (mean difference, 0.03, 95% CI 0.003–0.066; p = 0.0352) until POD 1 (Figure 3b),
whereas those patients with the continuously highest sIL-6R/IL-6 ratios had no change in
their sIL-6R/sgp130 ratios (mean difference −0.01, 95% CI −0.07–0.05; p = 0.6998) until
POD 1.

We found a significantly lower cumulative fluid balance (i.e., induction of anaesthesia
until first postoperative morning) on the day of surgery between the high and low sIL-
6R/IL-6 ratio group, namely 6166 ± 1161 mL vs. 8597 ± 2507 mL, p = 0.0159, respectively,
as well as in patients in the high sIL-6R/IL-6 group compared to the intermediate group,
6166 ± 1161 mL vs. 8472 ± 3152 mL, p = 0.0082, respectively (Figure 4a). The difference in
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fluid balance was mainly caused by a reduced fluid resuscitation in the first postoperative
hours in ICU after end of surgery until POD 1.
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Figure 4. Effects of inflammation on fluid balance and BIA. (a) The boxplots show differences in
intra- and postoperative fluid balance between patients with continuously highest levels (blue),
intermediate levels (grey) and lowest levels (red) of perioperative sIL6-R/IL-6 ratio measured be-
tween timepoint 3 and 9. (b) The boxplots show differences in phase angle between patients with
continuously highest levels (blue), intermediate levels (grey) and lowest levels (red) of perioperative
sIL6-R/IL-6 ratio measured between timepoint 3 and 9. Asterisks (*) mark significant differences
between the two groups at p less than 0.05. In the boxplots, the lower boundary of the box indicates
the 25th percentile, a black line within the box marks the median, and the upper boundary of the
box indicates the 75th percentile. Whiskers above and below the box indicate the 10th and 90th
percentiles. Points (◦) above and below the whiskers indicate outliers outside the 10th and 90th
percentiles. Abbreviations: BIA, bioelectrical impedance analysis; CPB, cardiopulmonary bypass;
POD, postoperative day; sIL-6R, soluble interleukin-6 receptor.

The variability of median phase angle levels within the group with lower and higher
sIL-6R/IL-6 ratios was not significantly different over the postoperative period (p = 0.9869
and p = 0.8088, respectively).

In the group with lower sIL-6R/IL-6 ratios, postoperative phase angle was significantly
lower on POD 2 (2.3 ± 2.0 vs. 5.4 ± 3.7; p = 0.0015) and POD 3 (2.5 ± 1.0 vs. 4.0 ± 1.2;
p = 0.0046) compared to the high sIL-6R/IL-6 ratio group (Figure 4b). Because of the
frequent discharge of patients after POD 5, BIA measurements after POD 5 were not taken
into account.

We found a significantly higher frailty scale (3.0 (2.0; 5.0) vs. 1.0 (1.0; 2.0); p = 0.0048),
procedure time (397 min (3461; 498) vs. 240 min (202; 298); p = 0.0003), higher need for
transfusions (2 units (1; 3) vs. no transfusions; p = 0.0005), a higher SOFA on ICU admission
(9.0 (8.5; 9.0) vs. 6.0 (5.0; 7.0); p = 0.0004), and a significantly longer ICU-length of stay
(5.0 days (2.5; 9.0) vs. 1 day (1.0; 1.0); p = 0.0002) in patients within the lower sIL-6R/IL-6
ratio group compared to patients within the high sIL-6R/IL-6 ratio group, respectively
(Supplementary Table S1).

4. Discussion

Cardiac surgery is associated with an unpredictable activation of the immune system,
which is mainly caused by blood contact with artificial surfaces, shear forces from roller
pumps, and surgical trauma [6,23]. In this clinical analysis, we describe the perioperative
kinetics of IL-6, sIL-6R, and sgp130 in a close meshed real-life observation of a large cohort
of elective cardiac surgical patients.
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We observed an elevation of IL-6 after the initiation of CPB reaching a plateau at the
end of surgery until the first postoperative day. Moreover, we observed an inhomogeneous
inflammatory response and strong inter-individual differences in the amounts of IL-6
between our patients, similar to previous findings [6,7]. Interestingly, Corbi et al. [7] found
in a pilot study a higher inflammatory reaction in off-pump patients than in on-pump
CABG patients, meaning the inflammatory activation is mainly caused by surgical trauma,
not by CPB, a fact we cannot confirm due to no off-pump patients in our patient cohort.
In addition, we can show a more accurate, close-meshed time frame in a higher number
of patients.

Nevertheless, the overall activation of IL-6 was below a hyperinflammatory or septic
response, where persistently elevated levels of IL-6 greater than 500 pg mL−1 can be
found [24,25].

We found a high quantity of sIL-6R preoperatively, which is in line with reported
physiologic quantities of sIL-6R being 10,000 times higher than IL-6 [11,26]. Therefore,
the perioperative sIL-6R concentrations are relatively stable throughout the perioperative
course in cardiac surgical patients and an inverse course to IL-6 changes can be observed,
especially in the beginning of the inflammatory response.

Consistent with current literature, we found more than five times higher levels of
sgp130 than sIL-6R [19,27]. Such high concentrations of sgp130 are necessary since the
natural inhibition of the IL-6•sIL-6R complex only works if molar levels of sgp130 are
above molar levels of sIL-6R [15,18].

Appropriately, we observed an immediate decrease of sgp130 when IL-6 starts to
increase. This finding supports the currently discussed hypothesis [7,19] of sgp130 as
instant neutralizer of low levels of circulating IL-6. However, hemodilution due to CPB-
priming has to be considered as factor involved lowering sgp130 levels.

For a better understanding of the proportion of pro- and anti-inflammatory effects,
we estimated sIL-6R/IL6 and sIL-6R/sgp130 ratios [15]. Pro-inflammatory effects result in
a decrease of the sIL-6R/IL-6 ratio, and subsequently, the sgp130-buffering results in an
increase of the sIL-6R/sgp130 ratio. If pro- and anti-inflammation are in balance, it can be
assumed that these ratios remain unchanged.

We showed a substantial decrease of sIL-6R/IL-6 ratio as marker for increasingly
formed IL-6•sIL-6R complexes suggesting an increase in pro-inflammatory effects. From
in vitro and animal studies it is known that pro-inflammatory properties of IL-6 are me-
diated by the IL-6•sIL-6R complex [9,15]. In our study, this substantial decrease of the
sIL-6R/IL-6 ratio is caused by two factors. First, at the beginning of the surgical procedure
the concentration of free IL-6 increased and thereby caused a decrease of the ratio. Secondly,
due to the increase of free IL-6, the concentration of free sIL-6R decreased as it naturally
forms complexes with free IL-6. Simultaneously, the sIL-6R/sgp130 ratio increased, which
can be seen as marker for the buffering of IL-6•sIL-6R complexes and therefore neutralizing
and blocking of the pro-inflammatory pathway. Further, we found a drop in sIL-6R on
POD 1 and POD 2, which can be a result of forming IL-6•sIL-6R complexes with increasing
sIL-6R/sgp130 ratio.

It might be argued that these increasingly formed IL-6•sIL-6R complexes and increas-
ing sIL-6R/sgp130 ratio caused IL-6 trans-signaling and consequently pro-inflammatory
symptoms in our patients. Our patients with suspected high pro-inflammatory activity
(high trans-signaling activity, low sIL-6R/IL-6 ratio) were older, frailer, and had a more
complicated intraoperative course.

Furthermore, we observed with a suspected high pro-inflammatory activity a signifi-
cantly higher postoperative fluid balance. The activation of the IL-6 pro-inflammatory path-
way leads to higher endothelial permeability [12,28]. Interestingly, in those patients with
suspected high pro-inflammatory activity, we found also consistently lower phase angles
in the first postoperative days, which may be a consequence of decreased cell membrane
integrity [29]. Since extra- and intracellular fluid shifts are also reflected in phase angle
changes [30], these lower phase angles also explain the observed pro-inflammatory fluid
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redistribution. Nevertheless, lower phase angles are associated with mortality in critically
ill patients [31]. However, the number of patients was too low to confirm this hypothesis.

A low sIL-6R/IL-6 ratio can be achieved by either low amounts of sIL-6R or high
amounts of IL-6. The levels of sIL-6R are influenced by a single-nucleotide polymorphism
(SNP, rs2221845), which causes a two-times upregulation of sIL-6R [32–34]. It has been
shown by several authors that this SNP has serious consequences regarding susceptibility to
inflammatory diseases, such as coronary heart disease or diabetes [19,34,35]. Nevertheless,
we did not find differences in IL-6 or IL-6R baseline levels in patients with coronary heart
disease compared to patients with structural heart disease, nor in patients with diabetes.

A recent study by Scheller and colleagues [12] experimentally described the balance
of IL-6, sIL-6R, and IL-6•sIL-6R•sgp130 complexes in an in vitro model. The authors
concluded that, systemic levels of sgp130 were not sufficient to inhibit pro-inflammatory
effects. However, they also stated that IL-6•sIL-6R and IL-6•sIL-6R•sgp130 complexes were
formed with much lower frequency than previously thought, which to their argumentation
leaves more space for classic-signaling than for trans-signaling (i.e., anti-inflammatory
effects predominate pro-inflammatory effects). Nevertheless, it is still unclear, which of the
IL-6 signaling pathways result in real functional consequences in vivo [11].

We similarly showed that although systemic IL-6 is substantially increasing at the be-
ginning of surgery, the sIL-6R/sgp130 ratio is only increasing slowly, which supports the ar-
gumentation that there is a higher activation of anti-inflammation than of pro-inflammation.
Consecutively, we showed that hyperinflammatory states following CPB are rare.

Limitations

First, we did not measure IL-6•sIL-6R complexes. Only ratios were calculated. This
limits our findings to hypothetical interpretations.

Second, our patients underwent elective surgery. Consequently, overwhelming inflam-
mation and complications were rare. It is reported that IL-6 plasma levels can be elevated
to the 100–1000 ng mL−1 range [13]. By contrast, we found the highest concentrations of
13,000 pg mL−1. As a result, we could not make any statements concerning sgp130, sIL-6R,
and IL-6 serum concentrations in patients with postoperative complications, such as sepsis
or serious infections.

Third, effect modifications owing to omitted or unobserved confounding risk indica-
tors cannot be excluded, although we included the most relevant risk indicators to rule
out any systematic effect. However, we did not monitor the use of non-steroidal anti-
inflammatory drugs preoperatively (e.g., aspirin), statins, or metformin, which may have
some anti-inflammatory effects [36,37].

5. Conclusions

We observed typical perioperative IL-6 kinetics in patients undergoing cardiac surgery
with CPB. Moreover, we showed the mechanisms of pro- and anti-inflammatory pathways,
the perfectly working natural buffer in a real-life environment, and that overwhelming in-
flammation is rare. The paradigm of a naturally formed buffer for IL-6 by sIL-6R and sgp130
is strongly supported by our findings. Therefore, our data suggest that systemic free IL-6
causes anti-inflammatory effects via membrane-bound IL-6R rather than pro-inflammatory
effects via sIL-6R in elective cardiac surgical patients undergoing CPB. Therefore, measures
to reduce anti-inflammatory reactions are not needed.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11030590/s1, Figure S1: Exaggeration of IL-6. The box plots
show the perioperative levels of IL-6 at different time points. In the box plots, the lower boundary of
the box indicates the 25th percentile, a black line within the box marks the median, and the upper
boundary of the box indicates the 75th percentile. Whiskers above and below the box indicate the
10th and 90th percentiles. Points above and below the whiskers indicate outliers outside the 10th
and 90th percentiles. Abbreviations: CPB, cardiopulmonary bypass; POD, postoperative day; sgp130,
soluble glycoprotein 130; sIL-6R, soluble interleukin-6 receptor, Table S1: Characteristics in patients
with high vs. low sIL-6R/IL-6 ratio.
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