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Large language models (LLMs) can potentially transform healthcare, particularly in providing the right
information to the right provider at the right time in the hospital workflow. This study investigates the
integration of LLMs into healthcare, specifically focusing on improving clinical decision support
systems (CDSSs) through accurate interpretation of medical guidelines for chronic Hepatitis C Virus
infection management. Utilizing OpenAl’s GPT-4 Turbo model, we developed a customized LLM
framework that incorporates retrieval augmented generation (RAG) and prompt engineering. Our
framework involved guideline conversion into the best-structured format that can be efficiently
processed by LLMs to provide the most accurate output. An ablation study was conducted to evaluate
the impact of different formatting and learning strategies on the LLM’s answer generation accuracy.
The baseline GPT-4 Turbo model’s performance was compared against five experimental setups with
increasing levels of complexity: inclusion of in-context guidelines, guideline reformatting, and
implementation of few-shot learning. Our primary outcome was the qualitative assessment of
accuracy based on expert review, while secondary outcomes included the quantitative measurement
of similarity of LLM-generated responses to expert-provided answers using text-similarity scores. The
results showed a significant improvement in accuracy from 43 to 99% (p < 0.001), when guidelines
were provided as context in a coherent corpus of text and non-text sources were converted into text. In
addition, few-shot learning did not seem to improve overall accuracy. The study highlights that
structured guideline reformatting and advanced prompt engineering (data quality vs. data quantity)
can enhance the efficacy of LLM integrations to CDSSs for guideline delivery.

Large language models (LLMs) have the potential to improve healthcare due
to their capability to parse complex concepts and generate appropriate
responses. LLMs have demonstrated proficiency in tasks across the spec-
trum of clinical activity, such as medical inquiry responses, dialogue sys-
tems, and the synthesis and completion of clinical reports'~. One potential
high-value area for LLMs is the ability to promote evidence-based practice
through providing clinical decision support systems (CDSSs) according to
current medical guidelines, which are distillations of both expert opinion

and current evidence from clinical trials and are used to drive improvements
in patient outcomes through best practices®’.

LLM:s have enjoyed wide public uptake, especially OpenAI's ChatGPT
(https://openai.com/blog/chatgpt), which enrolled over 100 million users
within two months of its release™. The widespread use of ChatGPT allowed
simple and user-friendly use of generative artificial intelligence for real-life
scenarios and academic research. However, a primary concern for LLMs
application in healthcare is the potential risk of inaccurate responses (e.g.,
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“hallucinations”) that may lead to patient harm'’. In clinical applications, a

proposed framework for utilizing LLMs is based on adherence to the three
principles of Honesty, Helpfulness, and Harmlessness (the HHH
principle)'". To align LLMs to the HHH principle, specific strategies must be
undertaken to bind their responses to a specific set of domain knowledge,
such as retrieval augmented generation (RAG)"* or supervised fine-tuning
(SFT) followed by Reinforcement Learning with Human Feedback
(RLHF)". Both RAG and SFT guide output generation according to a
domain-specific dataset of information that, for clinical applications, could
be represented by medical guidelines. However, the format of clinical
guidelines is subject to broad variations (e.g., general structure, location of
recommendations, table format, and flowcharts) that can affect the proper
interpretation or retrieval of relevant information.

While the integration of LLMs in healthcare shows promise, the
challenge of ensuring accurate interpretation of clinical guidelines becomes
particularly relevant in the context of managing widespread chronic diseases
such as Hepatitis C Virus (HCV) infection. New antiviral therapies suc-
cessfully eradicate the disease, with multiple regimens demonstrating >90%
efficacy and effectiveness'*. HCV management has been codified in multiple
guidelines that distill the results from the available randomized controlled
trials to recommend best practices in chronic HCV diagnosis and treatment.
However, adherence to guidelines ranges from 36-54% for screening and
managing chronic HCV infection'>'. There is a need for scalable and
reliable solutions to provide guideline-recommended care and bridge the
gap in adherence, especially considering the World Health Organization’s
goal to eliminate Hepatitis C by 2030".

We present a novel LLM framework integrating clinical guidelines with
RAG, prompt engineering, and text reformatting strategies for augmented
text interpretation that significantly outperforms the baseline LLM model in
producing accurate guideline-specific recommendations, with the primary
outcome of qualitatively measuring accuracy based on manual expert
review. We also apply quantitative text-similarity methods"™' to compare
the similarity of the LLM output to expert-generated responses.

Results

Output accuracy analysis

The customized LLM framework achieved 99.0% overall accuracy, which
was significantly better than the GPT-4 Turbo alone (99.0% vs. 43.0%;
P <0.001). Incorporating in-context guidelines improved accuracy (67.0%
vs. 43.0%; p=0.001). When the in-context guidelines were cleaned, and
tables were converted from images to .csv files, accuracy improved to 78.0%
(vs. 43.0%; p < 0.001); after the guidelines were formatted with a consistent
structure and tables were re-formatted to text-based lists, accuracy further
improved to 90.0% (vs. 43.0%; p < 0.001). Finally, the addition of custom

prompt engineering led to an improvement in accuracy of 99.0% (vs. 43.0%;
P <0.001), with no further improvement despite few-shot learning with 54
question-answer pairs (Table 1, Fig. 1).

For text-based questions, the customized framework achieved 100%
overall accuracy, which was better than GPT-4 Turbo alone (100% vs.
62.0%; p <0.001). Incorporating in-context guidelines improved accuracy
(86.0% vs. 62.0%; p = 0.01); after cleaning the text and conversion of tables
from images to .csv, further improvement in accuracy was achieved with no
further improvement after formatting the text into a consistent structure
and converting tables into text-based lists (90.0% vs. 62.0%; p =0.002).
Adding custom prompt engineering resulted in 100% accuracy (100% vs.
62.0%; p < 0.001) with equivalent performance after few-shot learning with
54 question-answer pairs (100% vs. 62.0%; p < 0.001).

For table-based questions, the customized framework achieved 96.0%
overall accuracy, which was better than GPT-4 Turbo alone (96.0% vs.
28.0%; p < 0.001). Incorporating in-context guidelines improved accuracy
(44.0% vs. 28.0%; p = 0.38); after cleaning the text and conversion of tables
from images to .csv, accuracy reached 60.0% (vs. 28.0%; p = 0.046) with a
substantial improvement after converting tables into text-based lists and
formatting the text into a consistent structure (96.0% vs. 28.0%; p < 0.001)
with similar performance in Experiments 4 and 5 as reported in Table 1.

The customized framework achieved 100% overall accuracy for clinical
scenarios, which was better than GPT-4 Turbo alone (100% vs. 20.0%;
P <0.001). Incorporating in-context guidelines improved accuracy (52.0%
vs. 20.0%; p = 0.039); after cleaning the text and conversion of tables from
images to .csv, accuracy reached 72.0% (vs. 20.0%; p < 0.001) with a sub-
stantial improvement after converting tables into lists and formatting the
text into a consistent structure (84.0% vs. 20.0%; p < 0.001). Finally, the
addition of custom prompt engineering achieved an accuracy of 100%
(vs. 20.0%; p <0.001), with no further improvement despite few-shot
learning with 54 question-answer pairs.

When inaccurate outputs were reviewed for hallucinations, we found
112 (90.3%) fact-conflicting hallucinations (FCH) and 12 (9.7%) input-
conflicting hallucinations (ICH) across all experiments. Hallucination type
and distribution across each experiment are reported in Table 2. We did not
find contextual-conflicting hallucinations (CCH) in any of our experiments.

Text-similarity analysis

For the secondary outcomes, we found differences in the customized LLM
framework compared to the baseline across similarity scores (BLEU score,
ROUGE-LCS F1, METEOR Score F1, and our Custom OpenAlI Score) for all
questions (Table 3). The score average values for text-based and table-based
questions, clinical scenarios, and graphical distributions of each score are
reported in Supplementary Table 2 and Supplementary Fig. 1, respectively.

Table 1 | Qualitative evaluation of accuracy based on human expert grading of each answer across all experimental settings

Metrics Baseline Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
All questions:

Accuracy 43.0% 67.0% 78.0% 90.0% 99.0% 99.0%
Statistical Significance p =0.001 p <0.001 p <0.001 p <0.001 p <0.001
Text-based questions:

Accuracy 62.0% 86.0% 90.0% 90.0% 100.0% 100.0%
Statistical significance p=0.012 p =0.002 p =0.002 p <0.001 p <0.001
Table-based questions:

Accuracy 28.0% 44.0% 60.0% 96.0% 96.0% 96.0%
Statistical significance p=0.377 p =0.046 p <0.001 p <0.001 p <0.001
Clinical scenarios questions:

Accuracy 20.0% 52.0% 72.0% 84.0% 100.0% 100.0%
Statistical significance p=0.039 p <0.001 p <0.001 p <0.001 p <0.001

Statistical testing is based on pairwise comparison (Chi-Squared Test) between each experimental setting and the baseline.
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Fig. 1 | Qualitative evaluation of accuracy among all experiments from baseline.
a Accuracy for all questions. b Accuracy only for text-based questions. ¢ Accuracy for
table-based questions. d Accuracy for clinical scenario-based questions. Statistical
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testing is based on pairwise comparison (Chi-Squared Test) between each experi-
mental setting and the baseline.

Baseline E

Discussion
Integrating LLMs into CDSSs may revolutionize healthcare delivery by
leveraging natural language processing to interpret clinical documentation,
aligning LLM-generated recommendations with current medical research
and best practices™” (Fig. 2). For instance, a locally hosted LLM might be
granted access to patient-specific data. This data can be integrated into a
tailored prompt designed to identify the most appropriate treatment plan
for a specific patient. The LLM, will have contemporary access to the
guidelines and provide a recommendation on treatment based on guideline
knowledge. However, before having LLM-aided CDSSs, it is necessary to
define the best guidelines format that can maximize output accuracy.

We demonstrate the performance of our proposed framework in a
subset of the potential questions that could be asked by physicians managing
patients with chronic HCV. We identified an optimal framework for LLM-

Table 2 | Hallucinations type and distribution across all
experiments

Hallucination Total Fact- Input- Contextual-
conflicting conflicting conflicting
BASELINE 57 48 (84.2%) 9 (15.8%) -
Experiment 1 33 30 (90.9%) 3(9.1%) -
Experiment 2 22 22 (100%) o o
Experiment 3 10 10 (100%) - -
Experiment 4 1 1(100%) - -
Experiment 5 1 1 (100%) - -

Interestingly, the two graders did not find any contextual-conflicting hallucination in any LLM-
generated outputs.

friendly clinical guidelines that achieves near-perfect accuracy and out-
performs GPT-4 Turbo alone for answering questions about the manage-
ment of HCV infection. The baseline GPT-4 Turbo showed an overall
accuracy of 43.0%, consistent with other studies querying LLMs for man-
agement questions related to gastroenterology and hepatology, ranging
from 25 to 90%*7. This suggested that the model’s base knowledge was
imperfect despite having access to information up to April 2023*.

Our findings also highlight the difficulty of LLMs to parse tables, with a
clear improvement in performance after tables were converted to text-based
lists, suggesting that information cannot be retrieved accurately from non-
text sources. The difficulty of LLMs to parse tables is a known limitation™,
and a critical technical issue that should be addressed since the medical
literature often contains tables with important information for clinicians.

Modern LLMs such as GPT-4, according to their multimodal cap-
abilities and context sensitivity, can interpret inputs from both images and
textual elements”’. OpenAl has noted that GPT-4 was tested on different
benchmarks on textual, graphical, and visual elements (ChartQA*', AI2D*,
DocVQA®¥, Infographic VQA*) with an accuracy range from 75.1% to
88.4% redefined the previously best models in these benchmarks which
ranged from 61.2% to 88.4%". Despite GPT-4 becoming state of the art in
graphical-context interpretation, we demonstrate that it cannot interpret
the non-text sources reported in the HCV guidelines, showing 16.0% overall
accuracy in extracting pertinent information (as described in detail in
Supplementary Note 1). Inaccuracies in graphical elements interpretation
can result in the loss of critical information and context when converting
non-text sources into a readable format for LLMs, which likely affected the
GPT-4 Turbo’s ability to accurately interpret and reason with the infor-
mation contained in non-text sources. This factor, coupled with the chal-
lenge of context retention across the segmented data in non-text sources,
could have contributed to the lower performance in “reasoning and
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Table 3 | Evaluation of text-to-text-similarity between LLM-generated outputs and human expert-provided answers used as the

gold standard across all questions

Metrics Baseline Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
BLEU score:

Mean (+ SD) 0.025 (+0.023) 0.095 (+0.088) 0.111 (x0.143) 0.101 (x0.094) 0.140 (x0.119) 0.124 (+0.073)
Significance p <0.001 p <0.001 p <0.001 p <0.001 p <0.001
ROUGE-LCS F1:

Mean (+ SD) 0.201 (+0.053) 0.334 (+0.120) 0.347 (+0.138) 0.336 (+0.114) 0.345 (+0.119) 0.359 (+0.095)
Significance p <0.001 p <0.001 p <0.001 p <0.001 p <0.001
METEOR score F1:

Mean (+ SD) 0.308 (+0.059) 0.417 (+0.104) 0.429 (+0.126) 0.408 (+0.101) 0.428 (+0.115) 0.421 (+0.081)
Significance p <0.001 p <0.001 p <0.001 p <0.001 p <0.001
Custom OpenAl Score:

Mean (+ SD) 0.939 (+0.016) 0.954 (+0.017) 0.956 (+0.018) 0.956 (+0.016) 0.957 (+0.013) 0.958 (+0.017)
Significance p <0.001 p <0.001 p <0.001 p <0.001 p <0.001

Statistical testing is based on pairwise comparison (Mann-Whitney U Test) between each experimental setting and the baseline.

Institutional EHR

Laboratory Tests,
Ultrasound and
Elastography Results,
Current Medications

New Patient
Being Evaluated for HCV

Anew patient is evaluated for HCV
treatment. The doctor prescribes
several tests before deciding on the
most appropriate treatment.

Test results and patient notes are
stored in the institutional EHR

locally-hosted LLM.

Fig. 2 | Example of a clinical decision support system integrated with large
language models. When a patient is being evaluated for HCV treatment, the doctor
prescribes several tests (laboratory and imaging), whose results are stored in the
institutional EHR system. The locally hosted LLM has a standardized clinical sce-
nario prompt with laboratory and imaging values that are directly extracted from

system and can be extracted by the

Guidelines (RAG)

Treatment

Management
Large Language

Model

“According to the
provided patient
information and HCV
genotype, the
recommended
therapyis...”

Prompt
Engineering

The locally hosted LLM replies to the
prompt related to treatment
management, contextualizing
patients' information with
information present in the guidelines
and recommending a treatment.

EHR. Afterward, the standardized prompt is queried to the LLM, which has access to
the relevant guidelines to recommend the most appropriate treatment. HCV
Hepatitis C virus, EHR electronic health record, RAG retrieval augmented genera-
tion, LLM large language model.

interpretation” tasks. These results imply that the information present in the
guidelines should be presented as text (i.e., in LLM-friendly format) to be
efficiently and accurately retrieved and interpreted by LLMs.

We found that the similarity scores (BLEU*’, ROUGE-L*, METEOR",
and a custom OpenAl score) calculated between output generated by GPT-4
Turbo and the free text expert answers do not necessarily reflect differences
in expert-graded qualitative accuracy. We found statistically significant
differences across all similarity metrics when the outputs of the in-context
guideline experiments were compared to the baseline outputs as reported in
Table 3. Importantly, when we evaluated the in-context guideline experi-
ments, we found no clear correlation with the change in similarity metrics

with expert-graded qualitative accuracy. This has also been reported in other
studies'*”"* and may be explained by the fact that these scores were
developed to measure word overlap, sentence structure similarity, and
semantic coherence and not factual correctness. For clinical questions,
factual correctness is the most important feature. This is an important
challenge that should be addressed since current responses could appear
lexically comparable to a reference answer but fail to capture the factual
information necessary to guide clinical care. This can result in high scores
for responses that are factually incorrect (false positives) or low scores for
accurate responses that are phrased differently than the reference (false
negatives). While useful for certain aspects of evaluation, these metrics fail to
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capture the nuances of medical relevance, completeness, and contextual
correctness in the answers provided by the LLM. This limitation under-
scores the persistent need for expert physician oversight in the evaluation
process (ie, human-in-the-loop), with automated grading of LLM-
generated responses still being an unresolved challenge.

We also found that few-shot learning did not improve performance
above and beyond in-context learning, text formatting, table conversion,
and prompt engineering (Fig. 1). This suggests that the model’s zero-shot
querying capabilities were already robust without requiring few-shot stra-
tegies, which was previously described by reporting different one-shot vs.
few-shot™*.

Our work is limited by several factors. Firstly, we only investigate the
application of LLM in the screening, diagnosis, and management of one
disease across the spectrum of hepatology. However, our questions were
representative of every section in the guideline, covering each major area of
clinical management. Secondly, we ran each question for a limited number
of iterations, with the performance being consistently excellent across
multiple experiments. We do not vary the temperature setting for each of the
questions and stages of the ablation study. We had limited resources to test
the framework, though we acknowledge that the performance may differ
with changes in the temperature parameter. Finally, we do not evaluate the
performance of our framework with other LLMs, such as LlaMA™ or
Pal.M**. While these other models are used for many tasks, most studies
using LLM in gastroenterology and hepatology have employed GTP 3.5 and
GPT-4.0"".

In a recent study, Jin et al. developed LiVersa™, a liver disease-
specific LLM using RAG and guidelines from the American Association
for the Study of the Liver (AASLD), which showed notable limitations in
providing completely accurate answers, especially in complex clinical
scenarios. Also, from their methodology, it is unclear how they con-
verted guidelines into text, the chunking strategy (which we do not
employ in our framework), and their accuracy assessments and lack of
data on output accuracy rates. Therefore, despite the similar aims, we
cannot compare our study findings.

We present a novel LLM framework to generate answers to complex
clinical questions with high accuracy, drawing from established guidelines
for HCV management. We highlight the current limitations in LLM non-
text sources interpretation and the benefit of in-context structured re-
formatted guidelines with accompanied prompt engineering to guide
understanding of the underlying text structure.

In conclusion, our results suggest that LLMs like GPT-4 Turbo are
suitable for parsing clinical guidelines, but that their effectiveness can be
enhanced by structured formatting strategies, prompt engineering, and text
conversion of non-text sources. Moreover, our findings suggest that with
appropriate reformatting, few-shot learning may not increase overall
accuracy. We highlight the need for further research to enhance LLM’s
ability to parse non-text sources and validate new metrics to evaluate not
only similarity but also accuracy for clinical LLM applications.

Methods

Guidelines selection

We analyzed the current HCV guidelines from the prominent Northern
American and European liver associations. Among these, we selected the
European Association for the Study of the Liver (EASL) on the Hepatitis
C Virus, entitled “EASL recommendations on treatment of hepatitis C:
Final update of the series” published in 2020*, to explore our framework.
The selected guideline comprised the most complex corpus of text
containing broad recommendations on screening and management. In
addition, the document contained in-depth information on drug-drug
interactions, which was not reported in the Northern American®
guidelines. We also tested our framework on specific questions that were
not addressed in the European guidelines using the most up-to-date
Northern American HCV guidelines (as reported in Supplementary
Note 3, Supplementary Table 3, Supplementary Table 4, Supplementary
Fig. 3, Supplementary Fig. 4).

Standardized prompts creation

Two expert hepatologists (M.G. and L.S.C.) drafted 20 representative
questions (Table 4). Fifteen questions addressed screening and management
recommendations from each of the major sections, including the guideline
main text (10 questions) and graphical tables (5 questions). Tables are a
standard feature of clinical guidelines and summarize recommendations in
specific ways that may not be reflected in the text. In addition, the two
experts drafted five comprehensive clinical cases, each reflecting different
HCV-related management strategies, including best treatment selection,
drug-drug interaction, and management of treatment severe adverse
reactions. All the questions are structured to test reasoning and compre-
hension from both the main text and tables.

Ablation study: customized LLM framework

We used a combination of RAG using EASL HCV guidelines, in different
experimental settings with increasing degrees of complexity regarding
guideline reformatting, prompt architecture, and few-shot learning to create
a customized framework applied to the GPT-4 Turbo model (released by
OpenAl in November 2023 with knowledge updated until April 2023*).
Experiments with the OpenAI’s Application Programming Interface (API)
v. 1.17 cannot directly retrieve information from .pdf files. Therefore, the
original pdf guidelines document was converted to a .txt file with UTF-8
encoding using the Python (v. 3.11) library PyPDE2 v3.0.

We carried out an ablation study from the baseline (Experiments 1
through 5) to investigate how different settings in guideline reformat-
ting, prompt architecture, and few-shot learning impact the accuracy
and robustness of LLM outputs (Fig. 3). It is still unknown how non-text
sources (e.g., graphical tables and flowcharts) are processed by LLMs
and whether the information extracted is accurate. Therefore, we per-
formed preliminary experiments to test the accuracy of the GPT image
conversion process (Supplementary Note 1) and found very low accu-
racy (16.0%) in extracting pertinent table information, with accuracy
ranging from 0% (graphical tables) to 48.0% (only text tables). In light of
these findings, we introduced text conversion of tables (non-text
sources) into text-based lists and tested their impact on accuracy in
Experiments 3, 4, and 5.

Baseline. Use of the foundational GPT-4 Turbo without any context. For
this experiment, we only provided the questions without any further
instruction.

Experiment 1. Use of the foundational GPT-4 Turbo with guidelines
uploaded in context after pdf-to-text conversion in UTF-8 encoding
without any additional text cleaning processes.

Experiment 2. Use of the foundational GPT-4 Turbo with guidelines
uploaded in context after being manually cleaned with the removal of
non-informative data (e.g. page header and bibliography). Tables pre-
sented as images in the original text were manually converted into .csv
files and then provided as context.

Experiment 3. Use of the foundational GPT-4 Turbo with guidelines
uploaded as context that were cleaned and formatted to provide a con-
sistent structure alongside the whole document. In addition, we con-
verted all tables from .csv files into text-based lists and included them in
the main text. Each paragraph title was preceded by “Paragraph Title”. All
the paragraph recommendations were collected and organized into a list
preceded by “Paragraph Recommendations”. Evidence reported in the
main text was organized and preceded by “Paragraph Text”.

Experiment 4. Use of the foundational GPT-4 Turbo with guidelines
uploaded as context that were cleaned and formatted, with tables con-
verted into text-based lists. We also provided a series of prompts (i.e.,
prompt engineering) that instructed the model on how to interpret the
structured guidelines (Supplementary Table 1).
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Table 4 | List of questions

Text-based questions

—_

A screening blood test before a knee replacement surgery revealed a positive HCV antibody —what test should be performed to confirm HCV infection?

2. When a patient with HCV can be considered cured after HCV therapy?

3. Is there any major contraindication to HCV therapy?

4. Is it possible to apply treatment without determining genotype using grazoprevir/elbasvir?

58 What are the recommended treatment regimens and duration for a patient with HCV genotype 3 and no cirrhosis?

6. A patient on the transplantation list for HCC and decompensated liver cirrhosis should be treated before or after transplantation.

7. Should patients with HCV-positive patients be listed for kidney transplant treated? If yes, why?

8. Patients with fibrosis F3, according to elastography, should be continuing HCC screening after successful HCV eradication?

9. Is HCV treatment during pregnancy recommended?

10.  When should children born by an HCV-positive mother be tested for HCV infection?

Table-based questions

11.  What test can be used to assess the liver disease severity before treatment?

12.  Is there any interaction between cyclosporine and DAAs?

13.  Is there any interaction between apixaban and DAAs?

14.  Among anticoagulants and antiplatelets which is the one medication with the lowest risk of interactions with DAAs?

15.  What anticonvulsants are at higher risk of inducing drug interactions with DAAs?

Clinical scenarios

16. A 45-year-old male with an unremarkable medical history was scheduled for a routine inguinal hernia surgery. As part of the preoperative evaluation, he was tested for
hepatitis C virus (HCV) antibodies, which returned positive. Subsequent HCV RNA testing confirmed active infection, and genotyping identified the virus as HCV
genotype 1a. The patient had no prior knowledge of his HCV status and had never been tested or treated for hepatitis C. Before initiating treatment, a liver elastography
was performed to assess liver health, yielding a liver stiffness measurement of 5 kPa. What is the recommended treatment for this patient (drugs and duration)?

17. A 55-year-old patient, previously lost to follow-up, returns to the liver clinic with a history of failed interferon-based therapy for HCV genotype 3. Recent laboratory
tests confirm active HCV infection with genotype 3, accompanied by elevated liver enzymes (AST: 100 IU/L, ALT: 150 IU/L). Additional laboratory results include
bilirubin at 1.2 mg/dL, creatinine at 0.87 mg/dL, albumin at 3.9 g/dL, and an INR of 1.10. Liver elastography shows a liver stiffness measurement of 15 kPa, without
clinical signs of liver decompensation, as observed in the physical examination. What is the recommended therapy for this patient?

18. A 60-year-old patient with advanced chronic kidney disease (CKD) at stage 4 is diagnosed with Hepatitis C virus (HCV) infection. The patient’s current renal function
parameters include a creatinine clearance of 28 mL/min. Additionally, the patient presents with decompensated liver cirrhosis, classified as Child-Pugh Class B8,
indicating significant liver dysfunction. What is the recommended therapy for this patient?

19. A 60-year-old female patient diagnosed with Hepatitis C virus (HCV) genotype 1a, who does not have liver cirrhosis, was recently prescribed a 12-week course of
Sofosbuvir (400 mg)/Velpatasvir (100 mg). The patient has a significant medical history of atrial fibrillation, for which she is being treated with amiodarone. During the
initial assessment with the hepatologist, the patient inadvertently omitted mentioning their amiodarone treatment. As of now, the patient has not commenced the HCV
treatment. Is it advisable for the patient to promptly inform her hepatologist about the amiodarone treatment before starting the HCV therapy?

20.  A70-year-old female with arecent diagnosis of Hepatitis C Virus (HCV) genotype 1a, confirmed to have no evidence of liver cirrhosis, commenced a treatment regimen

consisting of a 12-week course of Sofosbuvir (400 mg) combined with Velpatasvir (100 mg) daily. The patient’s baseline liver function tests were within normal limits,
with an Alanine Aminotransferase (ALT) level of 45 IU/L (normal range: 30-45 1U/L). However, upon re-evaluation 4 weeks post-treatment initiation, her ALT levels had
markedly elevated to 1123 IU/L. Should the prescribed HCV treatment be discontinued in light of this significant ALT elevation?

Two expert hepatologists drafted 20 questions that specifically refer to information about management recommendations addressing information contained in the guideline main text (10 questions),

graphical tables (5 questions), and clinical scenarios (5 questions).

Experiment 5. Use of the foundational GPT-4 Turbo with guidelines
uploaded as context that were cleaned and formatted, with tables con-
verted into text-based lists. We included the series of prompts (i.e.,
prompt engineering) and added a series of 54 question-answer pairs (i.e.
few-shot learning) (Supplementary Table 1).

The experiments are summarized in Fig. 3 and were conducted on a
local Python environment with OpenAI API access. Instructions, when
provided, are summarized in Supplementary Table 1. We used foundational
model default parameters, selecting a temperature of 0.9, and setting a
maximum number of tokens in output equivalent to 800.

Primary outcome

Our primary outcome was to evaluate qualitative rates of accuracy
according to expert grading based on the information reported in EASL
guidelines™. We repeated the query 5 times each for the 20 questions for
each experimental setting and reported the proportion of accurate
responses. Each answer was graded with a score of 1 if the text contained
completely accurate information or 0 otherwise. Two expert hepatologists
(M.G., with four years of experience in treating HCV patients, and L.S.C,,
with thirty years of experience in treating HCV patients) manually graded

each response. The two graders were blind to each other and towards the
experimental setting when labeling answers. Disagreements in grading
occurred for 5.0% of outputs and were solved by consensus between the two
graders.

When outputs are considered inaccurate, the inaccuracy is caused by
hallucinations (i.e., the production of plausible sounding but potentially
unverified or incorrect information)””**. According to the recent definitions
of Zhang et al, we defined three types of hallucinations: FCH, ICH,
and CCH”.

Secondary outcome

Our secondary outcome was to evaluate the similarity of LLM-generated
responses to the human expert-provided answers used as the gold standard.
In particular, an expert hepatologist (M.G.) provided a single answer for
each of the 20 questions, which was reviewed and approved by the second
expert hepatologist (L.S.C.), and then used as the gold standard expert
response to which LLM responses were compared in text-similarity using
Recall-Oriented Understudy for Gisting Evaluation (ROUGE)™, Bilingual
Evaluation Understudy (BLEU)*, Metric for Evaluation of Translation with
Explicit Ordering (METEOR)", and a Custom OpenAl score (for in-depth
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Fig. 3 | Depiction of Ablation Study experimental settings (Experiment 1 through Experiment 5) to investigate how guideline reformatting, prompt architecture, and few-
shot learning impact the accuracy and robustness of LLM outputs.

explanation see Supplementary Note 2). The Custom OpenAl scoreisbased by experts. All these scores are expressed on a scale from 0 to 1, where a score
on cosine similarity, while the other scores are based on word overlap and  of 1 denotes perfect alignment between two compared text sources. The
semantic coherence between two text sources. We evaluated the similarity mean and standard deviation of the similarities were estimated after
by comparing LLM-generated answers to the corresponding ones provided — repeating the query 5 times each for the 20 questions.
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Statistical analysis

We employed the Chi-Square Test to compare accuracy among experi-
ments qualitatively. We employed the Mann-Whitney U Test to compare
differences among continuous scoring for automatic evaluation of answers.
We considered statistically significant a two-tailed p-value < 0.05. To con-
duct the analysis, we used Python v 3.11 and SciPy v 1.11.

Data availability

All LLMs prompts are included in the Summary Information with the
prompts used. For any additional information, please contact the corre-
sponding authors.

Code availability
Code can be provided based on personal requests, please contact the cor-
responding authors.
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