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The gut microbiomes of non-human primates have received a great deal of attention due to their close
relationship to humans. In recent years, these studies have mainly focused on the gut microbiome of wild
primates, which will be helpful to understanding the evolution of primates and their gut microbiomes
(e.g., gut microbiome plasticity and diet flexibility). However, there is still a lack of basic information
on the gut microbiomes from wild populations. Here, we investigated the gut microbial composition
(16S rRNA gene) and function (metagenome and metagenome-assembled genomes (MAGs)) of Yunnan
snub-nosed monkey populations in Weixi County, Yunnan Province, China, that had diets either com-
pletely based on wild-foraging or were regularly supplemented with human provisioned food. We found
a significant difference in the gut microbiome between these two populations: the gut microbiome of the
wild-foraging (no food provision) population was enriched genes involved in the detoxification of bam-
boo cyanide (high proportion of bamboo shoot intake) and chitin (from insect diet) digestion, while the
gut microbiome of the food provisioned (e.g., fruits) wild populations were enriched genes involved in
carbohydrate metabolism. Moreover, the gut microbiome of the wild-foraging population shared a puta-
tively functional convergence with the gut microbiome of wild bamboo-eating pandas: such as microbes
and genes involved in the cyanide detoxification. Therefore, the gut microbiome of the Yunnan snub-
nosed monkey displayed the potential plasticity in response to diet flexibility. Long-term food-
provisioning of the wild population has led to dramatic changes in gut microbial composition, function,
and even antibiotic resistance. The antibiotic resistance profile for the wild Yunnan snub-nosed monkey
population could be considered the baseline and an important piece of information for conservation.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The gut microbiome impacts host nutritional intake, health,
development, and behavior [1-5]. Host diet, phylogeny, and phys-
iology all play an important role in shaping the mammal gut
microbial composition and function [1,6-10]. Non-human primates
(NHP), close phylogenetic relatives of humans, provide a good
example for the study of host-microbiome interactions, which
would aid in understanding the co-evolution of humans and their
gut microbial communities [11-17]. In current NHP gut micro-
biome research, there are two basic approaches. One is inter-
species, the investigation into the evolution of different primate
species and their respective gut microbiomes, such as the changes
in the gut microbiome since the diversification of humans and ape
species [18], the impacts on the primate gut microbiome by host
physiology across 18 NHP species [19], the convergence of human
and Old World monkey gut microbiomes [10] across 18 NHP spe-
cies, and the reconstructed MAGs (over 1000 novel species) from
203 metagenomic samples spanning 22 NHP species [17].

The other is intra-species, the exploration of factors shaping
NHP gut microbiomes, such as gut microbiome plasticity (seasonal
fluctuations) in response to dietary flexibility (e.g., wild black

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.01.011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.01.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zhulf2020@126.com
mailto:980119lsc@163.com
https://doi.org/10.1016/j.csbj.2022.01.011
http://www.elsevier.com/locate/csbj


W. Xia, G. Liu, D. Wang et al. Computational and Structural Biotechnology Journal 20 (2022) 685–699
howler monkeys [12], wild great apes [20], wild white-faced capu-
chins [21], wild geladas [22]), environment factors (e.g., habitat
fragmentation) leading the dissimilarity in the gut microbiome
(e.g., wild black howler monkey [23], wild Udzungwa red colobus
monkeys [24]), social behavior leading to gut microbiome trans-
mission (e.g., wild baboons [25], wild chimpanzees [26], wild
red-bellied lemurs [27], captive common marmosets [28]). As
these different types of studies have progressed, an increasing
number of researchers have focused on the gut microbiome plas-
ticity of wild NHPs. However, the gut microbiome of many wild
NHP still requires exploration, given the number of species, over
500, and dietary diversity in wild habitats. However, considering
the high activity of many wild NHPs, one of the greatest difficulties
is obtaining fresh fecal samples at the level of individual members
of a species, which would allow fecal samples to be linked to indi-
vidual’s health and dietary information. Captivity has a profound
effect on NHP gut microbiome composition, leading to an increased
abundance of Prevotella and Bacteroides, which are highly associ-
ated with a decrease in dietary fibers and plant contents [29].
The uncharacterized question here is what changes may occur in
gut microbiome composition and function between wild popula-
tions from the same region that either forage for all of their nutri-
tional requirements and those provided supplemental food during
the same time period?

The Yunnan snub-nosed monkey (Rhinopithecus bieti), is a rare
and endangered animal endemic to China. This species mainly lives
in high-altitude forests, at elevations of 3000–4400 m, in south-
western China and southeastern Tibet [30] and is considered to
be the highest altitude-dwelling non-human primate [31]. Habitat
fragmentation and human disturbance have seriously impacted
the population [32,33], resulting in a sharp reduction in their pop-
ulation [33]. In recent years, with the establishment of protected
nature reserves, there has been a trend of population recovery
among wild Yunnan snub-nosed monkeys [33,34]. At present, the
total population of the species has been estimated to be approxi-
mately 3,000 individuals belonging to 17 natural groups in Yunnan
and Tibet [34]. R. bieti in the wild mainly feed on a variety of plants,
including lichens, bamboo shoots, mature leaves, fruits seeds,
young leaves, buds, flowers, bark/petiole/stem, as well as insects
and fungi [35]. To make up for the frequent food shortages in the
wild, supplemental foods have been provided on a regular basis
to these animals in many of the nature reserves. At the provision-
ing sites, artificial foods consisting of native lichen and high carbo-
hydrate foods (carrots, apples, or pumpkin seeds) are provided
each day [36]. After long-term habituation to this artificial diet, it
was observed that some of the provisioned wild monkey groups
have come to rely on the artificial foods [36], such that their main
diet (about 70%) is now lichen and the provisioned foods, and rely-
ing less upon bamboo shoots and insects. Therefore, the Yunnan
snub-nosed monkey is an excellent model to investigate the poten-
tial gut microbiome plasticity in the wild and food-provisioned
populations at the same time within the same region.

The majority of bamboo shoots have a high proportion of cya-
nide compounds [37]. The bamboo-eating giant pandas were his-
torically distributed in the Yunnan region [38], and their gut
microbiomes display several adaptive features in response to their
diet. These features include a high proportion of Pseudomonas asso-
ciated with the detoxification of cyanide compounds found in bam-
boos [39]. Here, another question was whether the wild Yunnan
snub-nosed monkeys shared a potential convergence in the func-
tion of the gut microbiome with wild giant pandas. Currently,
among snub-nosed monkey species, the gut microbial composition
of the Guizhou snub-nosed monkey (R. brelichi) and Sichuan snub-
nosed monkey (R. roxellana) have been identified by using the 16S
rRNA gene [40,41]. Captive R. brelichi exhibit decreased gut micro-
bial diversity and a reduced number of microbes within families
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that assist in the digestion of complex plant materials [40]. There-
fore, the function of the Yunnan snub-nosed monkey (R. bieti) gut
microbiomes is still unclear.

In this study, we investigated the gut microbial composition
(16S rRNA genes) and function (metagenome and MAGs) in wild-
foraging and diet-provisioned Yunnan snub-nosed monkey popu-
lations in Weixi County, Yunnan Province, China (Fig. 1). Our group
has worked at this site for approximately 11 years, and we were
able to collect fresh fecal samples that could be connected to indi-
vidual animals. Thus, we tested two hypotheses: [1] The significant
difference in the gut microbial composition and function between
these two populations; [2] Did the wild-foraging population share
a putatively functional convergence with the gut microbiome of
wild bamboo-eating pandas due to similar diets (e.g., high bamboo
diet intake)?
2. Results and discussion

2.1. The significant differences in the gut microbial composition
between the wild foraging and food-provisioned population

We found significant dissimilarity in the gut microbial commu-
nity between the wild foraging (W) and food-provisioned (FP) Yun-
nan snub-nosed monkey (YSM) populations using 16S rRNA gene
sequences. The relative abundance of Proteobacteria, Bacteroide-
tes, and Spirochaetes was significantly higher in the W population
(20 individuals) than in the FP population (28 individuals) (Fig. 2A
and 2B (Lefse analysis)). The relative abundance of Firmicutes,
Actinobacteria, and Fibrobacteres were significantly higher in the
FP population than in the W population (Fig. 2A and 2B (Lefse anal-
ysis), Fig. S1). At the genus level, the abundance of 14 described
genera (Proteobacteria: Pseudomonas, Comamonas, Acinetobacter,
Yersinia, Serratia, Massilia, and Duganella; Bacteroidetes: Flavobac-
terium, Chryseobacterium, Sphingobacterium, and Dysgonomonas;
Firmicutes: Paenibacillus and Anaerocolumna; Spirochaetes: Tre-
ponema) were significantly enriched in the W population (Fig. 2B
and Fig. S1), and 13 genera were significantly enriched in the FP
population, including eight genera from Firmicutes (Roseburia, Fae-
calibacterium, Eubacterium coprostanoligenes group, Ruminococcus
1, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005,
Ruminococcaceae UCG-010, and Ruminococcaceae UCG-013), three
genera from Bacteroidetes (Pedobacter, Prevotella, and Bacteroides),
one genus from Proteobacteria (Parasutterella), and one genus from
Fibrobacteres (Fibrobacter) (Fig. 2B and Fig. S1). The second major
difference was found in the alpha diversity. The Shannon index
of the food-provisioned population was significantly higher than
that of the wild foraging population. Normally captive lifestyles
or built environments will lead to a decrease in gut microbial
diversity in mammals [42]. However, animals that rely on a single
source of food (or few sources) usually present a low diverse
microbiome [43]. Here, we found that providing a foreign, more
diverse food supply may have led to a more highly diverse gut
microbiome (Table 1). The PCoA ordination and PERMANOVA,
using unweighted Unifrac distance, further supported the signifi-
cant dissimilarity in the gut microbiome community between the
W and FP populations (Fig. 2C; PERMANOVA test: p < 0.01). Also,
the microbial community was more similar in the PCoA plot in
theW animals compared to FP animals. In this study, there is a pro-
found difference in the gut microbiome composition between the
wild foraging and food-provisioned populations within the same
natural region.

This divergence might be associated with the differences in diet
composition. The proportion of bamboo shoots intake was high in
the W population but rare in the FP population (Table 1). The
majority of bamboo shoots have a high proportion of cyanide



Fig. 1. The study area and the diet of Yunnan snub-nosed monkeys. A, Map of research sites; The red box represents the distribution range of the food-provisioned wild group
(Xiangguqing group, FP); The blue box represents the distribution range of wild group (Anyi group, W). B, C, D, and E are photos of wild Rhinopithecus bieti feeding on lichen,
bamboo shoots, bamboo leaves, and Sorbus thibetica. Photo F is a R. bieti feeding on insects in a dead tree, and photo G is of the insects being fed upon. Photos H and I are of the
semi-provisioned wild group R. bieti feeding on provisioned food (carrot and apple). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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compounds [37]. The gut microbiomes of bamboo-eating pandas
display a high proportion of specific Proteobacterial groups (e.g.,
Pseudomonas), which were related to the detoxification of cyanide
compounds in bamboos [39,44]. Thus, the significantly enriched
abundance of these Proteobacterial genera (e.g., Pseudomonas,
Comamonas, and Acinetobacter) might be a response to bamboo
shoot intake in the W population. Meanwhile, the significantly
enriched abundance of specific Firmicutes (e.g., Ruminococcaceae
and Prevotella) and Fibrobacteres groups (e.g., Fibrobacter) might
be involved in the digestion of the high carbohydrate food in the
FP (food-provisioned) population (e.g., a high proportion of fruit
intake). Ruminococcaceae groups and Prevotella are associated
with carbohydrate metabolism [29,45,46]. In addition, we
observed insectivorous behavior in the W population, which was
rare in the FP population (Fig. 1). This discrepancy may be due to
the seasonal food shortages experienced by the W population.
Insects have a high proportion of chitin. Thus, we speculated the
genes coding for the enzymes involved in chitin degradation would
be significantly enriched in the W population as compared to the
FP population. Therefore, we decided to explore the metagenomes
(functional analysis) of the two populations to reveal the gut
microbial plasticity (e.g., the difference in the cyanide, carbohy-
drate, and chitin degradation between W and FP populations) dri-
ven by dietary flexibility.

2.2. Functional divergence in the gut microbiome between the foraging
and food-provisioned populations driven by dietary flexibility

We analyzed 24 fecal metagenomes (8 individuals from W and
16 individuals from FP populations) and found significant
functional dissimilarity in the gut microbial functions between
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the foraging and food-provisioned populations. The taxonomic
assignment of these 24 metagenomes confirmed high proportions
of genera from Proteobacteria and Bacteroidetes (e.g., Proteobacte-
ria: Pseudomonas, Comamonas, Acinetobacter, Yersinia, Serratia,
Massilia, and Duganella; Bacteroidetes: Flavobacterium, Chryseobac-
terium, Sphingobacterium, and Dysgonomonas) in the W population,
and a high proportion of Firmicutes (e.g., Roseburia, Faecalibac-
terium, Eubacterium, Ruminococcus, and other groups from
Ruminococcaceae), Bacteroidetes (e.g., Prevotella), and Fibrobac-
teres genera (e.g., Fibrobacter) in the FP population (Fig. 3A). Inter-
estingly, the PCA ordination and PERMANOVA analysis using Bray-
Curtis distance (based on KEGG level 4: the gene abundance table)
found significant divergence in the gut microbiome between the W
and FP (food-provisioned) populations (Fig. 3B; PERMANOVA test:
p < 0.01). Lefse analysis using the KEGG pathway abundance
revealed that the abundance of many carbohydrate metabolism
and energy metabolism pathways were enriched in the FP
(food-provisioned) population’s gut microbiome (Fig. 3C). For
example, six KEGG level 3 pathways from carbohydrate metabo-
lism (e.g., fructose and mannose metabolism, galactose metabo-
lism, starch, and sucrose metabolism, and pentose phosphate
pathway) were significantly enriched in the FP population. The
predicted taxonomy of these specific KEGG pathway analyses con-
firmed that the main gut microbial genera involved in these func-
tions in FP population included Prevotella, Ruminococcus, Alistipes,
Clostridium, Roseburia, Faecalibacterium, and Bacteroides (Fig. 4).
Considering the high proportion of fruit intake (food-provisioned)
and the high proportion of carbohydrates (e.g., sugars) [29], the
divergence of gut microbial function demonstrated the response
of the gut microbiome to the differences in diet between these
populations.



Fig. 2. The gut microbiome community using 16S rRNA genes in wild (W) and food-provisioned (FP) populations. A, The relative abundance of the dominant phyla in
each fecal sample. B, LEfSe (Linear discriminant analysis Effect Size) was used to determine the significant difference in the abundance of gut microbiomes between W and FP
populations. C, The Shannon index in each fecal sample (Wilcoxon test, p < 0.001). D, Principal Coordinates Analysis (PCoA) plot was built using unweighted UniFrac distances
to assess beta diversity.
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Table 1
Food contribution rate of provisioned and wild groups.

Groups Type of food Food
source

Contribution
rate %

Wild (food-
provisioned) group
(FP)

Lichen wild 25.06 ± 2.19
Bamboo shoots wild 0
Mature leaf wild 14.48 ± 2.99
Fruit/seed wild 11 ± 2.81
Flower wild 2.3 ± 1.62
Young leaf wild 5.27 ± 0.84
Peanut Provisioned 7.25 ± 0.53
Egg Provisioned 0.58 ± 0.17
Seed of
Toxicodendron
vernicifluum

Provisioned 5.61 ± 0.29

Pumpkin seeds Provisioned 4.13 ± 0.55
Apple Provisioned 9.18 ± 0.59
Lichen Provisioned 15.15 ± 2.12

Wild (no food-
provisioned) group
(W)

Lichen wild 49.32 ± 5.05
Bamboo shoots wild 32.63 ± 4.34
Mature leaf wild 10.1 ± 1.15
Fruit/seed wild 4.93 ± 0.53
Flower wild 2.01 ± 1.44
Young leaf wild 1 ± 0.4
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CAZy analysis (Carbohydrate-Active enzymes) further con-
firmed the above finding (Fig. 5). For example, the abundances of
22 GH families (Glycoside hydrolases) were significantly higher
in FP population than that in W population, and the abundances
of 22 GH families were enriched in the W population (Whitney U
test, Bonferroni-corrected, Fig. 5A). For example, GH2 and GH43
were the two dominant GH families, and they were mainly
involved in sugar metabolism (e.g., galactose, mannose, and arabi-
nose) [47-49]. The predicted taxonomy analysis found that these
two GH families putatively came from Prevotella, Alistipses, Bac-
teroides, Ruminococcus, Clostridium, Roseburia, and Faecalibacterium
in the FP population (Fig. 5B). However, GH23 (including lysozyme
type G (EC 3.2.1.17) and chitinase (EC 3.2.1.14)) was the top GH
family in the W population and significantly higher than that in
the FP population (Fig. 5A). The predicted taxonomy analysis found
that GH23 putatively came from Cornamonas, Pseudomonas, Acine-
tobacter, and Rahnella in the W population (Fig. 5C). Next, we
focused on chitinase (EC 3.2.1.14) in the KEGG level 4. Again, we
found the abundance of genes coding for putative chitinase signif-
icantly higher in the W population than in the FP population
(Fig. 6A). The predicted taxonomy analysis found that GH23 puta-
tively came from Bacteroides, Janthinobacterium, Cellulomonas,
Flavobacterium, Rahnella, Sphingobacterium, Dysgonomonas, and
Pseudomonas in the W population (Fig. 6A). This finding might be
related to our field observations of insectivory being common in
the W population but rare in the FP population.

Furthermore, the abundance of some pathways from amino acid
metabolism, lipid metabolism, metabolism of cofactors and vita-
mins, and xenobiotics biodegradation and metabolism were signif-
icantly enriched in the W population (Fig. 3C). These functional
features in the gut microbiome of the W population might be asso-
ciated with the high proportion of bamboo shoot intake (Table 1).
Bamboo shoots are rich in proteins, minerals, and secondary com-
pounds (e.g., cyanogenic glycosides), and are low in sugars [50-52].
Considering the previous finding in the bamboo-eating pandas
(high proportion of Proteobacteria groups (e.g., Pseudomonas)
related to cyanide compound degradation) [39], we then compared
the genes coding for putative enzymes mainly involved in the
degradation of bamboo. We found that genes coding for enzymes
putatively involved in the degradation of this material (including
thiosulfate/3-mercaptopyruvate sulfurtransferase, nitrilase (TST),
thiosulfate sulfurtransferase (glpE), cobalamin adenosyltransferase
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(EC 2.5.1.17), and nitrilase (EC 3.5.5.1), were significantly enriched
(Welch’s t-test, Bonferroni-corrected) in the gut microbiome of the
W population as compared to the FP population (Fig. 6B). The pre-
dicted taxonomy analysis found the genes coding for these
enzymes mainly originated from Proteobacteria genera, such as
Comamonas, Pseudomonas, Acinetobacter, Rahnella, and Variovorax
in the W population (Fig. 6B). Thus, this may also reflect the gut
microbial plasticity in the Yunnan snub-nosed monkey.

Dietary flexibility has been shown to impact NHP and human
gut microbiome composition and function, such as wild black how-
ler monkeys [12], wild great apes [20], wild white-faced capuchins
[21], wild geladas [22], and Hadza hunter-gatherers [53]. For
example, during the fruit foraging season, the gut microbiome of
wild white-faced capuchins is dominated by carbohydrate metabo-
lism, while the proportion of chitin carbohydrate-binding modules
is high when eating insects [21]. The proportion of Prevotella in
wild gorillas and chimpanzees is high during the fruit feeding per-
iod and may be associated the carbohydrate degradation [20]. Our
study provides another example of the relationship between gut
microbiome plasticity (composition and function) and dietary flex-
ibility in a wild NHP population occupying the same region at the
same time. From our results, it appears that diet might profoundly
impact the gut microbiome of wild Yunan snub-nosed monkeys
(YSM). However, we didn’t explore the potential effect on the host
health after the profound changes in the gut microbiomes of the W
and FP YSM populations. We did perform a prediction on the
antibiotic resistance genes (ARGs) profiles using these metagen-
omes. We found a significant dissimilarity between the two popu-
lations (Fig. 7A and 7B; PERMANOVA test using Bray-Curtis
distance: p < 0.05). The gut microbiome of the W population was
enriched in multidrug resistance subtypes (e.g., mul_acrB,
mul_mdfA, mul_mdtB, mul_mdtC, mul_mexF, mul_mexT,
mul_ompR, and mul_oprM) that may originate from Pseudomonas,
Acinetobacter, Rahnella, Comamonas, Variovorax, and Janthinobac-
terium (Fig. 7C). The gut microbiome in the FP population was
enriched in subtypes of tetracycline (e.g., tet_tetQ, tet_ykkD) and
vancomycin resistance (e.g., van_vanU, van_vanY, van_vanG, van_-
vanR, van_vanS), which may originate from Bacteroides, Prevotella,
and Ruminococcus (Fig. 7D). We speculate that long-term food-
provisioning to the wild YSM population had led to dramatic
changes in gut microbial composition, function, and even antibiotic
resistance.

2.3. The analysis of metagenome-assembled genomes (MAGs) further
confirmed the enriched genes were highly associated with degradation
of the specific diet

We then investigated the gene composition in 88 high-quality
MAGs derived from these 24 metagenomes using the metagenomic
assembling method. The advantage of strain level (MAGs) analysis
was that we could determine whether genes coding for putative
enzymes involved in a specific metabolism were present in the
strains. Comparative genomic analysis showed that the relative
abundance of these stains was different between W and FP popu-
lations (Fig. 8), with the relative abundance of most strains from
Proteobacteria, Actinobacteria, and Bacteroidetes being high in
the W population but rare in the FP population, except for Heli-
cobacter sp. MIT 14-3879, Proteobacteria bacterium CAG:495,
Prevotella_multisaccharivorax, and Bacteroidetes bacterium. The rel-
ative abundances of most Firmicutes stains were high in the FP
population and rare in the W population. We further confirmed
that the genes coding for these putative enzymes (including
thiosulfate/3-mercaptopyruvate sulfurtransferase, nitrilase (TST),
thiosulfate sulfurtransferase (glpE), cobalamin adenosyltransferase
(EC 2.5.1.17), and nitrilase (EC 3.5.5.1)) were mainly distributed in
Proteobacteria and Bacteroidetes stains. For example, the genes



Fig. 3. The functional analysis using 24 metagenomes (8 from W population and 16 from FP population). A, Heatmap displaying the top genera in the gut microbiome
using metagenomes. B, PCA plot built using Bray-Curtis distance (the relative abundance table of the genes at KEGG level 4). C, LEfSe was used to determine the significant
differences in the relative abundance of KEGG pathways between W and FP populations.
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coding for putative nitrilase (EC 3.5.5.1) was mainly found in
Proteobacterial strains, such as Rhizobiales bacterium, Variovorax
sp., Bin262: g_Delftia, Acidovorax sp. MR-S7, Oxalobacteraceae bac-
terium CAVE-383, Massilia_timonae, and Janthinobacterium sp. S3-
2. Moreover, the gene coding for putative chitinase (EC 3.2.1.14)
was mainly distributed in the W population among strains such
as Dyadobacter koreensis, Sphingobacterium sp. JUb20, Pedobacter
antarcticus, Janthinobacterium sp. S3-2, Cellulomonas timonensis,
Sanguibacter suarezii, Carnobacterium maltaromaticum, and Vago-
coccus salmoninarum. Here, we found the difference in the relative
abundance of the strain level (MAGs) between W and FP popula-
tions, which might be associated with the different diets. However,
MAGs analyses such as this one should be taken with some caution
due to the sequencing depth and the capability to assemble all
MAGs in the metagenomes [54,55].
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2.4. Functional convergence of Yunnan snub-nosed monkey and
bamboo-eating gut microbiomes

One of the main characteristics in the gut microbial functions of
wild foraging Yunnan snub-nosed monkeys was the enrichment in
genes coding for putative enzymes involved in the degradation of
the cyanide compounds present in bamboo. A similar result had
been found in our previous studies on bamboo-eating pandas
[39,44,56,57], which were historically distributed in the Yunnan
region [38]. Thus, based on our previously published 57 metagen-
omes (19 CA (meat-eating carnivorans), 12 HE (herbivore) [58], 10
OC (omnivorous carnivorans) [58], and 10 GP (giant pandas) [39],
and 6 RP (red pandas) [39]), we tested our second hypothesis, that
the wild foraging (high bamboo shoot intake and not provided
with supplemental food) population shared a putative functional



Fig. 4. Putatively predicted taxonomy of the KEGG pathways using 24 metagenomes (8 from W population and 16 from FP population). A, The main microbial genera
involved in Carbohydrate metabolism in the metagenomes of the W and FP populations. B, The main microbial genera involved in fructose and mannose metabolism (belong
to Carbohydrate metabolism category). C, The main microbial genera involved in starch and sucrose metabolism (belong to Carbohydrate metabolism category). D, The main
microbial genera involved in galactose metabolism (belong to Carbohydrate metabolism category).
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convergence in the gut microbiome with the wild bamboo-eating
pandas. The PCoA ordination and hierarchical clustering using
Bray-Curtis distance (based on the relative abundance of KEGG
level 4 genes) showed the high similarity in gut microbial func-
tions (Fig. 9A and 9B). Thus, we deduced that the potential func-
tional convergence (high similarity) of Yunnan snub-nosed
monkey and bamboo-eating gut microbiomes might be partially
caused by similar diets (e.g., high bamboo diet intake), although
they belong to different mammalian orders (Primates vs. Car-
nivora). Diet played an important role in shaping the gut micro-
biome in the Yunnan snub-nosed monkeys and bamboo-eating
pandas. Diet drives convergence in the gut microbiomes of differ-
ent mammals (e.g., opposing directionality for amino acid metabo-
lism between carnivorous and herbivorous microbiomes [29];
composition similarity in myrmecophagous mammals [60]). The
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diet of the wild mammal may be more complex or diverse than
we have known.

3. Conclusion

In this study, we found a significant difference in the gut micro-
biome between wild foraging and food-provisioned Yunnan snub-
nosed monkey populations, which might be associated with the
different dietary compositions. The wild foraging (no supplemental
food provided) population shared a putative functional conver-
gence in the gut microbiome with the wild bamboo-eating pandas:
such as microbes and genes involved in cyanide detoxification.
Long-term food-provisioned to a wild NHP population led to dra-
matic changes in gut microbial composition, function, and even
antibiotic resistance. The antibiotic resistance profile for the wild



Fig. 5. The CAZy analysis (Carbohydrate-Active enzymes) of these 24 metagenomes (8 from W population and 16 from FP population). A, Heatmap of the relative
abundance of GH families (Glycoside Hydrolases). A blue asterisk indicates significantly higher (Whitney U test with Bonferroni corrected) relative abundance of this GH
family in the metagenomes of the FP population. A brown asterisk indicates significantly higher (Whitney U test with Bonferroni corrected) relative abundance of this GH
family in the metagenomes of the W population. *, p < 0.05; **, p < 0.01; ***, p < 0.001. B, Circos was used to visualized the contribution of bacterial taxa (at the genus level)
regarding the GH families based on the TPM of bacterial genera for the annotated GH families and the TPM of GH families in all GH families in the W population. C, Circos was
used to visualized the contribution of bacteria taxon (at the genus level) regarding the GH families based on the TPM of bacteria genus for the annotated GH families and the
TPM of GH families in all GH families in the FP population. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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NHP population would be basic and important information for
conservation.
4. Materials and methods

4.1. Study areas

Fecal samples of wild R. bieti were collected at AY (Anyi,
99�090E, 27�270N) and the XGQ (Xiangguqing, 99�210E, 27�390N).
The two sampling sites were located in Weixi County, Yunnan Pro-
vince, China, approximately 34 km apart (Fig. 1). The annual mean
daily temperature is 9.8 �C with a maximum of 27.7 �C in July and a
minimum of �9.3 �C in January. Annual rainfall is 1,371 mm(61).
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AY group (W foraging population) is the wild R. bieti population
which is free to eat a natural diet, while XGQ group (FP, food-
provisioned) is the wild R. bieti population, but supplement foods
were provided regularly to them. In the wild R. bieti mainly feeds
on a variety of plants, including lichens, mature leaves, fruits seeds,
young leaves, bamboo shoots, buds, flowers, bark/petiole/stem,
insects, and fungi [35]. The supplement foods at the provisioning
site consisted the lichen and other foods (carrots, apples, or pump-
kin seeds) each day [36].

4.2. Diet collection and analysis

The monkey groups were followed as close as possible without
interfering with their normal activities. If conditions did not permit



Fig. 6. The genes coding for putative enzymes involved in chitin and cyanide compound degradation. A, The relative abundance of gene coding for a putative chitinase
(EC 3.2.1.14) involved in chitin degradation and its predicted taxonomy (top genera). B, The relative abundance of genes coding for putative enzymes (including thiosulfate/3-
mercaptopyruvate sulfurtransferase, nitrilase (TST), thiosulfate sulfurtransferase (glpE), cobalamin adenosyltransferase (EC 2.5.1.17), and nitrilase (EC 3.5.5.1)) involved in
cyanide compound degradation and their predicted taxonomy (top genera). Welch’s t-test (with Bonferroni-corrected) was used to test the significant difference in these
genes between W (8: eight metagenomes) and FP (16: sixteen metagenomes) populations. ‘‘Others” included the low and no-rank microbial groups.
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this, observations were continued with a binocular. The feeding
behavior of the monkeys was observed by scanning instantaneous
sampling at 15 min intervals to ensure the independence of the
samples [62]. Between 3 May 2020 to 18 June 2020, a total of
11,807 instances of feeding individuals were recorded in the wild
foraging group (Anyi group), and 19,697 instances of feeding indi-
viduals were recorded in the provisioned wild group (Xiangguqing
group) from 4 May 2020 to 27 June 2020. Scanning records include
the species, parts, and types of plants that the monkeys feed on.
Individuals picking or placing food into their mouths were identi-
fied as feeding behavior. Feeding individuals were observed for at
least 5 s to confirm the type/part of the food. Food types were
divided into (1) Lichen; (2) Buds (referring to leaf buds); (3) Young
leaf; (4) Mature leaf; (5) Flower (6) Fruit or seed; (7) Bamboo
shoots; (8) Fungi; (9) Bark, petioles, stems; (10) Others, including
insects, vertebrates, bird eggs, soil, etc. The following rules are used
to determine the species of food: (1) Observe which part of the
plant R. bieti was feeding on at close range, try to take pictures,
and pick the leaves, flowers, and fruits of the plant for identifica-
tion of species; (2) After the monkey group has left, enter the feed-
ing site and gather the traces left to confirm the species of feeding
further; (3) The act of peeling the bark off of deadwood and placing
it into the mouth was considered to be feeding upon insects.

When calculating the contribution rate of different food species
to the diet of R. bieti, each scanned individual was regarded as an
independent sample, and the contribution rate of different food
types and species was calculated using the following formula:

R = RCK /RFwhere R is the contribution rate; k is the types or
species of the food; RCk is the sum of the k food types or k species;
RF is the total number of feeding samples.
693
4.3. Fecal sample collection

A total of 48 fresh fecal samples were collected in June 2020
(Table S2), twenty in AY (W group) and twenty-eight in XGQ (FP
group). R. bieti has evolved the habit of defecation after feeding
in noon. The sampling time was arranged at 13:00–15:00. AY
group samples were collected using the following process: (1)
locating the group of wild R. bieti and follow them at a distance
of about 200 m; (2) waiting for R. bieti to leave the feeding area;
and (3) sampling the fresh fecal samples that are not mixed to
make sure they belong to one individual. Fecal samples from
XGQ group were collected near the provisioning site. When a group
of R. bieti came to eat the provisioned food, they were observed at
distances about 20–30 m and then wait for group members to
defecate. After the group had left the provisioning site, the fresh
stool samples were quickly collected. We had been traced food-
provisioned (FP) group for about 11 years, and we could identify
each individual in the group. All samples were put into sterile cen-
trifuge tubes, sealed, labeled, and immediately frozen in liquid
nitrogen, then transferred to a �80 �C freezer. DNA extraction
was performed within one week after sample collection.

4.4. DNA Extraction, PCR amplification, and 16S-rRNA gene sequencing

Total DNA was extracted using the QIAamp DNA Stool Mini Kit
(QIAGEN, Hilden, Germany) according to the manufacturer’s proto-
col. The integrity of the nucleic acids was determined visually by
electrophoresis on a 1.0% agarose gel containing ethidium bromide.
The concentration and purity of each DNA extraction were deter-
mined using a Qubit dsDNA HS Assay Kit (Life Technologies, Carls-



Fig. 7. The antibiotic resistance genes (ARGs) profiles in the 24 metagenomes fromW and FP populations. A, The relative abundance of the top types of ARGs in W and FP
populations. ‘‘Others” included low abundance subtypes. B, PCoA ordination of these 24 metagenomes using Bray-Curtis distance (based on the relative abundance of the
ARGs subtype). C, Circos showed the contribution of top microbial genera regarding the ARG subtypes based on the TPM of microbial genera for the annotated ARGs and the
TPM of ARG subtypes in all annotated ARGs in the W population. D, Circos showed the contribution of top microbial genera regarding the ARG subtypes based on the TPM of
microbial genera for the annotated ARGs and the TPM of ARG subtypes in all annotated ARGs in the FP population.
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bad, CA, United States). The extracted total DNA was stored at
�80℃. Only samples that meet the following criteria were used
for 16S-rRNA Gene sequencing: (1) DNA integrity and no contam-
ination; (2) DNA concentrations were > 10 ng/ul; (3) DNA total
quality was > 100 ng. The V3-V4 hypervariable region of the bacte-
rial 16S-rRNA gene was amplified from extracted total DNA with
the universal bacterial barcoded primers 343F � 50 -
TACGGRAGGCAGCAG- 30 and 798R � 50 -AGGGTATCTAATCCT �
30). The PCR reaction (30 mL total volume) contained 15 lL
2 � Gflex PCR Buffer, 0.6 lL Tks Gflex DNA Polymerase (1.25U/
ll), 1 mL (5 pmol/ll) forward primer, 1 mL (5 pmol/ll) reverse pri-
mer, template DNA (50 ng), and 12.4 mL PCR grade water. PCR
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amplification program was set up according to the following pro-
cedure: 94 �C for 5 min, followed by 30 cycles of 94 �C for 30 s,
56 �C for 30 s, and 72 �C for 20 s, and a final extension at 68 �C
for 5 min. PCR amplification and paired-end sequencing were per-
formed by Oebiotech Company (Shanghai, China) using the Illu-
mina MiSeq platform.

4.5. 16S sequence processing and analysis

Raw paired-end reads were then preprocessed using Trimmo-
matic software based on a sliding window (5 bp bases) for quality
control [64]. Quality control criteria were as follows: (1) detect and
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Fig. 8. Phylogenetic analysis of the putative strains (metagenome-assembled genomes, MAGs) by binning from the 24 metagenomes from W and FP populations. The
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remove ambiguous bases; (2) discard low-quality sequences with
an average quality score below 20. After trimming, clean paired-
end reads were assembled using FLASH software [65]. Assembled
sequences were further denoised as follows: reads with ambiguous
homopolymers longer than eight bp or below 200 bp were
removed. Then, the clean reads were analyzed using QIIME v1.9.0
[66]. Chimeric sequences were identified and discarded using the
vsearch algorithm [67], chloroplast sequences also were removed.
Clean sequences were clustered into operational taxonomic units
(OTUs) based on 97% similarity using a closed reference OTU-
picking approach. To reduce sequencing error, singleton OTUs were
removed. A representative read from each OTU was selected using
the QIIME package [66]. All representative reads were annotated
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and blasted against the SILVA reference database (release 128,
http://www.arb-silva.de/).

Before calculating the alpha and beta diversity metrics, samples
with different sequencing depths were normalized by rarefying the
OTU table to the minimum number (32,848) of sequences observed
in all samples. The Shannon index and observed species were com-
puted to assess the alpha diversity. Wilcoxon test for the signifi-
cant difference between W and FP populations was conducted in
SPSS software. LEfSe (Linear discriminant analysis Effect Size)
was used to determine the significant difference in the abundance
of gut microbiomes between W and FP populations [68]. The Prin-
cipal Coordinates Analysis (PCoA) plot was built using unweighted
UniFrac distances to assess beta diversity [69]. PERMANOVA test

http://www.arb-silva.de/


Fig. 9. Putatively functional convergence of Yunnan snub-nosed monkey and bamboo-eating panda gut microbiomes using 81 metagenomes. The PCoA ordination (A)
and hierarchical clustering (B) using Bray-Curtis distance (based on the relative abundance of KEGG level 4 genes). 81 metagenomes: 24 metagenomes (W, wild population;
FP, wild (food-provisioned) population) from the current study, and 57 metagenomes from previously published data (19 CA (meat-eating carnivorans), 12 HE (herbivore)
(58), 10 OC (omnivorous carnivorans) (58), and 10 GP (giant pandas) (59), and 6 RP (red pandas) (59)). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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for group-level differences in the microbial composition was per-
formed in QIIME package [66].

4.6. Metagenomic sequencing and analysis

Metagenomic sequencing for 24 fecal samples (8 fromW and 16
from FP populations, random selection) was conducted using the
Illumina HiSeq-PE150 platform. The raw data for each metagen-
ome was about 10G, and we finally gained about 240G raw reads.
The raw reads were filtered using Cutadapt [70]. BWA [71] was
used to remove the host contaminations using the published
Rhinopithecus bieti genome (NCBI accession number:
GCF_001698545). MEGAHIT [72] was used to assemble the clean
reads based on the default parameters (minimum contig length
500 bp). All coding regions (CDS) of metagenomic contigs were
predicted by Prodigal [73] and were clustered by CD-HIT with
these parameters (identity>=95% & overlap>=90%) [74]. Thus, we
gained the unigenes after this step. The transcripts per million
(TPM) were used to estimate Unigene abundance based on the
number of aligned reads by bowtie2 [75]. Diamond [76] was used
to conduct the alignment of unigenes against the NCBI micro-NR
database (including bacteria, fungi, archaea, and viruses) with
these parameters (e-value<=1e-5 & score>=60). After this step,
we obtained taxonomic information for the unigenes. The func-
tional annotations of unigenes were performed against the KEGG
(Kyoto Encyclopedia of Genes and Genomes) [77]. The TPM of
gut microbiome communities, KEGG pathways, and GH families
per metagenome were transformed to relative abundance using
STAMP [78].

LEfSe (Linear discriminant analysis Effect Size) was used to
determine the significant difference in the abundance of KEGG
pathways between W and FP populations [68]. The Welch’s t-test
(with Bonferroni correction) in STAMP [78] was used to compare
the significant difference in the relative abundance of the genes
coding for the putative enzymes involved in the specific dietary
degradation pathways between W and FP populations. The Whit-
ney U test (with Bonferroni correction) was used to test the signif-
icant difference in the abundance of GH families betweenW and FP
populations. We applied PCA ordination in the vegan package [79]
based on the Bray-Curtis distance matrices [80] using functional
composition tables (relative abundance). Circos [81] was used to
visualize the contribution of bacteria taxon (at the genus level)
regarding the GH families based on the TPM of bacterial genera
for the annotated GH families and the TPM of GH families in all
GH families.

Based on our previously published 57 metagenomes (19 CA
(meat-eating carnivorans), 12 HE (herbivore) [58], 10 OC (omnivo-
rous carnivorans) (58), and 10 GP (giant pandas) [39], and 6 RP (red
pandas) (59)), we tested our second hypothesis that the wild forag-
ing (with high bamboo shoot intake and no supplemental food pro-
visioning) population shared a putative functional convergence
with the gut microbiome of wild bamboo-eating pandas. The PCoA
ordination and hierarchical clustering using Bray-Curtis distance
(based on the relative abundance of KEGG level 4 genes) were con-
ducted in PAST4 [82].

4.7. Antibiotic resistance genes (ARGs) analysis

We blasted the identified genes against the ARDB database
using SARG2.0 with the default parameters (e-value<=1e-7 & iden-
tity>=60) [83]. We then obtained the putative ARG assignment of
these genes per metagenome. Next, we used custom Perl scripts
to gain the abundance (TPM) of ARG subtypes for each metagen-
ome. The TPM of ARGs per metagenome was transformed to rela-
tive abundance using STAMP [78]. The putative sequences of
ARGs were blasted against the NR database in NCBI using diamond
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(e-value<=1e-5 & score>=60) [76]. From this, we determined the
putatively predicted taxonomy of the ARGs within each metagen-
ome. We used Circos to calculate the contribution of top microbial
genera regarding the ARG subtypes based on the TPM of microbial
genera for the annotated ARGs, and the TPM of ARG subtypes in all
annotated ARGs. Bray-Curtis distance based on the relative abun-
dance of ARGs subtypes was used to generate PCoA in PAST4
[82]. PERMANOVA test using Bray-Curtis dissimilarities was used
to test the significant difference in the ARGs subtype community
between W and FP populations.

4.8. Binning analysis (metagenomic assembled genomes (MAGs):
Strain level)

We combined the clean reads of these 24 metagenomes for
metagenomic assembly analysis. We use BWA [71] and Samtools
[84] to map the clean reads to contigs. MetaBAT2 [85] was used
to obtain the contigs for each bin based on the mapping result
per metagenome. We used CheckM [86] for the quality control of
each bin. We selected the high-quality bins (coverage > 80%, con-
tamination rate < 10%) for the strain-level analysis. We used Sal-
mon [87] to map the clean reads to these high-quality bins and
determine the TPM of the bins in each metagenome. PhyloPhlAn
[88] was used to construct the maximum likelihood tree for these
bins. These high-quality bins were searched against the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway database
by using diamond [89], and then we obtained the gene composi-
tion for these bins MAGs. Thus, we could make a comparative
genomic analysis to obtain the number of genes coding for putative
enzymes involved in the degradation of specific dietary com-
pounds in this study.
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