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Abstract: Accurate evaluation of Bayesian model evidence for a given data set is a fundamental
problem in model development. Since evidence evaluations are usually intractable, in practice
variational free energy (VFE) minimization provides an attractive alternative, as the VFE is an upper
bound on negative model log-evidence (NLE). In order to improve tractability of the VFE, it is
common to manipulate the constraints in the search space for the posterior distribution of the latent
variables. Unfortunately, constraint manipulation may also lead to a less accurate estimate of the NLE.
Thus, constraint manipulation implies an engineering trade-off between tractability and accuracy of
model evidence estimation. In this paper, we develop a unifying account of constraint manipulation
for variational inference in models that can be represented by a (Forney-style) factor graph, for which
we identify the Bethe Free Energy as an approximation to the VFE. We derive well-known message
passing algorithms from first principles, as the result of minimizing the constrained Bethe Free Energy
(BFE). The proposed method supports evaluation of the BFE in factor graphs for model scoring and
development of new message passing-based inference algorithms that potentially improve evidence
estimation accuracy.

Keywords: Bayesian inference; Bethe free energy; factor graphs; message passing; variational free
energy; variational inference; variational message passing

1. Introduction

Building models from data is at the core of both science and engineering applications.
The search for good models requires a performance measure that scores how well a
particular model m captures the hidden patterns in a data set D. In a Bayesian framework,
that measure is the Bayesian evidence ppD|mq, i.e., the probability that model m would
generate D if we were to draw data from m. The art of modeling is then the iterative
process of proposing new model specifications, evaluating the evidence for each model
and retaining the model with the most evidence [1].

Unfortunately, Bayesian evidence is intractable for most interesting models. A popu-
lar solution to evidence evaluation is provided by variational inference, which describes
the process of Bayesian evidence evaluation as a (free energy) minimization process,
since the variational free energy (VFE) is a tractable upper bound on Bayesian (negative
log-)evidence [2]. In practice, the model development process then consists of proposing
various candidate models, minimizing VFE for each model and selecting the model with
the lowest minimized VFE.

The difference between VFE and negative log-evidence (NLE) is equal to the Kullback–
Leibler divergence (KLD) [3] from the (perfect) Bayesian posterior distribution to the
variational distribution for the latent variables in the model. The KLD can be interpreted
as the cost of conducting variational rather than Bayesian inference. Perfect (Bayesian)
inference would lead to zero inference costs (KLD “ 0), and the KLD increases as the
variational posterior diverges further from the Bayesian posterior. As a result, model
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development in a variational inference context is a balancing act, where we search for
models that have both large amounts of evidence for the data and small inference costs
(small KLD). In other words, in a variational inference context, the researcher has two
knobs to tune models. The first knob alters the model specification, which affects model
evidence. The second knob relates to constraining the search space for the variational
posterior, which may affect the inference costs.

In this paper, we are concerned with developing algorithms for tuning the second
knob. How do we constrain the range of variational posteriors so as to make variational
inferences both tractable and accurate (resulting in low KLD)? We present our framework
in the context of a (Forney-style) factor graph representation of the model [4,5]. In that
context, variational inference can be understood as an automatable and efficient message
passing-based inference procedure [6–8].

Traditional constraints include mean-field [6] and Bethe approximations [9,10]. How-
ever, more recently it has become clear how alternative local constraints, such as posterior
factorization [11], expectation and chance constraints [12,13], and local Laplace approxi-
mation [14], may impact both tractability and inference accuracy, and thereby potentially
lead to lower VFE. The main contribution of the current work lies in unifying the various
ideas on local posterior constraints into a principled method for deriving variational mes-
sage passing-based inference algorithms. The proposed method derives existing message
passing algorithms, but also supports the development of new message passing variants.

Section 2 reviews Forney-style Factor Graphs (FFGs) and variational inference by
minimizing the Bethe Free Energy (BFE). This review is continued in Section 3, where
we discuss BFE optimization from a Lagrangian optimization viewpoint. In Appendix A,
we include an example to illustrate that the Bayes rule can be derived from Lagrangian
optimization with data constraints. Our main contribution lies in Section 4, which pro-
vides a rigorous treatment of the effects of imposing local constraints on the BFE and
the resulting message update rules. We build upon several previous works that describe
how manipulation of (local) constraints and variational objectives can be employed to
improve variational approximations in the context of message passing. For example,
ref. [12] shows how inference algorithms can be unified in terms of hybrid message
passing by Lagrangian constraint manipulation. We extend this view by bringing form
(Section 4.2) and factorization constraints (Section 4.1) into a constrained optimization
framework. In [15], a high-level recipe for generating message passing algorithms from
divergence measures is described. We apply their general recipe in the current work,
where we adhere to the view on local stationary points for region-based approximations on
general graphs [16]. In Appendix B, we also show that locally stationary solutions are also
the global stationary solutions. In Section 5, we develop an algorithm for VFE evaluation
in an FFG. In previous work, ref. [17] describes a factor softening approach to evaluate the
VFE for models with deterministic factors. We extend this work in Section 5, and show
how to avoid factor softening for both free energy evaluation and inference of posteriors.
We show an example of how to compute VFE for a deterministic node in Appendix C. A
more detailed comparison to related work is given in Section 7.

In the literature, proofs and descriptions of message passing-based inference algo-
rithms are scattered across multiple papers and varying graphical representations, in-
cluding Bayesian networks [6,18], Markov random fields [16], bi-partite (Tanner) factor
graphs [12,17,19] and Forney-style factor graphs (FFGs) [5,11]. In Appendix D, we provide
first-principle proofs for a large collection of familiar message passing algorithms in the
context of Forney-style factor graphs, which is the preferred framework in the information
and communication theory communities [4,20].

2. Factor Graphs and the Bethe Free Energy
2.1. Terminated Forney-Style Factor Graphs

A Forney-style factor graph (FFG) is an undirected graph G “ pV , Eq with nodes V
and edges E Ď V ˆ V . We denote the neighboring edges of a node a P V by Epaq. Vice
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versa, for an edge i P E , the notation Vpiq collects all neighboring nodes. As a notational
convention, we index nodes by a, b, c and edges by i, j, k, unless stated otherwise. We will
mainly use a and i as summation indices and use the other indices to refer to a node or
edge of interest.

In this paper, we will frequently refer to the notion of a subgraph. We define an edge-
induced subgraph by Gpiq “ pVpiq, iq, and a node-induced subgraph by Gpaq “ pa, Epaqq.
Furthermore, we denote a local subgraph by Gpa, iq “ pVpiq, Epaqq, which collects all local
nodes and edges around i and a, respectively.

An FFG can be used to represent a factorized function,

f psq “
ź

aPV
fapsaq , (1)

where sa collects the argument variables of factor fa. We assumed that all the factors are
positive. In an FFG, a node a P V corresponds to a factor fa, and the neighboring edges
Epaq correspond to the variables sa that are the arguments of fa.

As an example model, the following factorization (2), the corresponding FFG of which
is shown in Figure 1.

f ps1, . . . , s5q “ faps1q fbps1, s2, s3q fcps2q fdps3, s4, s5q feps5q . (2)

fa fb

fc

fd fe
s1

s2

s3

s4

s5

Figure 1. Example Forney-style factor graph for the model of (2).

The FFG of Figure 1 consists of five nodes V “ ta, . . . , eu, as annotated by their
corresponding factor functions, and five edges E “ tpa, bq, . . . , pd, equ as annotated by their
corresponding variables. An edge that connects to only one node (e.g., the edge for s4)
is called a half-edge. In this example, the neighborhood Epbq “ tpa, bq, pb, cq, pb, dqu and
Vppb, cqq “ tb, cu.

In the FFG representation, a node can be connected to an arbitrary number of edges,
while an edge can only be connected to at most two nodes. Therefore, FFGs often contain
“equality nodes” that constrain connected edges to carry identical beliefs, with the implica-
tion that these beliefs can be made available to more than two factors. An equality node
has the factor function

fapsi, sj, skq “ δpsj ´ siq δpsj ´ skq , (3)

for which the node-induced subgraph Gpaq is drawn in Figure 2.
If every edge in the FFG has exactly two connected nodes (including equality nodes),

then we designate the graph as a terminated FFG (TFFG). Since multiplication of a function
f psq by 1 does not alter the function, any FFG can be terminated by connecting any half-
edge i to a node a that represents the unity factor fapsiq “ 1.

“

si

sk

sj

Figure 2. Visualization of the node-induced subgraph for an equality node. If the node function
fa is known, a symbol representing the node function is often substituted within the node (““” in
this case).
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In Section 4.2 we discuss form constraints on posterior distributions. If such a con-
straint takes on a Dirac-delta functional form, then we visualize the constraint on the FFG
by a small circle in the middle of the edge. For example, the small shaded circle in Figure 11
indicates that the variable has been observed. In Section 4.3.2 we consider form constraints
in the context of optimization, in which case the circle annotation will be left open (see, e.g.,
Figure 14).

2.2. Variational Free Energy

Given a model f psq and a (normalized) probability distribution qpsq, we can define a
Variational Free Energy (VFE) functional as

Frq, f s fi

ż

qpsq log
qpsq
f psq

ds . (4)

Variational inference is concerned with finding solutions to the minimization problem

q˚psq “ arg min
qPQ

Frq, f s , (5)

where Q imposes some constraints on q.
If q is unconstrained, then the optimal solution is obtained for q˚psq “ ppsq, with

ppsq “ 1
Z f psq being the exact posterior, and Z “

ş

f psqds a normalizing constant that is
commonly referred to as the evidence. The minimum value of the free energy then follows
as the negative log-evidence (NLE),

Frq˚, f s “ ´ log Z ,

which is also known as the surprisal. The NLE can be interpreted as a measure of model
performance, where low NLE is preferred.

As an unconstrained search space for q grows exponentially with the number of
variables, the optimization of (5) quickly becomes intractable beyond the most basic models.
Therefore, constraints and approximations to the variational free energy (4) are often
utilized. As a result, the constrained variational free energy with q˚ P Q bounds the NLE by

Frq˚, f s “ ´ log Z`
ż

q˚psq log
q˚psq
ppsq

ds , (6)

where the latter term expresses the divergence from the (intractable) exact solution to the
optimal variational belief.

In practice, the functional form of qpsq “ qps; θq is often parameterized, such that gra-
dients of F can be derived w.r.t. the parameters θ. This effectively converts the variational
optimization of Frq, f s to a parametric optimization of Fpθq as a function of θ. This problem
can then be solved by a (stochastic) gradient descent procedure [21,22].

In the context of variational calculus, while form constraints may lead to interesting
properties (see Section 4.2), they are generally not required. Interestingly, in a variational
optimization context, the functional form of q is often not an assumption, but rather a result
of optimization (see Section 4.3.1). An example of variational inference is provided in
Appendix A.

2.3. Bethe Free Energy

The Bethe approximation enjoys a unique place in the landscape of Q, because the
Bethe free energy (BFE) defines the fundamental objective of the celebrated belief propa-
gation (BP) algorithm [17,23]. The origin of the Bethe approximation is rooted in tree-like
approximations to subgraphs (possibly containing cycles) by enforcing local consistency
conditions on the beliefs associated with edges and nodes [24].
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Given a TFFG G “ pV , Eq for a factorized function f psq “
ś

aPV fapsaq (1), the Bethe
free energy (BFE) is defined as [25]:

Frq, f s fi
ÿ

aPV

ż

qapsaq log
qapsaq

fapsaq
dsa

looooooooooooomooooooooooooon

Frqa , fas

`
ÿ

iPE

ż

qipsiq log
1

qipsiq
dsi

loooooooooooomoooooooooooon

Hrqis

(7)

such that the factorized beliefs

qpsq “
ź

aPV
qapsaq

ź

iPE
qipsiq

´1 (8)

satisfy the following constraints:
ż

qapsaqdsa “ 1 , for all a P V (9a)
ż

qapsaqdsazi “ qipsiq , for all a P V and all i P Epaq . (9b)

Together, the normalization constraint (9a) and marginalization constraint (9b) imply that
the edge marginals are also normalized:

ż

qipsiqdsi “ 1 , for all i P E . (10)

The Bethe free energy (7) includes a local free energy term Frqa, fas for each node
a P V , and an entropy term Hrqis for each edge i P E . Note that the local free energy also
depends on the node function fa, as specified in the factorization of f (1), whereas the
entropy only depends on the local belief qi.

The Bethe factorization (8) and constraints are summarized by the local polytope [26]

LpGq “ tqa for all a P V s.t. (9a), and qi for all i P Epaq s.t. (9b)u , (11)

which defines the constrained search space for the factorized variational distribution (8).

2.4. Problem Statement

In this paper, the problem is to find the beliefs in the local polytope that minimize the
Bethe free energy

q˚psq “ arg min
qPLpGq

Frq, f s , (12)

where q is defined by (8), and where q P LpGq offers a shorthand notation for optimizing
over the individual beliefs in the local polytope. In the following sections, we will follow
the Lagrangian optimization approach to derive various message passing-based inference
algorithms.

2.5. Sketch of Solution Approach

The problem statement of Section 2.4 defines a global minimization of the beliefs in
the Bethe factorization. Instead of solving the global optimization problem directly, we
employ the factorization of the variational posterior and local polytope to subdivide the
global problem statement in multiple interdependent local objectives.

From the BFE objective (12) and local polytope of (11), we can construct the Lagrangian
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Lrq, f s “
ÿ

aPV
Frqa, fas `

ÿ

aPV
ψa

„
ż

qapsaqdsa ´ 1


`
ÿ

aPV

ÿ

iPEpaq

ż

λiapsiq

„

qipsiq ´

ż

qapsaqdsazi



dsi

`
ÿ

iPE
Hrqis `

ÿ

iPE
ψi

„
ż

qipsiqdsi ´ 1


, (13)

where the Lagrange multipliers ψa, ψi and λia enforce the normalization and marginal-
ization constraints of (9). It can be seen that this Lagrangian contains local beliefs qa and
qi, which are coupled through the λia Lagrange multipliers. The Lagrange multipliers λia
are doubly indexed, because there is a multiplier associated with each marginalization
constraint. The Lagrangian method then converts a constrained optimization problem
of Frq, f s to an unconstrained optimization problem of Lrq, f s. The total variation of the
Lagrangian (13) can then be approached from the perspective of variations of the individual
(coupled) local beliefs.

More specifically, given a locally connected pair b P V , j P Epbq, we can rewrite the
optimization of (12) in terms of the local beliefs qb, qj, and the constraints in the local
polytope

LpGpb, jqq “
 

qb s.t. (9a), and qj s.t. (9b)
(

, (14)

that pertains to these beliefs. The problem then becomes finding local stationary solutions

tq˚b , q˚j u “ arg min
LpGpb,jqq

Frq, f s . (15)

Using (13), the optimization of (15) can then be written in the Lagrangian form

q˚b “ arg min
qb

Lbrqb, fbs , (16a)

q˚j “ arg min
qj

Ljrqjs , (16b)

where the Lagrangians Lb and Lj include the local polytope of (14) to rewrite (13) as an
explicit functional of beliefs qb and qj (see, e.g., Lemmas 1 and 2). The combined stationary
solutions to the local objectives then also comprise a stationary solution to the global
objective (Appendix B).

The current paper shows how to identify stationary solutions to local objectives of the
form (15), with the use of variational calculus, under varying constraints as imposed by
the local polytope (14). Interestingly, the resulting fixed-point equations can be interpreted
as message passing updates on the underlying TFFG representation of the model. In the
following Sections 3 and 4, we derive the local stationary solutions under a selection of
constraints and show how these relate to known message passing update rules (Table 1). It
then becomes possible to derive novel message updates and algorithms by simply altering
the local polytope.
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Table 1. Relation between local constraints and derived message updates. The rows refer to different
constraints that relate to factor–variable combinations, factors, and variables, respectively. Note
that each message passing algorithm combines a set of constraints. Abbreviations: Sum-Product
(SP), Structured Variational Message Passing (SVMP), Mean-Field Variational Message Passing
(MFVMP), Data Constraint (DC), Laplace Propagation (LP), Mean-Field Variational Laplace (MFVLP),
Expectation Maximization (EM), and Expectation Propagation (EP).

Local Constraint SP SVMP MFVMP DC LP MFVLP EM EP

Normalization X X X X X X X X
Marginalization X X X X X X X X

Moment-Matching X

Structured Mean-Field X X
Naive Mean-Field X X

Laplace Approximation X X

Dirac-delta X X
Estimation X

3. Bethe Lagrangian Optimization by Message Passing
3.1. Stationary Points of the Bethe Lagrangian

We wish to minimize the Bethe free energy under variations of the variational density.
As the Bethe free energy factorizes over factors and variables (7), we first consider variations
on separate node- and edge-induced subgraphs.

Lemma 1. Given a TFFG G “ pV , Eq, consider the node-induced subgraph Gpbq (Figure 3). The
stationary points of the Lagrangian (16a) as a functional of qb,

Lbrqb, fbs “ Frqb, fbs ` ψb

„
ż

qbpsbqdsb ´ 1


`
ÿ

iPEpbq

ż

λibpsiq

„

qipsiq ´

ż

qbpsbqdsbzi



dsi ` Cb , (17)

where Cb collects all terms that are independent of qb, which are of the form

qbpsbq “

fbpsbq
ź

iPEpbq
µibpsiq

ż

fbpsbq
ź

iPEpbq
µibpsiqdsb

. (18)

Proof. See Appendix D.1.

The µibpsiq are any set of positive functions that makes (18) satisfy (9b), and will be
identified in Theorem 1.

fb
...

µ
lbÑ

sl

µ kb
Ñ

sk

Ð
µjb

sj

Figure 3. The subgraph around node b with indicated messages. Ellipses indicate an arbitrary
(possibly zero) amount of edges.

Lemma 2. Given a TFFG G “ pV , Eq, consider an edge-induced subgraph Gpjq (Figure 4). The
stationary points of the Lagrangian (16b) as a functional of qj,
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Ljrqjs “ Hrqjs ` ψj

„
ż

qjpsjqdsj ´ 1


`
ÿ

aPVpjq

ż

λjapsjq

„

qjpsjq ´

ż

qapsaqdsazj



dsj ` Cj , (19)

where Cj collects all terms that are independent of qj, are of the form

qjpsjq “
µjbpsjqµjcpsjq

ż

µjbpsjqµjcpsjqdsj

. (20)

Proof. See Appendix D.2.

fb fc

µjc
Ñ

Ð
µjb

sj

Figure 4. An edge-induced subgraph Gpjqwith indicated messages.

3.2. Minimizing the Bethe Free Energy by Belief Propagation

We now combine Lemmas 1 and 2 to derive the sum-product message update.

Theorem 1 (Sum-Product Message Update). Given a TFFG G “ pV , Eq, consider the induced
subgraph Gpb, jq (Figure 5). Given the local polytope LpGpb, jqq of (14), then the local stationary
solutions to (15) are given by

q˚b psbq “

fbpsbq
ź

iPEpbq
µ˚ibpsiq

ż

fbpsbq
ź

iPEpbq
µ˚ibpsiqdsb

(21a)

q˚j psjq “
µ˚jbpsjqµ

˚
jcpsjq

ż

µ˚jbpsjqµ
˚
jcpsjqdsj

, (21b)

with messages µ˚jcpsjq corresponding to the fixed points of

µ
pk`1q
jc psjq “

ż

fbpsbq
ź

iPEpbq
i‰j

µ
pkq
ib psiqdsbzj , (22)

with k representing an iteration index.

Proof. See Appendix D.3.

fb fc
...

µ
lbÑ

sl

µ kb
Ñ

sk

µjc
Ñ

Ð
µjb

sj

Figure 5. Visualization of a subgraph with indicated sum-product messages.

The sum-product algorithm has proven to be useful in many engineering applica-
tions and disciplines. For example, it is widely used for decoding in communication
systems [4,20,27]. Furthermore, for a linear Gaussian state space model, Kalman filtering
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and smoothing can be expressed in terms of sum-product message passing for state infer-
ence on a factor graph [28,29]. This equivalence has inspired applications ranging from
localization [30] to estimation [31].

The sum-product algorithm with updates (22) obtains the exact Bayesian posterior
when the underlying graph is a tree [24,25,32]. Application of the sum-product algorithm
to cyclic graphs is not guaranteed to converge and might lead to oscillations in the BFE over
iterations. Theorems 3.1 and 3.2 in [33] show that the BFE of a graph with a single cycle is
convex, which implies that the sum-product algorithm will converge in this case. Moreover,
ref. [19] shows that it is possible to obtain a double-loop message passing algorithm if
the graph has a cycle such that the stable fixed points will correspond to local minima of
the BFE.

Example 1. A Linear Dynamical System Considering a Linear Gaussian state space model specified
by the following factors:

g0px0q “ N px0|mx0 , Vx0q (23a)

gtpxt´1, zt, Atq “ δpzt ´ Atxt´1q (23b)

htpx1t, zt, Qtq “ N px1t|zt, Q´1
t q (23c)

ntpxt, x1t, x2t q “ δpxt ´ x1tqδpxt ´ x2t q (23d)

mtpot, x2t , Btq “ δpot ´ Btx2t q (23e)

rtpyt, ot, Rtq “ N pyt|ot, R´1
t q . (23f)

The FFG corresponding to the one time segment of the state space model is given in Figure 6. We
assumed that we know the following matrices that are used to generate the data:

Ât “

„

cospθq ´ sinpθq
sinpθq cospθq



, Q̂´1
t “

„

3 0.1
0.1 2



, B̂t “

„

1 0
0 1



, R̂´1
t “

„

10 2
2 20



(24)

with θ “ π{8. Given a collection of observations ŷ “ tŷ1, . . . , ŷTu, we constrain the latent states
x “ tx0, . . . , xTu by local marginalization and normalization constraints (for brevity we omit
writing the normalization constraints explicitly) in accordance with Theorem 1, i.e.,

ż

qpxt´1, zt, Atqdxt´1dzt “ qpAtq,
ż

qpxt´1, zt, AtqdAt “ qpzt|xt´1qqpxt´1q (25a)
ż

qpx1t, zt, Qtqdx1tdzt “ qpQtq,
ż

qpx1t, zt, QtqdztdQt “ qpx1tq,
ż

qpx1t, zt, Qtqdx1tdQt “ qpztq (25b)

qpxt, x1t, x2t q “ qpxtqδpxt ´ x1tqδpxt ´ x2t q (25c)
ż

qpot, x2t , Btqdot, dx2t “ qpBtq,
ż

qpot, x2t , BtqdBt “ qpot|x2t qqpx
2
t q (25d)

ż

qpot, yt, Rtqdotdyt “ qpRtq,
ż

qpot, yt, RtqdRtdot “ qpytq,
ż

qpot, yt, RtqdRtdyt “ qpotq (25e)

Moreover, we use data constraints in accordance with Theorem 3 (explained in Section 4.2.1) for the
observations, state transition matrices and precision matrices, i.e.,

qpytq “ δpyt ´ ŷtq, qpAtq “ δpAt ´ Âtq, qpBtq “ δpBt ´ B̂tq, qpQtq “ δpQt ´ Q̂tq, qpRtq “ δpRt ´ R̂tq .

Computation of sum-product messages by (22) is analytically tractable and detailed algebraic
manipulation can be found in [31]. If the backwards messages are not passed, then the resulting
sum-product message passing algorithm is equivalent to Kalman filtering and if both forward and
backward messages are propagated, then the Rauch–Tung–Striebel smoother is obtained [34] (Ch. 8).

We generated T “ 100 observations ŷ using the matrices specified in (24) and the initial
condition x̂0 “ r5,´5sJ. Due to (23a), we have µx0g1 “ N pmx0 , Vx0q. We chose Vx0 “ 100 ¨ I
and mx0 “ x̂0. Under these constraints, the results of sum-product message passing and Bethe free
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energy evaluation is given in Figure 6. As the underlying graph is a tree, sum-product message
passing results are exact and the evaluated BFE corresponds to negative log-evidence. In the
follow-up Example 2, we will modify the constraints and give a comparative free energy plot for the
examples in Figures 10 and 16.

ŷt

rtR̂t

mtB̂t

nthtgt

Q̂tÂt

......

µytrtÒ

µRtrt
Ñ

µx2t nt
Ò

Óµx2t mt

µotmtÒ

Óµotrt

µx1t nt
Ñ

Ð
µx1t ht

µztht
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Figure 6. (Left) One time segment of the FFG corresponding to the linear Gaussian state space model specified in Example 1,
with the sum-product messages computed according to (22). The three small dots at both sides of the graph indicate
identical continuation of the graph over time. (Right) The small dots indicate the noisy observations that are synthetically
generated by the linear state space model of (23) using parameter matrices as specified in (24). The posterior distribution for
the hidden states are inferred by sum-product message passing and are drawn with shaded regions, indicating plus and
minus the variance. The Bethe free energy evaluates to Frq, f s “ 580.698.

4. Message Passing Variations through Constraint Manipulation

For generic node functions with arbitrary connectivity, there is no guarantee that the
sum-product updates can be solved analytically. When analytic solutions are not possible,
there are two ways to proceed. One way is to try to solve the sum-product update equations
numerically, e.g., by Monte Carlo methods. Alternatively, we can add additional constraints
to the BFE that leads to simpler update equations at the cost of inference accuracy. In the
remainder of the paper, we explore a variety of constraints that have proven to yield useful
inference solutions.

4.1. Factorization Constraints

Additional factorizations of the variational density qapsaq are often assumed to ease
computation. In particular, we assumed a structured mean-field factorization such that

qbpsbq fi
ź

nPlpbq

qn
b ps

n
b q , (26)

where n indicates a local cluster as a set of edges. To define a local cluster rigorously, let
us first denote by Ppaq the power set of an edge set Epaq, where the power set is the set
of all subsets of Epaq. Then, a mean-field factorization lpaq Ď Ppaq can be chosen such
that all elements in Epaq are included in lpaq exactly once. Therefore, lpaq is defined as a
set of one or multiple sets of edges. For example, if Epaq “ ti, j, ku, then lpaq “ ttiu, tj, kuu
is allowed, as is lpaq “ tti, j, kuu itself, but lpaq “ tti, ju, tj, kuu is not allowed, since the
element j occurs twice. More formally, in (26), the intersection of the super- and subscript
collects the required variables, see Figure 7 for an example. The special case of a fully
factorized lpbq for all edges i P Epbq is known as the naive mean-field factorization [11,24].
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We will analyze the effect of a structured mean-field factorization (26) on the Bethe
free energy (7) for a specific factor node b P V . Substituting (26) in the local free energy for
factor b yields

Frqb, fbs “ Frtqn
bu, fbs “

ÿ

nPlpbq

ż

qn
b ps

n
b q log qn

b ps
n
b qdsn

b ´

ż

!

ź

nPlpbq

qn
b ps

n
b q
)

log fbpsbqdsb . (27)

We are then interested in

qm,˚
b “ arg min

qm
b

Lm
b rq

m
b , fbs , (28)

where the Lagrangian Lm
b (Lemma 3) enforces the normalization and marginalization

constraints
ż

qm
b ps

m
b qdsm

b “ 1 , (29a)
ż

qm
b ps

m
b qdsm

bzi “ qipsiq, for all i P m , m P lpbq . (29b)

fb

...

µ
lbÑsl

Ñ
µ kbsk

Ð
µjb

sj
qm

b ps
m
b q

qr
bps

r
bq

qn
b ps

n
b q

Figure 7. A node-induced subgraph Gpbqwith shaded sections that enclose the edges of an exemplary
structured mean-field factorization lpbq “ tm, n, ru. Note that, in this example, the cluster n only
encompasses the single edge j, such that qn

b ps
n
b q “ qjpsjq. In general, the assignment and number of

edges in a cluster can be arbitrary.

Lemma 3. Given a terminated FFG G “ pV , Eq, consider a node-induced subgraph Gpbq with
a structured mean-field factorization lpbq (e.g., Figure 7). Then, local stationary solutions to the
Lagrangian

Lm
b rq

m
b s “

ż

qm
b ps

m
b q log qm

b ps
m
b qdsm

b ´

ż

!

ź

nPlpbq

qn
b ps

n
b q
)

log fbpsbqdsb`

ψm
b

„
ż

qm
b ps

m
b qdsm

b ´ 1


`
ÿ

iPm

ż

λibpsiq

„

qipsiq ´

ż

qm
b ps

m
b qdsmzi



dsi ` Cm
b , (30)

where Cm
b collects all terms independent of qm

b , which are of the form

qm
b ps

m
b q “

f̃ m
b ps

m
b q

ź

iPm

µibpsiq

ż

f̃ m
b ps

m
b q

ź

iPm

µibpsiqdsm
b

, (31)

where

f̃ m
b ps

m
b q “ exp

ˆ
ż

!

ź

nPlpbq
n‰m

qn
b ps

n
b q
)

log fbpsbqdszmb

˙

. (32)

Proof. See Appendix D.4.
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4.1.1. Structured Variational Message Passing

We now combine Lemmas 2 and 3 to derive the structured variational message passing
algorithm.

Theorem 2. Structured variational message passing: Given a TFFG G “ pV , Eq, consider the
induced subgraph Gpb, jq with a structured mean-field factorization lpbq Ď Ppbq, with local clusters
n P lpbq. Let m P lpbq be the cluster where j P m (see, e.g., Figure 8). Given the local polytope

LpGpb, jqq “
 

qn
b for all n P lpbq s.t. (29a), and qj s.t. (29b)

(

, (33)

then local stationary solutions to

tqm,˚
b , q˚j u “ arg min

LpGpb,jqq
Frq, f s , (34)

are given by

qm,˚
b psm

b q “
f̃ m,˚
b psm

b q
ś

iPm µ˚ibpsiq
ż

f̃ m,˚
b psm

b q
ź

iPm

µ˚ibpsiqdsm
b

(35a)

q˚j psjq “
µ˚jbpsjqµ

˚
jcpsjq

ż

µ˚jbpsjqµ
˚
jcpsjqdsj

, (35b)

with messages µ˚jcpsjq corresponding to the fixed points of

µ
pk`1q
jc psjq “

ż

f̃ m,pkq
b psm

b q
ź

iPm
i‰j

µ
pkq
ib psiqdsm

bzj , (36)

with iteration index k, and where

f̃ m,pkq
b “ exp

ˆ
ż

!

ź

nPlpbq
n‰m

qn,pkq
b psn

b q
)

log fbpsbqdszmb

˙

. (37)

Proof. See Appendix D.5.

fb fc

...

µ
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µ kbsk

µjc
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µjb

sj
qm

b ps
m
b q

qr
bps

r
bq

qn
b ps

n
b q

Figure 8. An example subgraph corresponding to Gpb, jq. Dashed ellipses enclose the edges of an
exemplary exact cover lpbq “ tm, n, ru. In general, the assignment and number of edges in a cluster
can be arbitrary.

The structured mean-field factorization applies the marginalization constraint only
to the local cluster beliefs, as opposed to the joint node belief. As a result, computation
for the local cluster beliefs might become tractable [24] (Ch.5). The practical appeal of
Variational Message Passing (VMP) based inference becomes evident when the underlying
model is composed of conjugate factor pairs from the exponential family. When the
underlying factors are conjugate exponential family distributions, the message passing
updates (36) amounts to adding natural parameters [35] of the underlying exponential
family distributions. Structured variational message passing is popular in acoustic signal
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modelling, e.g., [36], as it allows one to be able to keep track of correlations over time.
In [37], a stochastic variant of structured variational inference is utilized for Latent Dirichlet
Allocation. Structured approximations are also used to improve inference in auto-encoders.
In [38], inference involving non-parametric Beta-Bernoulli process priors is improved by
developing a structured approximation to variational auto-encoders. When the data being
modelled are time series, structured approximations reflect the transition structure over
time. In [39], an efficient structured black-box variational inference algorithm for fitting
Gaussian variational models to latent time series is proposed.

Example 2. Consider the linear Gaussian state space model of Example 1. Let us assume that the
precision matrix for latent-state transitions Qt is not known and can not be constrained by data.
Then, we can augment state space model by including a prior for Qt and try to infer a posterior over
Qt from the observations. Since Qt is the precision of a normal factor, we chose a conjugate Wishart
prior and assumed that Qt is time-invariant by adding the following factors

w0pQ0, V, νq “WpQ0|V, νq (38a)

wtpQt´1, Qt, Qt`1q “ δpQt´1 ´QtqδpQt ´Qt`1q, for every t “ 1, . . . , T . (38b)

It is certainly possible to assume a time-varying structure for Qt; however, our purpose is to
illustrate a change in constraints rather than analyzing time-varying properties. This is why we
assume time-invariance.

In this setting, the sum-product equations around the factor ht are not analytically tractable.
Therefore, we changed the constraints associated with ht (25b) to those given in Theorem 2 as follows

ż

qpx1t, zt, Qtqdx1tdzt “ qpQtq,
ż

qpx1t, zt, QtqdQt “ qpx1t, ztq (39a)
ż

qpQtqdQt “ 1,
ż

qpx1t, ztqdx1tdzt “ 1 . (39b)

We removed the data constraint on qpQtq and instead included data constraints on the hyper-
parameters

qpVq “ δpV ´ V̂q, qpνq “ δpν´ ν̂q . (40)

With the new set of constraints ((39a) and (39b)), we obtained a hybrid of the sum-product and
structured VMP algorithm, where structured messages around the factor ht are computed by (36)
and the rest of the messages are computed by the sum-product (22). One time segment of the
modified FFG along with the messages is given Figure 9. We used the same observations ŷ that were
generated in Example 1 and the same initialization for the hidden states. For the hyper-parameters of
the Wishart prior, we chose V̂ “ 0.1 ¨ I and ν̂ “ 2. Under these constraints, the result of structured
variational message passing results along with the Bethe free energy evaluation is given in Figure 9.

4.1.2. Naive Variational Message Passing

As a corollary of Theorem 2, we can consider the special case of a naive mean-field
factorization, which is defined for node b as

qbpsbq “
ź

iPEpbq
qipsiq . (41)

The naive mean-field constraint (41) transforms the local free energy into

Frqb, fbs “ Frtqiu, fbs

“
ÿ

iPEpbq

ż

qipsiq log qipsiqdsi ´

ż

!

ź

iPEpbq
qipsiq

)

log fbpsbqdsb . (42)
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ŷt

rtR̂t

mtB̂t

nthtgt

wt

Ât
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Figure 9. (Left) One time segment of the FFG corresponding to the linear Gaussian state space model specified in Example 2
with the sum-product messages computed according to (36). (Right) The small dots indicate the noisy observations
that are synthetically generated by the linear state space model of (23) using matrices specified in (24). The posterior
distribution of the hidden states inferred by structured variational message passing is depicted with shaded regions
representing plus and minus one variances. The minimum of the evaluated Bethe free energy over all iterations is
Frq, f s “ 586.178 (compared to Frq, f s “ 580.698 in Example 1). The posterior distribution for the precision matrix is given

by Q „W
˜«

0.00266 0.000334
0.00034 0.00670

ff

, 102.0

¸

.

Corollary 1. Naive Variational Message Passing: Given a TFFG G “ pV , Eq, consider the induced
subgraph Gpb, jq with a naive mean-field factorization lpbq “ tisuch that for all i P Epbqu. Let
m P lpbq be the cluster where j “ m. Given the local polytope of (33), the local stationary solutions
to (34) are given by

qm,˚
b psm

b q “ q˚j psjq “
µ˚jbpsjqµ

˚
jcpsjq

ż

µ˚jbpsjqµ
˚
jcpsjqdsj

,

where the messages µ˚jcpsjq are the fixed points of the following iterations

µ
pk`1q
jc psjq “ exp

ˆ
ż

!

ź

iPEpbq
i‰j

qpkqi psiq
)

log fbpsbqdsbzj

˙

, (43)

where k is an iteration index.

Proof. See Appendix D.6.

The naive mean-field factorization limits the search space of beliefs by imposing strict
constraints on the variational posterior. As a result, the variational posterior also loses
flexibility. To improve inference performance for sparse Bayesian learning, the authors
of [40] proposes a hybrid mechanism by augmenting naive mean-field VMP with sum-
product updates. This hybrid scheme reduces the complexity of the sum-product algorithm,
while improving the accuracy of the naive VMP approach. In [41], naive VMP is applied to
semi-parametric regression and allows for scaling of regression models to large data sets.
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Example 3. As a follow up on Example 2, we relaxed the constraints in ((39a) and (39b)) to the
following constraints presented in Corollary 1 as

ż

qpx1t, zt, Qtqdx1tdzt “ qpQtq,
ż

qpx1t, zt, QtqdQt “ qpx1t, ztq “ qpx1tqqpztq (44a)
ż

qpQtqdQt “ 1,
ż

qpx1tqdx1t “ 1,
ż

qpztqdzt “ 1 . (44b)

The FFG remains the same and we use identical data constraints as in Example 2. Together with
constraint (44), we obtained a hybrid of naive variational message passing and sum-product message
passing algorithm where the messages around the factor ht are computed by (43) and the rest of the
messages by sum-product (22). Using the same data as in Example 1, the results for naive VMP are
given in Figure 10 along with the evaluated Bethe free energy.
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Figure 10. (Left) The small dots indicate the noisy observations that were synthetically generated by the linear state
space model of (23) using matrices specified in (24). The posterior distribution for the hidden states inferred by naive
variational message passing is depicted with shaded regions representing plus and minus one variances. The minimum
of the evaluated Bethe free energy over all iterations is Frq, f s “ 617.468, which is more than for the less-constrained
Example 2 (with Frq, f s “ 586.178) and Example 1 (with Frq, f s “ 580.698). The posterior for the precision matrix is given

by Q „ W
˜«

0.00141 ´6.00549e´5

´6.00549e´5 0.00187

ff

, 102.0

¸

. (Right) A comparison of the Bethe free energies for sum-product,

structured and naive variational message passing algorithms for the data generated in Example 1.

4.2. Form Constraints

Form constraints limit the functional form of the variational factors qapsaq and qipsiq.
One of the most widely used form constraints, the data constraint, is also illustrated in
Appendix A.

4.2.1. Data Constraints

A data constraint can be viewed as a special case of (9b), where the belief qj is con-
strained to be a Dirac-delta function [42], such that

ż

qapsaqdsazj “ qjpsjq “ δpsj ´ ŝjq , (45)

where ŝj is a known value, e.g., an observation.

Lemma 4. Given a TFFG G “ pV , Eq, consider the node-induced subgraph Gpbq (Figure 3). Then
local stationary solutions to the Lagrangian
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Lbrqb, fbs “ Frqb, fbs ` ψb

„
ż

qbpsbqdsb ´ 1


`
ÿ

iPEpbq
i‰j

ż

λibpsiq

„

qipsiq ´

ż

qbpsbqdsbzi



dsi`

ż

λjbpsjq

„

δpsj ´ ŝjq ´

ż

qbpsbqdsbzj



dsj ` Cb . (46)

where Cb collects all terms that are independent of qb, are of the form

qbpsbq “

fbpsbq
ź

iPEpbq
µibpsiq

ż

fbpsbq
ź

iPEpbq
µibpsiqdsb

. (47)

Proof. See Appendix D.7.

Theorem 3. Data-Constrained Sum-Product: Given a TFFG G “ pV , Eq, consider the induced
subgraph Gpb, jq (Figure 11). Given the local polytope

LpGpb, jqq “ tqb s.t. (45)u , (48)

the local stationary solutions to

q˚b “ arg min
LpGpb,jqq

Frq, f s ,

are of the form

q˚b psbq “

fbpsbq
ź

iPEpbq
µ˚ibpsiq

ż

fbpsbq
ź

iPEpbq
µ˚ibpsiqdsb

, (49)

with message

µ˚jbpsjq “ δpsj ´ ŝjq . (50)

Proof. See Appendix D.8.

fb δ fc
...

µ
lbÑ

sl

µ kb
Ñ

sk

µbj
Ñ

Ð
µjb

sj
µjc
Ñ

Ð
µcj

Figure 11. Visualization of a subgraph Gpb, jq with indicated messages, where the dark circled delta
indicates a data constraint—i.e., the variable sj is constrained to have a distribution of the form
δpsj ´ ŝjq.

Note that the resulting message µ˚jbpsjq to node b does not depend on messages from
node c, as would be the case for a sum-product update. By the symmetry of Theorem 3 for
the subgraph LtGpc, jqu, (A32) identifies
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µcjpsjq “

ż

fcpscq
ź

iPEpcq
i‰j

µicpsiqdsczj ‰ δpsj ´ ŝjq .

This implies that messages incoming to a data constraint (such as µcj) are not further
propagated through the data constraint. The data constraint thus effectively introduces a
conditional independence between the variables of neighboring factors (conditioned on
the shared constrained variable). Interestingly, this is similar to the notion of an interven-
tion [43], where a decision variable is externally forced to a realization.

Data constraints allow information from data sets to be absorbed into the model.
Essentially, (variational) Bayesian machine learning is an application of inference in a
graph with data constraints. In our framework, data are a constraint, and machine learning
via Bayes rule follows naturally from the minimization of the Bethe free energy (see also
Appendix A).

4.2.2. Laplace Propagation

A second type of form constraint we consider is the Laplace constraint, see also [14].
Consider a second-order Taylor approximation on the local log-node function

Lapsaq “ log fapsaq , (51)

around an approximation point ŝa, as

L̃apsa; ŝaq “ Lapŝaq `∇JLapŝaqpsa ´ ŝaq `
1
2
psa ´ ŝaq

J∇2Lapŝaqpsa ´ ŝaq . (52)

From this approximation, we define the Laplace-approximated node function as

f̃apsa; ŝaq fi exp
`

L̃apsa; ŝaq
˘

, (53)

which is substituted in the local free energy to obtain the Laplace-encoded local free
energy as

Frqa, f̃a; ŝas “

ż

qapsaq log
qapsaq

f̃apsa; ŝaq
dsa . (54)

It follows that the Laplace-encoded optimization of the local free energy becomes

q˚a “ arg min
qa

Larqa, f̃a; ŝas , (55)

where the Lagrangian La imposes the marginalization and normalization constraints of (9)
on (54).

Lemma 5. Given a TFFG G “ pV , Eq, consider the node-induced subgraph Gpbq (Figure 12). The
stationary points of the Laplace-approximated Lagrangian (55) as a functional of qb,

Lbrqb, f̃b; ŝbs “ Frqb, f̃b; ŝbs ` ψb

„
ż

qbpsbqdsb ´ 1


`

ÿ

iPEpbq

ż

λibpsiq

„

qipsiq ´

ż

qbpsbqdsbzi



dsi ` Cb , (56)

where Cb collects all terms that are independent of qb, which are of the form
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qbpsbq “

f̃bpsb; ŝbq
ź

iPEpbq
µibpsiq

ż

f̃bpsb; ŝbq
ź

iPEpbq
µibpsiqdsb

. (57)

Proof. See Appendix D.9.

f̃b
...

µ
lbÑ

sl

µ kb
Ñ

sk

Ð
µjb

sj

Figure 12. The subgraph around a Laplace-approximated node b with indicated messages.

We can now formulate Laplace propagation as an iterative procedure, where the
approximation point ŝb is chosen as the mode of the belief qbpsbq.

Theorem 4. Laplace Propagation: Given a TFFG G “ pV , Eq, consider the induced subgraph
Gpb, jq (Figure 13) with the Laplace-encoded factor f̃b as per (53). We write the model (1) with the
Laplace-encoded factor f̃b substituted for fb, as f̃ . Given the local polytope LpGpb, jqq of (14), the
local stationary solutions to

tq˚b , q˚j u “ arg min
LpGpb,jqq

Frq, f̃ ; ŝbs , (58)

are given by

q˚b psbq “

f̃bpsb; ŝ˚b q
ź

iPEpbq
µ˚ibpsiq

ż

f̃bpsb; ŝ˚b q
ź

iPEpbq
µ˚ibpsiqdsb

q˚j psjq “
µ˚jbpsjqµ

˚
jcpsjq

ż

µ˚jbpsjqµ
˚
jcpsjqdsj

,

with ŝ˚b and the messages µ˚jcpsjq the fixed points of

ŝpkqb “ arg max
sb

log qpkqb psbq

qpk`1q
b psbq “

f̃bpsb; ŝpkqb q
ź

iPEpbq
µ
pkq
ib psiq

ż

f̃bpsb; ŝpkqb q
ź

iPEpbq
µ
pkq
ib psiqdsb

µ
pk`1q
jc psjq “

ż

f̃bpsb; ŝpkqb q
ź

iPEpbq
i‰j

µ
pkq
ib psiqdsbzj .

Proof. See Appendix D.10.
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Figure 13. Visualization of a subgraph with indicated Laplace propagation messages. The node
function fb is denoted by f̃b according to (53).

A Laplace propagation is introduced in [14] as an algorithm that propagates mean
and variance information when exact updates are expensive to compute. Laplace prop-
agation has found applications in the context of Gaussian processes and support vector
machines [14]. In the jointly normal case, Laplace propagation coincides with sum-product
and expectation propagation [14,18].

4.2.3. Expectation Propagation

Expectation propagation can be derived in terms of constraint manipulation by relax-
ing the marginalization constraints to expectation constraints. Expectation constraints are
of the form

ż

qapsaqTipsiqdsa “

ż

qipsiqTipsiqdsi , (59)

for a given function (statistic) Tipsiq. Technically, the statistic Tipsiq can be chosen arbitrar-
ily. Nevertheless, they are often chosen as sufficient statistics of an exponential family
distribution. An exponential family distribution is defined by

qipsiq “ hpsiq exp
´

ηJi Tipsiq ´ log Zpηiq
¯

, (60)

where ηi is the natural parameter, Zpηiq is the partition function, Tipsiq is the sufficient
statistics and hpsiq is a base measure [24]. The reason Tipsiq is a sufficient statistic is
because if there are observed values of the random variable si, then the parameter ηi can be
estimated by using only the statistics Tipsiq. This means that the estimator of ηi will depend
only on the statistics.

The idea behind expectation propagation [18] is to relax the marginalization con-
straints with moment-matching constraints by choosing sufficient statistics from expo-
nential family distributions [12]. Relaxation allows approximating the marginals of the
sum-product algorithm with exponential family distributions. By keeping the marginals
within the exponential family, the complexity of the resulting computations is reduced.

Lemma 6. Given a TFFG G “ pV , Eq, consider the node-induced subgraph Gpbq (Figure 3). The
stationary points of the Lagrangian

Lbrqb, fbs “ Frqb, fbs ` ψb

„
ż

qbpsbqdsb ´ 1


`
ÿ

iPEpbq
i‰j

ż

λibpsiq

„

qipsiq ´

ż

qbpsbqdsbzi



dsi`

ηJjb

„
ż

qjpsjqTjpsjqdsj ´

ż

qbpsbqTjpsjqdsb



` Cb , (61)

with sufficient statistics Tj, and where Cb collects all terms that are independent of qb, are of the form

qbpsbq “

fbpsbq
ź

iPEpbq
µibpsiq

ż

fbpsbq
ź

iPEpbq
µibpsiqdsb

, (62)
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with incoming exponential family message

µjbpsjq “ exp
´

ηJjb Tjpsjq
¯

. (63)

Proof. See Appendix D.11.

Lemma 7. Given a TFFG G “ pV , Eq, consider an edge-induced subgraph Gpjq (Figure 4). The
stationary solutions of the Lagrangian

Ljrqjs “ Hrqjs ` ψj

„
ż

qjpsjqdsj ´ 1


`
ÿ

aPVpjq
ηJja

„
ż

qjpsjqTjpsjqdsj ´

ż

qapsaqTjpsjqdsa



` Cj ,

with sufficient statistics Tjpsjq, and where Cj collects all terms that are independent of qj, are of the
form

qjpsjq “
exp

´

rηjb ` ηjcs
JTjpsjq

¯

ż

exp
´

rηjb ` ηjcs
JTjpsjq

¯

dsj

. (64)

Proof. See Appendix D.12.

Theorem 5. Expectation Propagation: Given a TFFG G “ pV , Eq, consider the induced subgraph
Gpb, jq (Figure 5). Given the local polytope

LpGpb, jqq “
 

qb s.t. (9a), and qj s.t. (59) and (10)
(

, (65)

and µjbpsjq “ exp
´

ηJjb Tjpsjq
¯

an exponential family message (from Lemma 6). Then, the local
stationary solutions to (15) are given by

q˚b psbq “

fbpsbq
ź

iPEpbq
µ˚ibpsiq

ż

fbpsbq
ź

iPEpbq
µ˚ibpsiqdsb

(66a)

q˚j psjq “
exp

´

rη˚jb ` η˚jcs
JTjpsjq

¯

ż

exp
´

rη˚jb ` η˚jcs
JTjpsjq

¯

dsj

, (66b)

with η˚jb, η˚jc and µ˚jcpsjq being the fixed points of the iterations

µ̃
pkq
jc psjq “

ż

fbpsbq
ź

iPEpbq
i‰j

µ
pkq
ib psiqdsbzj

q̃pkqj psjq “
µ
pkq
jb psjqµ̃

pkq
jc psjq

ż

µ
pkq
jb psjqµ̃

pkq
jc psjqdsj

.

By moment-matching on q̃pkqj psjq, we obtain the natural parameter η̃
pkq
j . The message update then

follows from

η
pkq
jc “ η̃

pkq
j ´ η

pkq
jb

µ
pk`1q
jc psjq “ exp

´

Tjpsjq
Jη
pkq
jc

¯

.
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Proof. See Appendix D.13.

Moment-matching can be performed by solving [24] (Proposition 3.1)

∇ηj log Zjpηjq “

ż

q̃jpsjq Tjpsjqdsj

for ηj, where

Zjpηjq “

ż

exp
´

ηJj Tjpsjq
¯

dsj .

In practice, for a Gaussian approximation, the natural parameters can be obtained by
converting the matched mean and variance of q̃jpsjq to the canonical form [18]. Computing
the moments of q̃jpsjq is often challenging due to lack of closed form solutions of the
normalization constant. In order to address the computation of moments in EP, Ref. [44]
proposes to evaluate challenging moments by quadrature methods. For multivariate
random variables, moment-matching by spherical radial cubature would be advantageous
as it will reduce the computational complexity [45]. Another popular way of evaluating
the moments is through importance sampling [46] (Ch. 7) and [47].

Expectation propagation has been utilized in various applications ranging from time
series estimation with Gaussian processes [48] to Bayesian learning with stochastic natural
gradients [49]. When the likelihood functions for Gaussian process classification are not
Gaussian, EP is often utilized [50] (Chapter 3). In [51], a message passing-based expectation
propagation algorithm is developed for models that involve both continuous and discrete
random variables. Perhaps the most practical applications of EP are in the context of
probabilistic programming [52], where it is heavily used in real-world applications.

4.3. Hybrid Constraints

In this section, we consider hybrid methods that combine factorization and form
constraints, and formalize some well-known algorithms in terms of message passing.

4.3.1. Mean-Field Variational Laplace

Mean-field variational Laplace applies the mean-field factorization to the Laplace-
approximated factor function. The appeal of this method is that all messages outbound
from the Laplace-approximated factor can be represented by Gaussians.

Theorem 6. Mean-field variational Laplace: Given a TFFG G “ pV , Eq, consider the induced
subgraph Gpb, jq (Figure 13) with the Laplace-encoded factor f̃b as per (53). We write the model (1)
with substituted Laplace-encoded factor f̃b for fb, as f̃ . Furthermore, assume a naive mean-field
factorization lpbq “ ttiu for all i P Epbqu. Let m P lpbq be the cluster where j “ m. Given the local
polytope of (33), the local stationary solutions to

tqm,˚
b , q˚j u “ arg min

LpGpb,jqq
Frq, f̃ ; ŝbs , (67)

are given by

qm,˚
b psm

b q “ q˚j psjq “
µ˚jbpsjqµ

˚
jcpsjq

ż

µ˚jbpsjqµ
˚
jcpsjqdsj

,

where µ˚jc represents the fixed points of the following iterations

µ
pk`1q
jc psjq “ exp

ˆ
ż

´

ź

iPEpbq
i‰j

qpkqi psiq
¯

log f̃bpsb; ŝpkqb qdsbzj

˙

, (68)
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with

ŝpkqb “ arg max
sb

log qpkqb psbq .

Proof. See Appendix D.14.

Conveniently, under these constraints, every outbound message from node b will
be proportional to a Gaussian. Substituting the Laplace-approximated factor function,
we obtain:

log µ
pkq
jc psjq “

ż

´

ź

iPEpbq
i‰j

qpkqi psiq
¯

L̃bpsb; ŝpkqb qdsbzj ` C .

Resolving this expectation yields a quadratic form in sj, which after completing the square
leads to a proportionally Gaussian message µjcpsjq . This argument holds for any edge
adjacent to b, and therefore for all outbound messages from node b. Moreover, if the
incoming messages are represented by Gaussians as well (e.g., because these are also
computed under the mean-field variational Laplace constraint), then all beliefs on the
adjacent edges to b will also be Gaussian. This significantly simplifies the procedure of
computing the expectations, which illustrates the computational appeal of mean-field
variational Laplace.

Mean-field variational Laplace is widely used in dynamic causal modeling [53] and
more generally in cognitive neuroscience, partly because the resulting computations are
deemed neurologically plausible [54–56].

4.3.2. Expectation Maximization

Expectation Maximization (EM) can be viewed as a hybrid algorithm that combines a
structured variational factorization with a Dirac-delta constraint, where the constrained
value itself is optimized. Given a structured mean-field factorization lpaq Ď Ppaq, with a
single-edge cluster m “ j, then expectation maximization considers local factorizations of
the form

qapsaq “ δpsj ´ θjq
ź

nPlpaq
n‰m

qn
a ps

n
a q, (69)

where the belief for sj is constrained by a Dirac-delta distribution, similar to Section 4.2.1.
In (69), however, the variable sj represents a random variable with (unknown) value θj P Rd,
where d is the dimension of the random variable sj. We explicitly use the notation θj (as
opposed to ŝj for the data constraint in Section 4.2.1) to clarify that this value is a parameter
for the constrained belief over sj that will be optimized—that is, θj does not represent a
model parameter in itself. To make this distinction even more explicit, in the context of
optimization, we will refer to Dirac-delta constraints as point-mass constraints.

The factor-local free energy Frqa, fa; θjs then becomes a function of the θj parameter.

Theorem 7. Expectation maximization: Given a TFFG G “ pV , Eq, consider the induced subgraph
Gpb, jq (Figure 14) with a structured mean-field factorization lpbq Ď Ppbq, with local clusters
n P lpbq. Let m P lpbq be the cluster where j “ m. Given the local polytope

LpGpb, jqq “
 

qn
b for all n P lpbq s.t. (29a)

(

, (70)

the local stationary solutions to

θ˚j “ arg min
LpGpb,jqq

Frq, f ; θjs ,
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are given by the fixed points of

µ
pk`1q
bj psjq “ exp

ˆ
ż

!

ź

nPlpbq
n‰m

qn,pkq
b psn

b q
)

log fbpsbqdsbzj

˙

(71a)

θ
pk`1q
j “ arg max

sj

ˆ

log µ
pk`1q
bj psjq ` log µ

pk`1q
cj psjq

˙

. (71b)

Proof. See Appendix D.15.

fb δ fc
...

µ
lbÑ

sl

µ kb
Ñ

sk

µbj
Ñ

sj

Ð
µcj

Figure 14. Visualization of a subgraph Gpb, jqwith indicated messages. The open circle indicates a
point-mass constraint of the form δpsj ´ θjq, where the value θj is optimized.

Expectation maximization was formulated in [57] as an iterative method that optimizes
log-expectations of likelihood functions, where each EM iteration is guaranteed to increase
the expected log-likelihood. Moreover, under some differentiability conditions, the EM
algorithm is guaranteed to converge [57] (Theorem 3). A detailed overview of EM for
exponential families is available in [24] (Ch. 6). A formulation of EM in terms of message
passing is given by [58], where message passing for EM is applied in a filtering and system
identification context. In [58], derivations are based on [57] (Theorem 1), whereas our
derivations directly follow from variational principles.

Example 4. Now suppose we do not know the angle θ for the state transition matrix At in
Example 2 and would like to estimate the value of θ. Moreover, further suppose that we are
interested in estimating the hyper-parameters for the prior mx0 and Vx0 , as well as the precision
matrix for the state transitions Qt. For this purpose, we changed the constraints of (25a) into EM
constraints in accordance with Theorem 7:

qpxt´1, zt, Atpθqq “ δpAtpθq ´ Atpθ̂qqqpzt|xt´1, Atpθqqqpxt´1q (72a)

qpx0, mx0 , Vx0q “ qpx0qδpmx0 ´ m̂x0qδpVx0 ´ V̂x0q , (72b)

where we optimize θ̂, V̂x0 and m̂x0 with EM (V̂x0 is further constrained to be positive definite during
the optimization procedure). With the addition of the new EM constraints, the resulting FFG
is given in Figure 15. The hybrid message passing algorithm consists of structured variational
messages around the factor ht, and sum-product messages around wt, nt, mt and rt, and EM
messages around g0 and gt. We used identical observations as in the previous examples. The results
for the hybrid SVMP-EM-SP algorithm are given in Figure 16 along with the evaluated Bethe free
energy over all iterations.
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ŷt

rtR̂t

mtB̂t

nthtgt

wt

Ât

......

... ...

g0m̂x0

V̂x0

w0ν̂

V̂

Ð
µQ0w0

µQ0w1
Ñ

µνw0
Ñ

ÓµVw0

Ð
µg0mx0

µg0Vx0
Ò

µx0g1
Ñ

Ð
µx0g0

µytrtÒ

µRtrt
Ñ

µx2t nt
Ò

Óµx2t mt

µotmtÒ

Óµotrt

µx1t nt
Ñ

Ð
µx1t ht

µztht
Ñ

Ð
µztgt

µQtwtÒ

ÓµQtht

µgt Ât
Ò

µxt´1gt
Ñ

Ð
µxt´1nt´1

µxtgt`1
Ñ

Ð
µxtnt

µBtmt
Ñ

µQt´1wt
Ñ

Ð
µQt´1wt´1

µQt`1wt`1
Ñ

Ð
µQt`1wt

Figure 15. The FFG of the linear Gaussian state space model augmented with the EM constraints in
Example 4.
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Figure 16. (Left) The small dots indicate the noisy observations that are synthetically generated by the linear state space
model of (23) using matrices specified in (24). The posterior distribution of the hidden states inferred by structured
variational message passing is depicted with shaded regions representing plus and minus one variances. The minimum of
the evaluated Bethe free energy over iterations is Frq, f s “ 583.683. Moreover, the posterior distribution for the precision

matrix is given by Q „ W
˜«

0.00286 0.00038
0.00038 0.0.00691

ff

, 102.0

¸

. The EM estimates are θ “ π{7.821, m̂x0 “ r7.23,´7.016s and

V̂x0 “

«

11.028 ´1.926
´1.926 10.918

ff

. (Right) Free energy plots of the 4 algorithms discussed in Examples 1–4 on the same data set.

4.4. Overview of Message Passing Algorithms

In Sections 4.1–4.3, following a high-level recipe pioneered by [15], we presented first-
principle derivations of some of the popular message passing-based inference algorithms
by manipulating the local constraints of the Bethe free energy. The results are summarized
in Table 1.
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Crucially, the method of constrained BFE minimization goes beyond the reviewed
algorithms. Through creating a new set of local constraints and following similar deriva-
tions based on variational calculus, one can obtain new message passing-based inference
algorithms that better match the specifics of the generative model or application.

5. Scoring Models by Minimized Variational Free Energy

As discussed in Section 2.2, the variational free energy is an important measure of
model performance. In Sections 5.1 and 5.2, we discuss some problems that occur when
evaluating the BFE on a TFFG. In Section 5.3, we propose an algorithm that evaluates the
constrained BFE as a summation of local contributions on the TFFG.

5.1. Evaluation of the Entropy of Dirac-Delta Constrained Beliefs

For continuous variables, data and point-mass constraints, as discussed in
Sections 4.2.1 and 4.3.2 and Appendix A, collapse the information density to infinity, which
leads to singularities in entropy evaluation [59]. More specifically, for a continuous variable
sj, the entropies for beliefs of the form qjpsjq “ δpsj ´ ŝjq and qapsaq “ qa|jpsazj|sjqδpsj ´ ŝjq

both evaluate to ´8.
In variational inference, it is common to define the VFE only with respect to the latent

(unobserved) variables [2] (Section 10.1). In contrast, in this paper, we explicitly define the
BFE in terms of an iteration over all nodes and edges (7), which also includes non-latent
beliefs in the BFE definition. Therefore, we define

qjpsjq “ δpsj ´ ŝjq ñ Hrqjs fi 0 ,

qapsaq “ qa|jpsazj|sjqδpsj ´ ŝjq ñ Hrqas fi Hrqazjs ,

where qa|jpsazj|sjq indicates the conditional belief and qazjpsazjq is the joint belief. These
definitions effectively remove the entropies for observed variables from the BFE evaluation.
Note that although qazjpsazjq is technically not a part of our belief set (7), it can be obtained
by marginalization of qapsaq (9b).

5.2. Evaluation of Node-Local Free Energy for Deterministic Nodes

Another difficulty arises with the evaluation of the node-local free energy Frqas for
factors of the form

fapsaq “ δphapsaqq . (73)

This type of node function reflects deterministic operations, e.g., hpx, y, zq “ z ´ x ´ y
corresponds to the summation z “ x` y. In this case, directly evaluating Frqas again leads
to singularities.

There are (at least) two strategies available in the literature that resolve this issue. The
first strategy “softens” the Dirac-delta by re-defining:

fapsaq fi
1

?
2πε

exp
ˆ

´
1
2ε

hapsaq
2
˙

,

with 0 ă ε ! 1 [17]. A drawback of this approach is that it may alter the model definition
in a numerically unstable way, leading to a different inference solution and variational free
energy than originally intended.

The second strategy combines the deterministic factor fa with a neighboring stochastic
factor fb into a new composite factor fc, by marginalizing over a shared variable sj, leading
to [60]

fcpscq fi

ż

δphapsaqq fbpsbqdsj ,
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where sc “ tsa Y sbuzsj. This procedure has drawbacks for models that involve many
deterministic factors—namely, the convenient model modularity and resulting distributed
compatibility are lost when large groups of factors are compacted in model-specific com-
posite factors. We propose here a third strategy.

Theorem 8. Let fapsaq “ δphapsaqq, with hapsaq “ sj ´ gapsazjq, and node-local belief qapsaq “

qj|apsj|sazjq qazjpsazjq. Then, the node-local free energy evaluates to

Frqa, fas “

#

´Hrqazjs if qj|apsj|sazjq “ δpsj ´ gapsazjqq

8 otherwise.

Proof. See Appendix D.16.

An example that evaluates the node-local free energy for a non-trivial deterministic
node can be found in Appendix C.

The equality node is a special case deterministic node, with a node function of the
form (3). The argument of (Theorem 8) does not directly apply to this node. As the equality
node function comprises two Dirac-delta functions, it can not be written in the form of
Theorem 8. However, we can still reduce the node-local free energy contribution.

Theorem 9. Let fapsaq “ δpsj´ siq δpsj´ skq, with node-local belief qapsaq “ qik|jpsi, sk|sjq qjpsjq.
Then, the node-local free energy evaluates to

Frqa, fas “

#

´Hrqjs if qik|jpsi, sk|sjq “ δpsj ´ siq δpsj ´ skq

8 otherwise.

Proof. See Appendix D.17.

5.3. Evaluating the Variational Free Energy

We propose here an algorithm that evaluates the BFE on a TFFG representation of a
factorized model. The algorithm is based on the following results:

• The definitions for the computation of data-constrained entropies ensure that only
variables with associated stochastic beliefs count towards the Bethe entropy. This
makes the BFE evaluation consistent with Theorems 3 and 7, where the single-variable
beliefs for observed variables are excluded from the BFE definition;

• We assume that a local mean-field factorization lpaq is available for each a P V
(Section 4.1). If the mean-field factorization is not explicitly defined, we assume
lpaq “ tau is the unfactored set;

• Deterministic nodes are accounted for by Theorem 8, which reduces the joint entropy
to an entropy over the “inbound” edges. Although the belief over the “inbounds”
qazjpsazjq is not a term in the Bethe factorization (8), it can simply be obtained by
marginalization of qapsaq;

• The equality node is a special case, where we let the node entropy discount the
degree of the associated variable in the original model definition. While the BFE
definition on a TFFG (7) does not explicitly account for edge degrees, this mechanism
implicitly corrects for “double-counting” [17]. In this case, edge selection for counting
is arbitrary, because all associated edges are (by definition) constrained to share the
same belief (Section 2.1, Theorem 9).

The decomposition of (7) shows that the BFE can be computed by an iteration over the
nodes and edges of the graph. As some contributions to the BFE might cancel each other,
the algorithm first tracks counting numbers ua for the average energies

Uarqas “ ´

ż

qapsaq log fapsaqdsa ,
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and counting numbers hk for the (joint) entropies

Hrqks “ ´

ż

qkpskq log qkpskqdsk ,

which are ultimately combined and evaluated. We used an index k to indicate that the
entropy computation may include not only the edges but a generic set of variables. We will
give the definition of the set that k belongs to in Algorithm 1.

Algorithm 1 Evaluation of the Bethe free energy on a Terminated Forney-style factor graph.

given a TFFG G “ pV , Eq
given a local mean-field factorization lpaq for all a P V
define qjpsjq “ δpsj ´ ŝjq ñ Hrqjs fi 0 Ź Ignore entropy of Dirac-delta constrained
beliefs
define qapsaq “ qa|jpsazj|sjqδpsj ´ ŝjq ñ Hrqas fi Hrqazjs Ź Reduce entropy of Dirac-delta
constrained joint beliefs
define K “ ta, azi, n, for all a P V , i P Epaq, n P lpaqu the set of (joint) belief indices
initialize counting numbers ua “ 0 for all a P V , hk “ 0 for all k P K

for all nodes a P V do
if a is a stochastic node then

ua`“ 1 Ź Count the average energy
for all clusters n P lpaq do

hn`“ 1 Ź Count the (joint) cluster entropy
end for

else if a is an equality node then
Select an edge j P Epaq
hj`“ 1 Ź Count the variable entropy

else Ź Deterministic node a
Obtain the node function fapsaq “ δpsj ´ gapsazjqq

hazj`“ 1 Ź Count the (joint) entropy of the inbounds
end if

end for

for all edges i P E do
hi´“ 1 Ź Discount the variable entropy

end for

U “
ř

aPV uaUarqas

H “
ř

kPK hk Hrqks

return F “ U ´ H

6. Implementation of Algorithms and Simulations

We have developed a probabilistic programming toolbox ForneyLab.jl in the Julia
language [61,62]. The majority of algorithms that are reviewed in Table 1 have been
implemented in ForneyLab along with variety of demos (https://github.com/biaslab/
ForneyLab.jl/tree/master/demo, accessed on 23 June 2021). ForneyLab is extendable and
supports postulating new local constraints of the BFE for the creation of custom message
passing-based inference algorithms.

https://github.com/biaslab/ForneyLab.jl/tree/master/demo
https://github.com/biaslab/ForneyLab.jl/tree/master/demo
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In order to limit the length of this paper, we refer the reader to the demonstration
folder of ForneyLab and to several of our previous papers with code. For instance, our
previous work in [63] implemented a mean-field variational Laplace propagation for
the hierarchical Gaussian filter (HGF) [64]. In the follow-up work [65], inference results
improved by changing to structured factorization and moment-matching local constraints.
In that case, modification of local constraints created a hybrid EP-VMP algorithm that
better suited the model. Moreover, in [13], we formulated the idea of chance constraints
in the form of violation probabilities leading to a new message passing algorithm that
supports goal-directed behavior within the context of active inference. A similar line of
reasoning led to improved inference procedures for auto-regressive models [66].

7. Related Work

Our work is inspired by the seminal work [17], which discusses the equivalence
between the fixed points of the belief propagation algorithm [32] and the stationary points
of the Bethe free energy. This equivalence is established through a Lagrangian formalism,
which allows for the derivation of Generalized Belief Propagation (GBP) algorithms by
introducing region-based graphs and the region-based (Kikuchi) free energy [16].

Region graph-based methods allows for overlapping clusters (Section 4.1) and thus
offer a more generic message passing approach. The selection of appropriate regions (clus-
ters), however, proves to be difficult, and the resulting algorithms may grow prohibitively
complex. In this context, Ref. [67] addresses how to manipulate regions and manage the
complexity of GBP algorithms. Furthermore, Ref. [68] also establishes a connection between
GBP and expectation propagation (EP) by introducing structured region graphs.

The inspirational work of [15] derives message passing algorithms by minimization
of α-divergences. The stationary points of α-divergences are obtained by a fixed point
projection scheme. This projection scheme is reminiscent of the minimization scheme of
the expectation propagation (EP) algorithm [18]. Compared to [15], our work focuses on a
single divergence objective (namely, the VFE). The work of [12] derives the EP algorithm
by manipulating the marginalization and factorization constraints of the Bethe free energy
objective (see also Section 4.2.3). The EP algorithm is, however, not guaranteed to converge
to a minimum of the associated divergence metric.

To address the convergence properties of the algorithms that are obtained by region
graph methods, the outstanding work of [33] derives conditions on the region counting
numbers that guarantee the convexity of the underlying objective. In general, however, the
constrained Bethe free energy is not guaranteed to be convex and therefore the derived
message passing updates are not guaranteed to converge.

8. Discussion

The key message in this paper is that a (variational) Bayesian model designer may
tune the tractability-accuracy trade-off for evidence and posterior evaluation through
constraint manipulation. It is interesting to note that the technique to derive message
passing algorithms is always the same. We followed the recipe pioneered in [15] to derive a
large variety of message passing algorithms solely through minimizing constrained Bethe
free energy. This minimization leads to local fixed-point equations, which we can interpret
as message passing updates on a (terminated) FFG. The presented lemmas showed how
the constraints affect the Lagrangians locally. The presented theorems determined the
stationary solutions of the Lagrangians and obtained the message passing equations. Thus,
if a designer proposes a new set of constraints, then the first place to start is to analyze
the effect on the Lagrangian. Once the effect of the constraint on the Lagrangian is known,
then variational optimization may result in stationary solutions that can be obtained by a
fixed-point iteration scheme.

In this paper, we selected the Forney-style factor graph framework to illustrate our
ideas. FFGs are mathematically comparable to the more common bi-partite factor graphs
that associate round nodes with variables and square nodes with factors [20]. Bi-partite
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factor graphs require two distinct types of message updates (one leaving variable nodes and
one leaving factor nodes), while message passing on a (T)FFG requires only a single type
of message update [69]. The (T)FFG paradigm thus substantially simplifies the derivations
and resulting message passing update equations.

The message passing update rules in this paper are presented without guarantees on
convergence of the (local) minimization process. In practice, however, algorithm conver-
gence can be easily checked by evaluating the BFE (Algorithm 1) after each belief update.

In future work, we plan on extending the treatment of constraints to formulate
sampling-based algorithms such as importance sampling and Hamiltonian Monte Carlo in
a message passing framework. While introducing SVMP, we have limited the discussion to
local clusters that are not overlapping. We plan to extend variational algorithms to include
local clusters that are overlapping without altering the underlying free-energy objective or
the graph structure [16,67].

9. Conclusions

In this paper, we formulated a message-passing approach to probabilistic inference
by identifying local stationary solutions of a constrained Bethe free energy objective
(Sections 3 and 4). The proposed framework constructs a graph for the generative model
and specifies local constraints for variational optimization in a local polytope. The con-
straints are then imposed on the variational objective by a Lagrangian construct. Uncon-
strained optimization of the Lagrangian then leads to local expressions of stationary points,
which can be obtained by iterative execution of the resulting fixed point equations, which
we identify with message passing updates.

Furthermore, we presented an approach to evaluate the BFE on a (terminated) Forney-
style factor graph (Section 5). This procedure allows an algorithm designer to readily assess
the performance of algorithms and models.

We have included detailed derivations of message passing updates (Appendix D)
and hope that the presented formulation inspires the discovery of novel and customized
message passing algorithms.
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LP Laplace Propagation
MFVLP Mean-Field Variational Laplace
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NLE Negative Log-Evidence
TFFG Terminated Forney-style Factor Graph
VFE Variational Free Energy
VMP Variational Message Passing
SVMP Structured Variational Message Passing
SP Sum-Product

Appendix A. Free Energy Minimization by Variational Inference

In this section, we present a pedagogical example of inductive inference. After we
establish an intuition, we apply the same principles to a more general context in the
further sections. We follow Caticha [42,70], who showed that a constrained free energy
functional can be interpreted as a principled objective measure for inductive reasoning, see
also [71,72]. The calculus of variations offers a principled method for optimizing this free
energy functional.

In this section, we assume an example model

f py, θq “ fypy, θq fθpθq , (A1)

with observed variables y and a single parameter θ.
We define the (variational) free energy (VFE) as

Frq, f s “
ĳ

qpy, θq log
qpy, θq

f py, θq
dy dθ . (A2)

The goal is to find a posterior

q˚ “ arg min
qPQ

Frq, f s (A3)

that minimizes the free energy subject to some pre-specified constraints. These constraints
may include form or factorization constraints on q (to be discussed later) or relate to
observations of a signal y.

As an example, assume that we obtained some measurements y “ ŷ and wish to
obtain a posterior marginal belief q˚pθq over the parameter. We can then incorporate the
data in the form of a data constraint

ż

qpy, θqdθ “ δpy´ ŷq , (A4)

where δ defines a Dirac-delta. The constrained free energy can be rewritten by including
Lagrange multipliers as

Lrq, f s “ Frq, f s ` γ

ˆ
ĳ

qpy, θqdy dθ ´ 1
˙

`

ż

λpyq
ˆ
ż

qpy, θqdθ ´ δpy´ ŷq
˙

dy , (A5)

where the first term specifies the (to be minimized) free energy objective, the second term a
normalization constraint, and the third term the data constraint. Optimization of (A5) can
be performed using variational calculus.

Variational calculus considers the impact of a variation in qpy, θq on the Lagrangian
Lrq, f s. We define the variation as

δqpy, θq
∆
“ εφpy, θq ,

where ε Ñ 0, and φ is a continuous and differentiable “test” function. The fundamental
theorem of variational calculus states that the stationary solutions q˚ are obtained by
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setting δL{δq “ 0, where the functional derivative δL{δq is implicitly defined by Appendix
D in [2]:

dLrq` εφ, f s
dε

ˇ

ˇ

ˇ

ˇ

ε“0
“

ĳ

δL
δq
py, θq φpy, θqdy dθ . (A6)

Equation (A6) provides a way to derive the functional derivative through ordinary differ-
entiation. For example, we take the Lagrangian defined by (A5) and work out the left hand
side of (A6):

dLrq` εφ, f s
dε

ˇ

ˇ

ˇ

ˇ

ε“0
“

dFrq` εφ, f s
dε

ˇ

ˇ

ˇ

ˇ

ε“0
`

d
dε

γ

ĳ

pq` εφqdy dθ

ˇ

ˇ

ˇ

ˇ

ε“0
`

d
dε

ż

λpyq
ż

pq` εφqdθ dy
ˇ

ˇ

ˇ

ˇ

ε“0
(A7a)

“

ĳ

d
dε

ˆ

pq` εφq log
pq` εφq

f

˙
ˇ

ˇ

ˇ

ˇ

ε“0
dy dθ ` γ

ĳ

d
dε
pq` εφq

ˇ

ˇ

ˇ

ˇ

ε“0
dy dθ

`

ż

λpyq
ż

d
dε
pq` εφq

ˇ

ˇ

ˇ

ˇ

ε“0
dθ dy (A7b)

“

ĳ

”

log
qpy, θq

f py, θq
` 1` γ` λpyq

loooooooooooooooomoooooooooooooooon

δLrq, f s{δq

ı

φpy, θqdy dθ . (A7c)

Note that, since (A7c) has been written in similar form as (A6), it is easy to identify
the functional derivative. This procedure is one of many ways to obtain the functional
derivatives [73].

Setting δLrq, f s{δq “ 0 we find the stationary solution as

q˚py, θq “ expp´1´ γ´ λpyqq f py, θq (A8a)

“
1
Z

expp´λpyqq f py, θq , (A8b)

with Z “
ť

expp´λpyqq f py, θqdy dθ “ exppγ` 1q. In order to determine the Lagrange
multipliers γ and λpyq, we must substitute the stationary solution (A8b) back into the
constraints. The normalization constraint evaluates to

1
Z

ĳ

expp´λpyqq f py, θqdy dθ “ 1. (A9)

We find that (A9) is always satisfied since Z “
ť

expp´λpyqq f py, θqdy dθ by definition.
Note, however, that the computation of the normalization constant still depends on the
undetermined Lagrange multiplier λpyq.

The data constraint evaluates to
ż

q˚py, θqdθ “
1
Z

expp´λpyqq
ż

f py, θqdθ “ δpy´ ŷq (A10)

which can be rewritten as
expp´λpyqq

Z
“

δpy´ ŷq
ş

f py, θqdθ
. (A11)

Equation (A11) shows that λpyq can satisfy this constraint only if it is proportional to
δpy´ ŷq. Indeed, substitution of (A11) into (A8b) gives

q˚py, θq “
f py, θq

ş

f py, θqdθ
δpy´ ŷq ,
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and the posterior for the parameters evaluates to

q˚pθq “
ż

q˚py, θqdy

“

ż

f py, θq
ş

f py, θqdθ
δpy´ ŷqdy

“
f pŷ, θq

ş

f pŷ, θqdθ

“
fypŷ, θq fθpθq

ş

fypŷ, θq fθpθqdθ
,

which we recognize as the Bayes rule.
Note that the Bayes rule was derived here as a special case of constrained variational

free energy minimization when data constraints are present. This derivation of the Bayes
rule seems unnecessarily tedious but the value of this approach to inductive inference is
that the same principle applies when other (not data) constraints on q are present.

Appendix B. Lagrangian Optimization and the Dual Problem

With the addition of Lagrange multipliers to the Bethe functional, the resulting La-
grangian depends both on the variational distribution qpsq and the Lagrange multipliers
Ψpsq. Formally, the introduction of the Lagrange multipliers allows us to rewrite the
constrained optimization on the local polytope as an unconstrained optimization. We
follow [33], and write

min
qPLpGq

Frqs “ min
q

max
Ψ

Lrq, Ψs .

Weak duality [74] (Chapter 5) then states that

min
q

max
Ψ

Lrq, Ψs ě max
Ψ

min
q

Lrq, Ψs .

The minimization with respect to q then yields a solution that depends on the Lagrange
multipliers, as

q˚ps; Ψq “ arg min
q

Lrq, Ψs .

For any given q the Lagrangian is concave in Ψ. Therefore, substituting q˚ in the Lagrangian,
the maximization over Lrq˚, Ψs yields the unique solution

Ψ˚psq “ arg max
Ψ

Lrq˚, Ψs .

Stationary solutions are then given by

q˚ps; Ψ˚q “ arg min
qPLpGq

Frqs .

In the current paper, we consider factorized q’s (e.g., (8)), and consider variations with
respect to the individual factors. We then need to show that the combined stationary points
of the individual factors also constitute a stationary point of the total objective.

Consider a Lagrangian having multiple arguments, i.e.,

Lrqs “ Lrq1, . . . , qn, . . . , qNs (A12)

q fi rq1, . . . , qNs
J . (A13)
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We want to determine the first total variation of the Lagrangian given by

δL “ Lrq` εφs ´ Lrqs (A14)

φpsq fi rφ1psq, . . . , φNpsqsJ . (A15)

By a Taylor series expansion on ε we obtain [73] (A.14) and [75] (Equation (23.2))

Lrq` εφs ´ Lrqs “
K
ÿ

k“1

1
k!

d
dεk

´

Lkrq` εφs
¯

εk `OpεK`1q . (A16)

Omitting all terms higher than the first order, we obtain the first variation as

δL “
d
dε
pLrq` εφsqε . (A17)

Rearranging the terms and letting ε vanish, we obtain the following expression

lim
εÑ0

δL
ε
“

d
dε
pLrq` εφsq

ˇ

ˇ

ˇ

ˇ

ε“0
. (A18)

Let us assume that the Frechet derivative exists [73] such that we can obtain the following
integral representation (It should be noted that this integral expression is not always
possible for a generic Lagrangian. That is why we need to assume that the Frechet derivative
exists)

d
dε
pLrq` εφsq

ˇ

ˇ

ˇ

ˇ

ε“0
“

ż

φpsqJ
δL
δq

ds (A19)

where δL
δq is the variational derivative

δL
δq
“

„

δL
δq1

, . . . ,
δL

δqN

J

(A20)

δqn “ εφnpsq . (A21)

This means that (A19) can be written as [75] (Equation (22.5)) (Here, we use a more generic
Lagrangian and our notation is different than in [75]; howeverm the expression is motivated
again by a Taylor series expansion on ε)

lim
εÑ0

δL
ε
“

d
dε
pLrq` εφsq

ˇ

ˇ

ˇ

ˇ

ε“0
“
ÿ

n

ż

φpsq
δL
δqn

ds . (A22)

Fundamental theorem of variational calculus states that in order for a point to be stationary,
the first variation needs to vanish. In order for the first variation to vanish, it is sufficient to
have vanishing of the variational derivatives

δL
δqn

“ 0 for every n “ 1, . . . , N . (A23)

Vanishing of individual variational derivatives will mean that that the local stationary
points will also correspond to a global stationary point.

Appendix C. Local Free Energy Example for a Deterministic Node

Theorem 8 tells us how to evaluate the node-local free energy for a deterministic node.
As an example, consider the node function fapy, xq “ δpy´ sgnpxqq, with y P t´1, 1u and
x P R as depicted in Figure A1.
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sgn
µxa
Ñ

Ð
µax

x
µay
Ñ

Ð
µya

y

Figure A1. Messages around a “sign” node.

Interestingly, there is information loss in this node because the “sign” mapping is
not bijective. Given an incoming Bernoulli distributed message µyapyq “ Berpy|pq, the
backward outgoing message is derived as

µaxpxq “
ż

µyapyq δpy´ sgnpxqqdy

“

#

p if x ě 0
1´ p if x ă 0 .

Given a Gaussian distributed incoming message µxapxq “ Npx|m, ϑq, the resulting belief
then becomes

qxpxq “
µxapxq µaxpxq

ş

µxapxq µaxpxqdx

“

# p
p`Φ´2pΦ Npx|m, ϑq if x ě 0

1´p
p`Φ´2pΦ Npx|m, ϑq if x ă 0 ,

with Φ “
ş0
´8

Npx|m, ϑqdx . We define a truncated Gaussian distribution as

Tpx|m, ϑ, a, bq “

#

1
Φpa,b;m,ϑqNpx|m, ϑq if a ď x ď b ,

0 otherwise,

with Φpa, b; m, ϑq “
şb

a Npx|m, ϑqdx. This leads to

qxpxq “
pp1´Φq

p`Φ´ 2pΦ
looooooomooooooon

K

Tpx|m, ϑ,´8, 0q `
p1´ pqΦ

p`Φ´ 2pΦ
looooooomooooooon

1´K

Tpx|m, ϑ, 0,8q ,

as a truncated Gaussian mixture.
The node-local free energy then evaluates to

Frqa, fas “ ´Hrqxs

“

ż 0

´8

qxpxq log qxpxqdx`
ż 8

0
qxpxq log qxpxqdx

“ ´KHrTpm, ϑ,´8, 0qs ` K log K´ p1´ KqHrTpm, ϑ, 0,8qs ` p1´ Kq logp1´ Kq

“ ´KHrTpm, ϑ,´8, 0qs ´ p1´ KqHrTpm, ϑ, 0,8qs ´ HrBerpKqs ,

as a weighted sum of entropies, which can be computed analytically.

Appendix D. Proofs

Appendix D.1. Proof of Lemma 1

Proof. We apply the variation εφb to qb and, as discussed in Appendix A, we can identify
the functional derivative δLb{δqb through ordinary differentiation as

dLbrqb ` εφb, fbs

dε

ˇ

ˇ

ˇ

ˇ

ε“0
“

ż

˜

δLb{δqb
hkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkj

log
qbpsbq

fbpsbq
` 1` ψb ´

ÿ

iPEpbq
λibpsiq

¸

φbpsbqdsb .
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Setting the functional derivative to zero and identifying

µibpsiq “ exppλibpsiqq (A24)

ψb “ log
ż

fbpsbq
ź

iPEpbq
µibpsiqdsb ´ 1 (A25)

yields the stationary solutions (18) in terms of Lagrange multipliers that are to be deter-
mined.

Appendix D.2. Proof of Lemma 2

Proof. We follow the same procedure as in Appendix D.1, where we apply a variation εφj
to qj (instead of qb), and identify the functional derivative δLj{δqj through

dLjrqj ` εφjs

dε

ˇ

ˇ

ˇ

ˇ

ε“0
“

ż

˜

δLj{δqj
hkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkj

´ log qjpsjq ´ 1` ψj `
ÿ

aPVpjq
λjapsjq

¸

φjpsjqdsj .

As the TFFG is terminated, each edge has 2 degrees and the node-induced edge set has
only 2 factors, which we denote by fb and fc. Then, setting the functional derivative to zero
and identifying

µjapsjq “ exp
`

λjapsjq
˘

(A26)

ψj “ ´ log
ż

µjbpsjqµjcpsjqdsj ` 1 (A27)

yields the stationary solution of (20) in terms of the Lagrange multipliers.

Appendix D.3. Proof of Theorem 1

Proof. The local polytope of (14) constructs the Lagrangians of (17) and (19). Substituting
the stationary solutions from Lemmas 1 and 2 in the marginalization constraint,

qjpsjq “

ż

qbpsbqdsbzj ,

we obtain the following relation

µjbpsjqµjcpsjq

Zj
“

1
Zb

ż

fbpsbq
ź

iPEpbq
µibpsiqdsbzj ,

where we defined the following normalization constants to ensure that the computed
marginals are normalized:

Zj “

ż

µjbpsjqµjcpsjqdsj

Zb “

ż

fbpsbq
ź

iPEpbq
µibpsiqdsb .

Extracting µjb from the integral
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µjbpsjqµjcpsjq

Zj
“

µjbpsjq

Zb

ż

fbpsbq
ź

iPEpbq
i‰j

µibpsiqdsbzj ,

µjcpsjq “
Zj

Zb

ż

fbpsbq
ź

iPEpbq
i‰j

µibpsiqdsbzj (A28)

and cancelling µjb on both sides then yields the condition on the functional form of the
message µjc.

We now need to show that the fixed points of (22) satisfy (A28). Let us assume that
the fixed points exist, such that µ

pkq
jc “ µ

pk`1q
jc for some k. Then, we want to show that at the

fixed points the following equality holds:

µ
pkq
jc psjq “

Zpkqj

Zpkqb

ż

fbpsbq
ź

iPEpbq
i‰j

µ
pkq
ib psiqdsbzj .

Substituting (22), we need to show that

µ
pkq
jc psjq “

Zpkqj

Zpkqb

µ
pk`1q
jc psjq .

Since µ
pkq
jc “ µ

pk`1q
jc , we can rearrange

µ
pkq
jc

¨

˝1´
Zpkqj

Zpkqb

˛

‚“ 0 .

From Zb, we obtain

Zpkqb “

ż

µ
pkq
jb psjq

ż

fbpsbq
ź

iPEpbq
i‰j

µ
pkq
ib psiqdsbzjdsj

“

ż

µ
pkq
jb psjqµ

pk`1q
jc psjqdsj

“

ż

µ
pkq
jb psjqµ

pkq
jc psjqdsj

“ Zpkqj ,

which implies that the fixed points satisfy the desired condition. This proves that the
stationary solutions to the BFE within the local polytope can be obtained as fixed points of
the sum-product update equations.

Appendix D.4. Proof of Lemma 3

Proof. Substituting the definition of (32), we can re-write the second term of Lagrangian (30)
as

ż

!

ź

nPlpbq

qm
b ps

m
b q
)

log fbpsbqdsb “

ż

qm
b ps

m
b q

ˆ
ż

!

ź

nPlpbq
n‰m

qn
b ps

n
b q
)

log fbpsbqdszmb

˙

dsm
b

“

ż

qm
b ps

m
b q log f̃ m

b ps
m
b qdsm

b .
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We apply the variation εφm
b to qm

b and identify the functional derivative δLm
b {δqm

b , as

dLm
b rq

m
b ` εφm

b s

dε

ˇ

ˇ

ˇ

ˇ

ε“0
“

ż

˜

δLm
b {δqm

b
hkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkj

log
qm

b ps
m
b q

f̃ m
b ps

m
b q
` 1` ψm

b ´
ÿ

iPm

λibpsiq

¸

φm
b ps

m
b qdsm

b ,

whose functional form we recognize from Appendix D.1. Setting the functional derivative
to zero and again identifying µibpsiq “ exp λibpsiq, yields the stationary solutions of (31).

Appendix D.5. Proof of Theorem 2

Proof. The local polytope of (33) constructs the Lagrangians Lm
b and Lj as (30) and (19),

respectively. We substitute the stationary solutions of Lemmas 2 and 3 in the local marginal-
ization constraint (29b), which yields

qjpsjq “

ż

qm
b ps

m
b qdsm

bzj .

Following the structure of the proof in Appendix D.3, we obtain the following condition
for the stationary solutions in terms of messages:

µjbpsjqµjcpsjq

Zj
“

µjbpsjq

Zm
b

ż

f̃ m
b ps

m
b q

ź

iPm
i‰j

µibpsiqdsm
bzj

µjcpsjq

Zj
“

1
Zm

b

ż

f̃ m
b ps

m
b q

ź

iPm
i‰j

µibpsiqdsm
bzj . (A29)

Now we want to show that the fixed points of the message updates (36) satisfy (A29). Let
us assume that the fixed points exists for some k such that µ

pk`1q
jc “ µ

pkq
jc . Then, we will

show that the fixed points satisfy

µ
pkq
jc psjq

Zpkqj

“
1

Zm,pkq
b

ż

f̃ m,pkq
b psm

b q
ź

iPm
i‰j

µ
pkq
ib psiqdsm

bzj . (A30)

Similar to Appendix D.3, it will suffice to show that Zm,pkq
b “ Zpkqj at the fixed points.

Arranging the order of integration in normalization constant Zm,pkq
b , we obtain

Zm,pkq
b “

ż

µ
pkq
jb psjq

ż

f̃ m,pkq
b psm

b q
ź

iPm
i‰j

µ
pkq
ib psiqdsm

bzjdsj

“

ż

µ
pkq
jb psjqµ

pk`1q
jc psjqdsj

“

ż

µ
pkq
jb psjqµ

pkq
jc psjqdsj

“ Zpkqj .

By the same line of reasoning as in Appendix D.3, this shows that the fixed points of
the message updates (36) leads to stationary distributions of the Bethe free energy with
structured factorization constraints.
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Appendix D.6. Proof of Corollary 1

Proof. For a fully factorized local variational distribution (41), the augmented node func-
tion f̃ m

b ps
m
b q of (32) reduces to

f̃ jpsjq “ exp
ˆ
ż

!

ź

iPEpbq
i‰j

qipsiq
)

log fbpsbqdsbzj

˙

. (A31)

The message of (36) then reduces to

µjcpsjq “ f̃ jpsjq ,

which, after substitution, recovers (43).

Appendix D.7. Proof of Lemma 4

Proof. When we apply the variation εφb to qb and identify the functional derivative δLb{δqb,
we recover the result from Appendix D.1, which leads to a solution of the form (47).

Appendix D.8. Proof of Theorem 3

Proof. We construct the Lagrangian of (46), which by Lemma 4 leads to a solution of the
form (47). Substituting this solution in the constraint of (45) leads to

„

µbjpsjq
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

ż

fbpsbq
ź

iPEpbq
i‰j

µibpsiqdsbzj



µjbpsjq “ δpsj ´ ŝjq . (A32)

This equation is then satisfied by (50), which proves the theorem.

Appendix D.9. Proof of Lemma 5

Proof. The proof follows directly from Appendix D.1, with f̃bpsb; ŝbq substituted for
fbpsbq.

Appendix D.10. Proof of Theorem 4

Proof. Given the result of Lemma 5, the proof follows Appendix D.3, where Laplace
propagation chooses the expansion point to be the fixed point ŝb “ arg max log qbpsbq.

For all second-order fixed points of the Laplace iterations, it holds that ŝb is a fixed
point if and only if it is a local optimum of qb. The proof is then concluded by Lemma 1
in [76].

Appendix D.11. Proof of Lemma 6

Proof. We note that the Lagrange multiplier ηjb does not depend on sj because the expecta-
tion removes all the functional dependencies on sj. Furthermore, the expectations of Tjpsjq

have the same dimension as the function Tjpsjq. This means that the dimension of ηjb needs
to be compatible with that of Tjpsjq so that we can write the constraint as an inner product.

We apply the variation εφb to qb and identify the functional derivative δLb{δqb, as

dLbrqb ` εφb, fbs

dε

ˇ

ˇ

ˇ

ˇ

ε“0
“

ż

˜

δLb{δqb
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

log
qbpsbq

fbpsbq
` 1` ψb ´

ÿ

iPEpbq
i‰j

λibpsiq ´ ηJjb Tjpsjq

¸

φbpsbqdsb .
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Setting the functional derivative to zero and identifying µibpsiq “ exp λibpsiq for i ‰ j and
identifying µjbpsjq “ exp

´

ηJjb Tjpsjq
¯

yields the functional form of the stationary solution
as (62).

Appendix D.12. Proof of Lemma 7

Proof. We follow a similar procedure as in Appendix D.11 and apply the variation εφj to
qj, which identifies the functional derivative δLj{δqj, as

dLrqj ` εφjs

dε

ˇ

ˇ

ˇ

ˇ

ε“0
“

ż

˜

δLj{δqj
hkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj

´ log qjpsjq ´ 1` ψj `
ÿ

aPVpjq
ηJja Tjpsjq

¸

φjpsjqdsj .

Setting the functional derivative to zero and following the same procedure as in
Appendix D.2 yields (64).

Appendix D.13. Proof of Theorem 5

Proof. By substituting the stationary solutions given by Lemmas 6 and 7 into the moment-
matching constraint (59), we obtain the following condition:
ż

Tjpsjqqjpsjqdsj “

ż

Tjpsjqqbpsbqdsb

1
Zj

ż

Tjpsjq exp
´

rηjb ` ηjcs
JTjpsjq

¯

dsj “
1
Z̃j

ż

Tjpsjq

µjbpsjq
hkkkkkkkikkkkkkkj

exp
´

ηJjb Tjpsjq
¯

„

µ̃jcpsjq
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

ż

fbpsbq
ź

iPEpbq
i‰j

µibpsiqdsbzj



dsj

“

ż

Tjpsjqq̃jpsjqdsj ,

where we recognize the sum-product message µ̃jcpsjq, which we multiply by the incoming
exponential family message µjbpsjq and normalize to obtain q̃jpsjq. By defining ηj “ ηjb` ηjc,
normalization constants are given by

Zjpηjq “

ż

exp
´

ηJj Tjpsjq
¯

dsj

Z̃j “

ż

exp
´

ηJjb Tjpsjq
¯

µ̃jcpsjqdsj .

Computing the moments allows us to determine the exponential family parameter by
solving the following equation [24] (Proposition 3.1)

∇ηj log Zjpηjq “

ż

q̃jpsjq Tjpsjqdsj .

Suppose you obtain a solution to this equation denoted by η̃j, this allows us to approximate
the sum-product message µ̃jcpsjq by an exponential family message whose parameter is
given by

ηjc “ η̃j ´ ηjb .

Now let us assume that the fixed points of the sum-product iterations µ̃
pkq
jc psjq “

µ̃
pk`1q
jc psjq and the incoming exponential family messages µ

pkq
jb psjq “ µ

pk`1q
jb psjq exist for

some k. Then, we need to show that the existence of these fixed points implies the existence
of the fixed points of µ

pk`1q
jc “ µ

pkq
jc .
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By moment-matching, we have

η
pk`1q
jc “ η̃

pk`1q
j ´ η

pk`1q
jb

“ η̃
pkq
j ´ η

pkq
jb

“ η
pkq
jc ,

which proves the existence of the fixed point of µjc if µ̃jc and µjbpsjq have fixed points.

Appendix D.14. Proof of Theorem 6

Proof. The proof follows directly from substituting the Laplace-approximated factor-
function (53) in the naive mean-field result of Corollary. 1.

Appendix D.15. Proof of Theorem 7

Proof. In order to obtain the optimal parameter value θ˚j , we view the free energy as a
function of θj. As there are two node-local free energies that depend upon θj, this leads to

θ˚j “ arg min
θj

ˆ

Frqb, fb; θjs ` Frqc, fc; θjs

˙

“ arg max
θj

ˆ
ż

!

δpsj ´ θjq
ź

nPlpbq
n‰m

qn
b ps

n
b q
)

log fbpsbqdsb `

ż

!

δpsj ´ θjq
ź

nPlpcq
n‰m

qn
c ps

n
c q
)

log fcpscqdsc

˙

“ arg max
θj

ˆ
ż

!

ź

nPlpbq
n‰m

qn
b ps

n
b q
)

log fbpsbzj, θjqdsbzj `

ż

!

ź

nPlpcq
n‰m

qn
c ps

n
c q
)

log fcpsczj, θjqdsczj

˙

“ arg max
sj

ˆ

log µbjpsjq ` log µcjpsjq

˙

,

where in the last step we replaced θj with sj for convenience. Here, we recognize µbj and
µcj as the structured variational updates of Theorem 2. Identification of the fixed points
can then be obtained by [57] (Corollary 2). For a rigorous discussion on convergence of the
EM algorithm, we refer to [77] (Corollary 32), [24] (Chapter 6) and [57] (Section 3).

Appendix D.16. Proof of Theorem 8

Proof. Substituting for qapsaq, the node-local free energy becomes

Frqa, fas “

ż

qapsaq log
qapsaq

fapsaq
dsa

“

ż

qapsaq log
qj|apsj|sazjq

fapsaq
dsa `

ż

qapsaq log qazjpsazjqdsa

“

ż

qazjpsazjqqj|apsj|sazjq log
qj|apsj|sazjq

fapsaq
dsa `

ż

qazjpsazjqqj|apsj|sazjq log qazjpsazjqdsa

“

ż

qazjpsazjq

«

ż

qj|apsj|sazjq log
qj|apsj|sazjq

fapsaq
dsj

ff

dsazj `

ż

qazjpsazjq log qazjpsazjqdsazj

“ Eqazj

”

D
”

qj|a} fa

ıı

´ Hrqazjs ,
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where the first term expresses an expected Kullback–Leibler divergence, and the second
term is a negative entropy. The only possibility for the local free energy to becomes finite,
is when qj|apsj|sazjq “ fapsaq “ δpsj ´ gapsazjqq. We then have:

Frqa, fas “

#

´Hrqazjs if qj|apsj|sazjq “ δpsj ´ gapsazjqq

8 otherwise.

Appendix D.17. Proof of Theorem 9

Proof. The proof is similar to Appendix D.16. Substituting for qapsaq, the node-local free
energy becomes

Frqa, fas “

ż

qapsaq log
qapsaq

fapsaq
dsa

“

ż

qapsi, sj, skq log
qik|jpsi, sk|sjq

fapsi, sj, skq
dsi dsj dsk `

ż

qjpsjq log qjpsjqdsj

“ Eqj

”

D
”

qik|j} fa

ıı

´ Hrqjs .

In contrast to Appendix D.16, here we have a joint belief within the divergence with a
single conditioning variable. Conditioning on sj (or by symmetry si or sk) determines the
realization of the other variables. Therefore, we have:

Frqa, fas “

#

´Hrqjs if qik|jpsi, sk|sjq “ δpsj ´ siq δpsj ´ skq

8 otherwise.
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