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Opinion

A Tale of Two Viruses: Does Heterologous
Flavivirus Immunity Enhance Zika Disease?

Carlos A. Sariol,1,2,3,* Mauricio L. Nogueira,4,* and Nikos Vasilakis5,6,7,8,*

The rise of Zika virus (ZIKV) and its unusual clinical manifestations provided
ground for speculative debate. The clinical severity of secondary dengue virus
(DENV) infections is associated with antibody-dependent enhancement (ADE),
and it was recently suggested that previous exposure to DENV may worsen
ZIKV clinical outcomes. In this Opinion article we analyze the relationship
among different flaviviruses and ADE. We discuss new evidence obtained in
non-human primates and human cohorts demonstrating that there is no corre-
lation to ADE when ZIKV infection occurs in the presence of pre-existing DENV
immunity. We propose a redefinition of ADE in the context of complex immu-
nological flavivirus interactions to provide a more objective perspective when
translating in vitro or in vivo observations into the clinical setting.

Zika Virus Is a Clinical Outlier Flavivirus
Rising from obscurity 60 years after its discovery, ZIKV caused the first major human epidemic in
the Federated States of Micronesia, followed by a major pandemic with its introduction in Brazil
sometime in 2013 [1]. Currently, indigenous mosquito-borne ZIKV transmission has been con-
firmed in 49 countries or territories of the AmericasAppendix A. The introduction and spread of
ZIKV in the Americas was marked by the appearance of severe adverse outcomes such as fetal
loss [2], congenital Zika syndrome (CZS) (see Glossary) [3], Guillain–Barré syndrome (GBS)
[4], and rare cases of encephalopathy [5], meningoencephalitis [6], myelitis [7], uveitis [8], and
severe thrombocytopenia [9]. Several hypotheses have been put forward to explain the unprec-
edented observed pathogenicity of ZIKV infection in the Americas, including prior heterologous
flavivirus infection, virulence of the virus, host genetics and environmental factors among others.

ADE: From In Vitro Evidence to Clinical Relevance
Analogous to antibody-dependent enhancement (ADE), during secondary DENV expo-
sure, the scientific community hypothesized that a ZIKV infection following a previous DENV
infection may result in increased ZIKV pathogenesis (for example CZS and GBS) in the
Americas. ADE in vitro can be considered as a common experimental phenomenon with
uncertain clinical relevance, as it has been demonstrated for many viruses (alphaviruses [10],
rabies [11], coxsackievirus B3 [12], coronavirus [13], human immunodeficiency virus [14,15],
and others) without evidence of worsened disease during secondary infection in mice or in
human populations [16]. Such a precise ADE definition is very specific in describing an
experimental finding as a fact. In in vitro assays, immune sera from patients exposed to a
variety of different flaviviruses, including yellow fever and Japanese encephalitis viruses, will also
enhance DENV infection [17]. Even the homotypic serotype responsible for a past DENV
infection can induce ADE of DENV, if the serum is diluted to subneutralizing concentrations [18].
However, in contrast to ADE described for other viruses, ADE of DENV in vivo is commonly
associated with a worse clinical outcome [19]. Secondary DENV infections result in dramatic
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antibodies neutralize or enhance ZIKV
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and induced in immunosuppressed
mice by dengue and West Nile immune
sera.
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clinical impairment along with a cytokine storm characterized by the increase in interleukin-6
(IL-6), IL-8, IL-10, interferon-g (IFN-g), IFN-a, and vascular endothelial growth factor (VEGF),
combined with tumor necrosis factor-a (TNF-a), indicating a poor prognostic outcome [20]
(Figure 1). Because of this, ADE related to flaviviruses should not be seen only as a single
biological process of virus–antibody interaction. Defining ADE in the context of pathogenesis,
as we usually read the outcome of the biological process, should imply a clinical consequence,
including clinical and laboratory evidence of impairment. In this way, ADE would be defined as a
common experimental in vitro phenomenon but a rare in vivo occurrence leading to worsening
of the clinical presentation usually associated with hemodynamic changes, increased viremia,
proinflamatory cytokine profile, and other detectable laboratory alterations.

Dengue Induced ZIKV ADE?
The debate of whether ZIKV ADE by flavivirus immune serum has recently increased because of
results showing an increase in ZIKV pathogenesis in a mouse model (Stat2�/�) [21]. Using this
model, Bardina et al. showed that, by administering DENV and West Nile virus (WNV) immune
serum intraperitoneally, in an appropriate concentration before ZIKV infection, this resulted in
fever and weight loss with an increased mortality as compared to some of the animals
administered serum from flavivirus-naïve individuals [21]. However, results from the same
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Figure 1. Antibody-Dependent Enhancement (ADE) of Dengue and Zika Virus. ADE during a secondary
heterologous Dengue virus infection has been documented in vitro, in mice, in non-human primates, and in humans
playing a key role in the worsening of the clinical presentations. In contrast, ADE of Zika virus by pre-existing immunity to
Dengue virus can be induced in vitro, and in immunodeficient mice. However, there is no evidence to support ADE
occurring in non-human primates or in humans.
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work, in a dose-dependent evaluation of mouse survival and the clinical presentation experi-
ment, revealed that control plasma at the highest concentration could also decrease mice
survival by about 40%, similar to the effect of DENV immune plasma at the lowest dilutions. In
addition to proving that antibodies induced by prior DENV infection, administered under
different concentrations, can amplify or neutralize ZIKV disease manifestations in vivo, Bardina
et al. also showed the limited value of ADE in vivo in immunosuppressed mice.

Indeed, ADE of ZIKV by previous flavivirus infection is not a novel concept. Back in 1987
Fabgami et al. demonstrated that ZIKV replication can be enhanced in P388D1 macrophage
cell line by subneutralizing concentrations of antibodies in immune ascitic fluids from six other
different flaviviruses, including Wesselsbron, Uganda S, WNV, Dakar bat, yellow fever and
Potiskum virus [22]. However, the following facts might anticipate the unlikelihood of DENV-
induced ZIKV ADE (as defined above) in humans: (i) there is no epidemiological or clinical
evidence of DENV ADE with any other closely related flavivirus or any other viruses; (ii) before its
introduction into the Western hemisphere, ZIKV continuously circulated in flavivirus-endemic
areas (such as Africa and Southeast Asia), and an increase in ZIKV pathogenesis has not been
reported in these locations; (iii) not all heterologous flavivirus immunity is the same, including the
sequence in which infection occurs with different DENV serotypes [18,19].

What Non-human Primates (NHPs) Can Tell Us
NHPs are natural hosts (in the sylvatic transmission cycle) supporting the replication of both
DENV and ZIKV. For many years NHPs have been used as a surrogate for human infection in
order to understand DENV pathogenesis and to test for vaccine immunogenicity and efficacy
[23] – and, more recently, for ZIKV replication and pathogenesis [24–28]. In the past, DENV
ADE, in terms of viral replication enhancement, has also been proven in NHPs after secondary
DENV infection with DENV 2 [29] or by passive administration of optimal dilutions of human
DENV-immune serum to the animals [30], or by using specific concentrations of a monoclonal
antibody [31]. In addition to being useful for studying DENV pathogenesis, NHPs are a good
model for predicting the behavior of different DENV vaccines in humans and for characterizing
specific DENV neutralizing antibodies also occurring naturally in human populations [23].
Because of this, it is plausible to anticipate that data on ZIKV pathogenesis in NHPs can also
reproduce or predict what will happen in humans. In a recent study, using a limited number of
animals, Pantoja et al. were unable to show ADE of ZIKV in DENV immune macaques [32].
However, results showed that previous immunity to DENV was able to modulate the innate and
cellular immune response to ZIKV with a tendency to lower the average ZIKV viremia days, to
limit the increase in liver enzymes, and to induce a significant increase in the plasma perforin as
evidence of an increased cytotoxic T cell activity [33]. This cellular immune response in NHPs is
supported by recent results from human samples showing that prior DENV infection leads to
stronger and faster responses to ZIKV in terms of both CD4 and CD8T cell responses, thus
providing evidence of a biological outcome [34].

Human Evidence of ZIKV ADE?
Coincident with the report by Pantoja et al., a study on ADE of a human cohort was published
[35]. Terzian et al. evaluated a cohort of ZIKV-infected patients and looked for previous DENV
exposure and its relationship to viral load, cytokine profile, and clinical symptoms. Despite the
suggestions from in vitro studies that ADE could occur in DENV-primed ZIKV-infected patients,
the authors found no evidence that the presence of DENV antibodies changes the outcome of
ZIKV infection in all tested parameters [35]. Collectively, these observations from NHPs and
human cohorts strongly suggest that previous exposure to DENV does not have a deleterious

Glossary
Antibody-dependent
enhancement (ADE): a mechanism
when non-neutralizing antibodies
facilitate virus entry into host cells,
leading to increased infectivity in the
cells and exacerbation of the clinical
disease.
Congenital Zika syndrome (CZS):
a pattern of birth defects found
among fetuses and babies infected
with ZIKV during pregnancy.
Guillain–Barré syndrome (GBS):
an autoimmune disorder affecting the
peripheral nervous system. Initial
symptoms are weakness and
numbness in the extremities, which
eventually develop into paralysis and,
if untreated, death.
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effect in the clinical outcome of ZIKV infection. Supported by these observations, we can
propose that the DENV-induced ZIKV ADE in vitro does not exist in vivo or that it is so
uncommon that it might be not relevant as an epidemiological phenomenon.

Concluding Remarks
In summary, data from NHPs and humans, and from several serological studies [36,37], do not
support the suggestion that ZIKV may be enhanced in vivo by previous exposure to DENV. On
the other hand, the few experimental lines of evidence that have addressed ADE of DENV
induced by ZIKV-immune serum, as expected, have shown different degrees of in vitro and in
vivo increase in DENV replication and pathogenesis respectively [38,39].

Recently George et al. reported that an infection with DENV, after a short period of exposure to
ZIKV, can enhance DENV infection in NHPs [40]. This is a very interesting report as it is expected
that ZIKV-induced DENV cross-reacting antibodies, induced early after infection, may either
neutralize or have no effect in DENV infection outcome. In any case, this report confirms the
need for large studies in NHPs and for epidemiological data from the dengue-naïve human
population that has been exposed to ZIKV during the recent epidemic.

Lastly, inferences derived from in vitro experiments and from immunologically modified animals
will need to be carefully assessed due to the impact they can have on the approaches for ZIKV
and DENV vaccines and therapeutics currently under development.
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