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Abstract
Background: SpiC encoded within Salmonella pathogenicity island 2 on the Salmonella enterica
serovar Typhimurium chromosome is required for survival within macrophages and systemic
infection in mice. Additionally, SpiC contributes to Salmonella-induced activation of the signal
transduction pathways in macrophages by affecting the expression of FliC, a component of flagella
filaments. Here, we show the contribution of SpiC in flagellum synthesis.

Results: Quantitative RT-PCR shows that the expression levels of the class 3 fliD and motA genes
that encode for the flagella cap and motor torque proteins, respectively, were lower for a spiC
mutant strain than for the wild-type Salmonella. Further, this mutant had lower expression levels of
the class 2 genes including the fliA gene encoding the flagellar-specific alternative sigma factor. We
also found differences in flagella assembly between the wild-type strain and the spiC mutant. Many
flagella filaments were observed on the bacterial surface of the wild-type strain, whereas the spiC
mutant had only few flagella. The absence of spiC led to reduced expression of the FlhD protein,
which functions as the master regulator in flagella gene expression, although no significant
difference at the transcription level of the flhDC operon was observed between the wild-type strain
and the spiC mutant.

Conclusion: The data show that SpiC is involved in flagella assembly by affecting the post-
transcription expression of flhDC.

Background
Salmonellae are gram-negative bacteria causing a variety
of disease syndromes in humans and animals. For exam-
ple, Salmonella enterica serovar Typhi causes a systemic dis-
ease in human known as typhoid fever, whereas S. enterica
serovar Typhimurium is responsible for gastroenteritis in
humans and a systemic disease in mice similar to human
typhoid fever. The ability of Salmonellae to survive within
macrophages is required for systemic disease [1]. Impor-
tant virulence factors are introduced into the host envi-

ronment including the host cell cytosol using two
different type III secretion systems (TTSSs) encoded on the
Salmonella pathogenicity islands, SPI-1 and SPI-2 [2]. SPI-
1 TTSS mediates bacterial entry into non-phagocytic cells
[3] and SPI-2 TTSS is required for survival and replication
in the intracellular environment of host cells and contrib-
utes to systemic infection in animals [4-6].

The spiC gene is adjacent to spiR (ssrA)/ssrB, a two-compo-
nent regulatory gene, and is the initial gene for the oper-
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ons encoding the structural and secretory components of
SPI-2 [4]. Previous studies show that a strain carrying a
mutation in the spiC gene is unable to survive within mac-
rophages and has greatly reduced virulence in mice. The
SpiC protein is necessary to inhibit the fusion of Salmo-
nella-containing phagosomes with endosomal and lyso-
somal compartments [7]. SpiC is translocated by SPI-2
TTSS to the cytosol of the macrophages where it interacts
with host proteins, i.e. TassC [8] or Hook3 [9], to alter
intracellular trafficking. Further, several investigators
report that SpiC is required for the translocation of SPI-2
effector proteins into the target cells by interacting with
SsaM, a SPI-2 encoded protein [10-12]. In addition to
these reports, we have shown that SpiC contributes to Sal-
monella-induced activation of the signal transduction
pathways in macrophages, leading to the production of
mediators such as interleukin-10, prostaglandin E2, and
the expression of the suppressor in cytokine signaling 3
(SOCS-3) that are thought to have important roles in Sal-
monella virulence [13-15]. Additionally, our recent study
shows that SpiC is involved in the expression of FliC, a
component of the flagella filaments, where FliC plays a
significant role in SpiC-dependent activation of the signal
transduction pathways in macrophages following Salmo-
nella infection [16]. However, the mechanism of how
SpiC affects the expression of FliC remains unknown.

The flagellum is essential for bacterial motility. Its struc-
ture consists of a basal body, a hook, and a filament. In
Salmonella, synthesis of the flagellum involves over 50
genes. The expression of these genes is organized into
three hierarchies. At the top hierarchy is the class 1 flhDC
operon and it is essential for transcription of all of the
genes for the flagellar cascade. flhDC expression is influ-
enced at the transcription or post-transcription level by a
number of global regulatory factors. The class 2 operons
contain genes encoding the hook-basal body-associated
proteins, a few regulatory proteins, and a component of
the flagellum-specific type III export pathway. The class 3
operons contain genes involved in filament formation,
flagella rotation and chemotaxis [17,18]. Flagellin, a com-
ponent of the filament, is transported from the cytoplasm
using the flagellum-specific type III export system in the
basal body where it is polymerized with the help of the
cap protein FliD [19,20]. This results in the assembly of
the long helical flagella filaments. S. enterica serovar Typh-
imurium expresses two antigenically distinct flagellins
encoded by the fliC and fljB genes and are coordinately
expressed using a phase-variation mechanism [17].

FliC also has a role as a potent stimulator of the immune
and pro-inflammatory responses [21,22]. Several reports
show that FliC activates the signal transduction pathways
via Toll-like receptor 5 (TLR5) in cultured cells (e.g. epi-
thelial cells) leading to the induction of immune and pro-
inflammatory genes [23-26]. In addition to TLR5, flagellin

was recently shown to be recognized in the host cell
cytosol by two different Nod (nucleotide-binding oli-
gomerization domain)-like receptors, Ipaf and Naip5
(also known as Birc1e) [27,28].

Here, we investigate the mechanism of how SpiC regulates
flagellum synthesis in S. enterica serovar Typhimurium.
We found that SpiC is involved in flagella assembly by
affecting the post-transcription expression of the flhDC
operon.

Results and discussion
Transcription of the spiC gene is induced during the post-
exponential phase of bacterial growth in LB medium
The spiC gene is adjacent to the spiR (ssrA)/ssrB gene set
and is the initial gene for the operons encoding the struc-
tural and secretory components of SPI-2 [4]. Using primer
extension analysis, we first examined the expression of the
spiC gene in bacteria grown in LB because expression of
SPI-2-encoded genes has been shown to be efficiently
induced under limiting conditions such as in medium
containing low concentrations of Mg2+ or Ca2+ [29,30].
The bacteria were grown in LB, and the total RNA was iso-
lated when the bacterial culture had an optical density at
600 nm (OD600) of 0.3, 0.7, 1.1, and 1.5 (Fig. 1A). As
shown in Fig. 1B, the extension product was only seen
when the OD600 was 1.5, indicating that the spiC gene is
expressed in the stationary phase of growth.

At the same time, we determined the transcription start
site for spiC using a primer extension analysis (Fig. 1C).
The size of the extension product showed that the tran-
scription start site of spiC is an adenine that lies 18 nucle-
otides upstream of the spiC initiation codon (ATG) in
agreement with the result of Walthers et al [31]. This indi-
cates that the SpiC protein consists of 127 amino acids
with a predicted molecular mass of 14.7 kDa.

Effect of the spiC mutation on the expression of class 3 
flagellar genes
In a previous study, proteomic analysis using matrix-
assisted desorption/ionization-time of flight mass spec-
troscopy showed that the level of the FliC protein, a com-
ponent of the flagella filaments, was lower in the culture
supernatant of a spiC mutant, which carries a non-polar
mutation in the spiC gene, than in the supernatant from
wild-type Salmonella. Further, SpiC is involved in the
expression of the fliC gene at the transcription level [16].
These results suggest the possibility that SpiC participates
in flagellar phase variation or the fliC gene expression
directly. However, in addition to the FliC protein, we
newly identified a FliD flagella protein that was decreased
in the spiC mutant using proteomic analysis with liquid
chromatography-tandem mass spectrometry (K. Uchiya,
unpublished result). Taken together, these results suggest
that SpiC contributes to the flagellar system by mecha-
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nisms other than phase variation or direct expression of
the fliC gene in S. enterica serovar Typhimurium.

Flagella expression in S. enterica serovar Typhimurium is
controlled in a hierarchical manner. At the top of the hier-
archy is the class 1 flhDC operon that is essential for tran-
scription of all of the genes in the flagellar cascade. The
class 2 operons contain the genes encoding the hook-
basal body-associated proteins, a few regulatory proteins,
and a component of the type III export pathway. The class
3 operons contain genes involved in filament formation,
flagella rotation and chemotaxis [17,18].

As described above, proteomic analysis showed that the
spiC mutant had lower expression levels of FliC and FliD
proteins, suggesting that SpiC is involved in the expres-
sion of the class 3 flagellar genes. Therefore, we first inves-
tigated the effect of the spiC mutation on the expression of
the class 3 genes. The total RNA was isolated from bacteria
grown to an OD600 of 1.6 in LB to induce the expression
of the spiC gene (Fig. 1B). We analyzed the transcript lev-
els of the fliD and motA genes that encode the flagella cap
and motor torque proteins [17], respectively, using quan-
titative real-time PCR (RT-PCR). The transcript levels of
the fliD and motA genes in the spiC mutant were reduced

Expression of the spiC gene in LBFigure 1
Expression of the spiC gene in LB. (A) Growth curve of wild-type Salmonella. An overnight culture in LB was inoculated 
into fresh LB at a 1:100 dilution. The cultures were grown at 37°C with aeration and monitored by measuring turbidity at an 
OD600. (B) Primer extension analysis of spiC transcription in LB. Bacteria were cultured in LB, and the total RNA was isolated 
when the OD600 reached 0.3, 0.7, 1.1 and 1.5. Fifty micrograms of RNA was hybridized with a 5'-end-labelled DNA fragment 
specific for the spiC gene and subjected to 6% polyacrylamide-7 M urea gel electrophoresis. The GATC lane corresponds to 
dideoxy chain termination sequence reactions in the region encompassing the spiC promoter. A single extension product was 
seen only at an OD600 of 1.5 corresponding to the stationary phase of growth. The asterisk indicates the transcription initiation 
site. (C) Nucleotide sequence of the spiC promoter region. The transcriptional start site for spiC is numbered as +1, and the 
hooked arrow indicates the direction of transcription. The proposed -10, -35, and Shine-Dalgarno (SD) sequences are under-
lined. The start codon is marked in bold. The double underline indicates the sequence of the designed primer for primer exten-
sion analysis.
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Expression of the class 3 fliD and motA genes in the spiC mutantFigure 2
Expression of the class 3 fliD and motA genes in the 
spiC mutant. Bacteria were cultured in LB to an OD600 of 
1.6, and the total RNA was extracted from the wild-type Sal-
monella (WT), spiC mutant strain, or spiC mutant strain carry-
ing the spiC gene-containing plasmid pEG9127 (spiC+). 
Quantitative RT-PCR was conducted using a TaqMan probe. 
Levels of fliD (A) or motA (B) mRNA were normalized to 16S 
rRNA levels, and the results are shown relative to the 
expression in the wild-type strain. The expression levels of 
both genes in the spiC mutant were greatly reduced com-
pared to the wild-type strain.

W
T

sp
iC

sp
iC

+

W
T

sp
iC

sp
iC

+

A
1.2
1.0

0.8
0.6
0.4

0.2

0

R
el

at
iv

e 
ex

p
re

ss
io

n
 le

ve
ls

 
   

   
   

   
   

   
(f

o
ld

)

B
1.2
1.0

0.8

0.6
0.4

0.2

0

Page 3 of 10
(page number not for citation purposes)



BMC Microbiology 2009, 9:179 http://www.biomedcentral.com/1471-2180/9/179
by approximately 15-fold and 6-fold compared to the
wild-type strain, respectively (Fig. 2). Complementation
of the spiC mutant with a plasmid carrying the wild-type
spiC gene (pEG9127) restored the fliD and motA tran-
scripts to about 80% of the level of the wild-type strain.
Further, to confirm the contribution of SpiC in the regula-
tion of class 3 flagellar gene transcription, we constructed
newly a deletion mutant of the spiC gene using the
lambda Red mutagenesis technique and examined the
motA mRNA level. The deletion mutant showed the same
phenotype as the spiC mutant (EG10128) used in this
study (data not shown). These data indicate that SpiC has
an influence on the flagellar system.

The spiC mutant is defective in flagella filament formation
Because the flagella filament is made from the flagellin
proteins FliC and FljB, we examined flagella of the respec-
tive Salmonella strains using electron microscopy. We
found differences between the wild-type strain and the
spiC mutant. Many flagella filaments were observed on
the bacterial surface of the wild-type strain (Fig. 3A),
whereas the spiC mutant had few flagella (Fig. 3B). Addi-
tionally, the defective flagella filament formation in the
spiC mutant was rescued by introducing pEG9127 (Fig.
3C). The data suggest that SpiC affects the formation of
flagella filaments by controlling the expression of flagellar
genes. We next examined the involvement of other SPI-2-
encoded virulence factors in flagella assembly. As
expected, a mutation in the spiR gene [4], a two-compo-
nent regulatory gene involved in the expression of SPI-2-
encoded genes, resulted in the defective formation of flag-
ella filaments, similar to the spiC mutant (Fig. 3D); how-
ever, the defective phenotype was not seen in the ssaV
mutant that lacks a putative component of the SPI-2 TTSS
(Fig. 3E) [32]. This suggests the specific involvement of
SpiC in the assembly of flagella filaments. Further, we
examined the effect of SpiC on formation of flagella fila-
ments using N-minimal medium containing low Mg2+

(pH 5.8) that is effective in inducing SPI-2 gene expres-
sion [29]. However, we did not observe flagella even in
the wild-type strain (data not shown).

Because the absence of SpiC leads to the reduction of class
3 genes expression including the motA gene, which is nec-
essary for motor rotation, we next investigated the motil-
ity of the respective Salmonella strains using LB semisolid
plates (Fig. 3F). Like the results for flagella formation, the
wild-type strain, the ssaV mutant, and the spiC mutant car-
rying pEG9127 made large swarming rings, whereas the
spiC and spiR mutant had weak swarming abilities. And
the flhD mutant was non-motile.

Expression of class 2 flagellar genes in the spiC mutant
To examine the mechanism by which SpiC is involved in
the expression of the class 3 genes, we focused on the class
2 fliA gene encoding the flagellar-specific alternative

sigma factor σ28, which is required for transcription of the
class 3 promoters [33,34]. The activity of the transcription
factor σ28 is negatively regulated by direct interaction with
an anti-σ28 factor, the FlgM in the cell [35,36]. FlgM is
excreted out of the cell through the flagellum-specific type
III export apparatus, leading to the induction of fliA gene
transcription [37-39]. SpiC is reported to be required for
secretion of some virulence factors from the cytoplasm
using the SPI-2 TTSS [10,11], although the molecular
mechanism is not known. Several genes encoding the SPI-
2 TTSS and the flagellum-specific type III export system
show sequence similarities [18,40]. Therefore, in addition
to its role in SPI-2 TTSS, SpiC might participate in the
export of FlgM proteins from the cytoplasm via the type III
flagellar protein export system. To examine this possibil-
ity, cell lysates were prepared and the level of intracellular
FlgM was assessed using Western blot with anti-FlgM anti-
body. Western blot analysis showed that the level of FlgM
in the wild-type cell was higher than that in the spiC
mutant (data not shown), indicating that a decrease in
class 3 genes expression in the spiC mutant is due to an
FlgM-independent mechanism.

In subsequent studies, we measured the expression level
of the fliA gene by fusing the transcription regulatory

Transmission electron micrographs and motility assays of wild-type Salmonella and mutant Salmonella strainsFigure 3
Transmission electron micrographs and motility 
assays of wild-type Salmonella and mutant Salmonella 
strains. A, wild-type Salmonella; B, spiC mutant strain; C, spiC 
mutant strain carrying pEG9127; D, spiR mutant strain; and E, 
ssaV mutant strain. The spiC mutant had no flagella or only a 
single flagellum, and the defective formation of flagella fila-
ments in the spiC mutant could be restored to the wild-type 
phenotype by introducing pEG9127 into the spiC mutant. 
Bars represent 2 μm. (F) Motility assay of the wild-type Sal-
monella and mutant Salmonella strains. 1, wild-type Salmonella; 
2, spiC mutant strain; 3, spiC mutant strain carrying pEG9127; 
4, spiR mutant strain; 5, ssaV mutant strain; and 6, flhD mutant 
strain. Bacteria were inoculated on a semisolid LB plate con-
taining 0.25% agar and incubated for 5 h at 37°C. The wild-
type strain, the complemented spiC mutant, and the ssaV 
mutant made large swarming rings, but the spiC and spiR 
mutants had weak swarming abilities.
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region of fliA to lacZ in pRL124, as described in the Mate-
rials and Methods (Fig. 4A), and quantitatively measured
the expression level using RT-PCR (Fig. 4B). The expres-
sion level of the fliA gene in the spiC mutant was greatly
reduced compared to the wild-type strain. In addition to
the fliA gene, we further investigated the influence of SpiC
on the expression of the class 2 flgB and fliF genes [17]. As
shown in Fig. 4C and 4D, quantitative RT-PCR analysis
showed that the transcript levels of the flgB and fliF genes
in the spiC mutant were reduced approximately 7-fold and
3-fold in comparison to the wild-type strain, respectively.
These results indicate that SpiC affects the regulation of
class 2 genes transcription, and suggest the involvement of
SpiC in the expression of the class 1 flhDC gene, which
functions as the master regulator in flagellar genes expres-
sion [17].

SpiC is required for the post-transcriptional expression of 
the master regulator, FlhDC
The class 1 genes products FlhD and FlhC form a heterote-
tramer that activates the σ70 promoter in the class 2 genes
by interacting with the RNA polymerase α subunit
[41,42]. flhDC expression is influenced at the transcrip-
tion or post-transcription level by a number of global reg-
ulatory factors. For example, cyclic AMP-CRP [43-46], H-
NS [46,47], QseBC [48], CsrA [49], and the heat shock-
induced chaperones, DnaK, DnaJ, and GrpE [50], func-
tion as positive regulators, while negative regulation is
mediated by OmpR [51], RcsCDB [52], LrhA [53], and
ClpXP [54].

Because SpiC was found to affect the expression of the
class 2 genes including the fliA gene, we examined the
involvement of SpiC in the flhDC operon expression using
an flhDC-lacZ fusion (Fig. 5A), and measured the level
using quantitative RT-PCR (Fig. 5B). Although the spiC
mutant showed a slight reduction in flhD expression com-
pared to the wild-type strain, no significant difference in
the flhD expression level was observed between the wild-
type strain and the spiC mutant. Reports show that the
flhD expression level is reduced approximately 2- to 3-fold
by mutation to the regulatory genes affecting the flhD
expression at the transcription level [46,48,51,53].
Together with these findings, we concluded that the
reduced level of the class 2 gene expression in the spiC
mutant is not dependent on flhDC transcription. To inves-
tigate whether SpiC participates in flhD expression at the
post-transcription level, we performed Western blot anal-
ysis with anti-FlhD peptide antibody. Although the detec-
tion level of FlhD was low, we found significant
differences between the wild-type strain and the spiC
mutant (Fig. 5C and 5D). The absence of spiC led to the
reduced expression of the FlhD protein, indicating that
SpiC is involved in flhD expression at the post-transcrip-
tion level.

Although the molecular mechanism by which SpiC con-
tributes to the post-transcription regulation of the flhD
expression remains unknown, it is thought that SpiC
directly or indirectly participates in either flhD translation
or in the stability of the FlhD protein. Almost all of the
positive regulators that involved in flhDC expression reg-
ulate their expression at the transcription level [45-47,50],
while CsrA, a RNA-binding protein, stimulates flhDC
expression using a post-transcription mechanism [49].
CsrA is thought to allow flhDC translation by binding to
the 5' segment of the flhDC mRNA and stabilizing its
mRNA. The Csr system consists of CsrA and the two small
regulatory RNAs, csrB and csrC. The activity of CsrA is
reported to be antagonized by csrB and csrC RNAs [55]

Expression of the class 2 genes in the spiC mutantFigure 4
Expression of the class 2 genes in the spiC mutant. (A) 
β-galactosidase activity from fliA-lacZ transcription fusion 
expressed by wild-type Salmonella (WT) and spiC mutant 
strain grown in LB to an OD600 of 1.6. β-galactosidase activity 
is expressed in Miller units. WT (pRL124) carries the vector 
with the promoterless lacZ. Quantitative analysis of fliA (B), 
flgB (C), or fliF (D) mRNA expression. Bacteria were cul-
tured in LB, and the total RNA was extracted from the wild-
type Salmonella, spiC mutant strain, or spiC mutant strain car-
rying pEG9127 (spiC+) when the OD600 was 1.6. Quantitative 
RT-PCR was conducted using a TaqMan probe. Levels of 
each mRNA were normalized to the 16S rRNA concentra-
tion, and the results are shown relative to the expression in 
the wild-type strain. The expression levels of the fliA, flgB, or 
fliF gene in the spiC mutant were greatly reduced compared 
to the wild-type strain.
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where gene expression is controlled by the BarA/SirA two-
component regulatory system that is involved in the
expression of SPI-1-encoded genes [56-58]. One hypothe-
sis is that SpiC affects FlhDC expression via a Csr post-
transcription regulatory system. Therefore, we investi-
gated the effect of SpiC on csrB and csrC expression using
quantitative RT-PCR. However, no differences in the
expression levels of these genes were observed between
the wild-type strain and the spiC mutant (data not
shown). More research is required to clarify the molecular

mechanism in how SpiC regulates the post-transcriptional
expression of the flhDC.

We next examined the expression of FlhD at bacterial
growth phase of OD600 of 0.7 in LB, because the spiC
expression is induced at over an OD600 of 1.5 when the
bacteria are grown in LB. However, the expression level of
FlhD in the spiC mutant was reduced compared to the
wild-type strain even in the exponential growth phase
(data not shown), indicating that the FlhD expression is
not strictly growth phase-dependent. We cannot explain
this phenomenon until the mechanism by which SpiC
regulates the post-transcriptional expression of the flhDC
or the molecular mechanism of SpiC become clear.

As described above, the BarA/SirA system is involved in
not only the flagella gene expression but also the SPI-1
gene expression. Phosphorylated SirA directly interacts
with promoters of the hilA and hilC genes that are the SPI-
1-encoded transcription regulator genes [58]. HilA, a
member of the OmpR/ToxR family, directly activates tran-
scription of the inv/spa and prg/org promoters on SPI-1
[59]. In addition to the BarA/SirA system, the AraC-like
regulator RitA directly controls the hilA expression leading
to SPI-1 gene expression, while RitB, a helix-turn-helix
DNA binding protein, negatively regulates the expression
of the flhDC [60]. Reports also show that the ATP-depend-
ent ClpXP protease negatively regulates the expression of
flagella and SPI-1 gene [54,61]. Interestingly, mutation in
the SPI-2 genes also affects the expression of the SPI-1
gene [62]. And thus many reports show the relationship of
flagella synthesis and SPI-1 gene expression.

Our recent studies show that the SpiC-dependent expres-
sion of FliC plays a significant role in activation of the sig-
naling pathways leading to the induction of SOCS-3,
which is involved in the inhibition of cytokine signaling,
in Salmonella-infected macrophages [16]. Lyons et al. [63]
also reported that infection of polarized epithelial cells by
Salmonella leads to IL-8 expression by causing the SPI-2-
dependent translocation of flagellin to a basolateral mem-
brane domain expressing TLR5. Together with our previ-
ous results, these findings suggest the involvement of FliC
in SPI-2-dependent events in the pathogenesis of Salmo-
nella infection.

Conclusion
In conclusion, here we show that SpiC encoded within
SPI-2 is required for flagella assembly in S. enterica serovar
Typhimurium. We concluded that the mechanism is due
to the involvement of SpiC in the post-transcriptional
expression of FlhDC. The data indicate the possibility that
SPI-2 plays a role in Salmonella virulence by making use of
the flagellar system.

Effect of the spiC mutation on flhDC expressionFigure 5
Effect of the spiC mutation on flhDC expression. (A) 
β-galactosidase activity from flhD-lacZ transcriptional fusion 
expressed by wild-type Salmonella (WT) and the spiC mutant 
strain grown in LB to an OD600 of 1.6. β-galactosidase activity 
is expressed in Miller units. WT (pRL124) carries the vector 
with the promoterless lacZ. (B) Quantitative analysis of flhD 
mRNA expression. Bacteria were cultured in LB, and the 
total RNA was extracted from the wild-type Salmonella 
(WT), spiC mutant strain, or spiC mutant strain carrying 
pEG9127 (spiC+) when the culture OD600 was 1.6. Levels of 
flhD mRNA were normalized to the 16S rRNA concentra-
tion, and the results are shown relative to the expression in 
the wild-type strain. In both assays, no significant difference 
in the expression levels of the flhD gene was observed 
between the wild-type strain and the spiC mutant. (C) West-
ern blot analysis of FlhD expression. Whole-cell lysates from 
the wild-type Salmonella (WT), spiC mutant strain, or flhD 
mutant strain were prepared and were analyzed using West-
ern blot with an anti-FlhD peptide antibody or an anti-DnaK 
specific antibody. The black arrowhead indicates FlhD pro-
tein. Molecular masses are indicated on the left. (D) Densito-
metric analysis of the amount of FlhD normalized to the 
amount of DnaK, a bacterial heat shock protein, in the same 
samples. The spiC mutant showed a reduced expression level 
in FlhD protein compared to the wild-type strain. *P < 0.001, 
significantly different from the wild-type strain.
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Methods
Bacterial strains, plasmids, and growth conditions
The bacterial strains used in this study were derived from
the wild-type S. enterica serovar Typhimurium strain
14028s. The spiC::kan derivative EG10128 was described
by Uchiya et al. [7]. The deletion mutant in the flhD gene
was constructed using the Red recombination system
[64]. To delete the flhD or spiC gene, a kanamycin resist-
ance gene flanked by FLP recognition target sites from
plasmid pKD4 was amplified using PCR with primer
regions homologous to the flhD gene (5'-TGCGGC
TACGTCGCACAAAAATAAAGTTGGTTATTCTGGATG GG
AGTGTAGGCTGGAGCTGCTTC-3' and 5'-CG CGA
GCTTCCTGAACAATGCTTTTTTCACTCATTATCAT-
GCCCT CA TATGAATATCCTCCTTAGT-3') or the spiC
gene (5'-TTGTGA GCGAATTTGATAGAAACTCCCATT-
TATGTC TG AGGAGGGGTGTAGGCTGGAGCTGCTTC-3'
and 5'-AG ATTAAACGTTTATTTACTACCATTTTATAC-
CCCACCC GA ATAACATATGAATATCCTCCTTAGT-3').
Kanamycin-resistant strains were obtained by transform-
ing the PCR products into strain 14028s harboring λ Red
recombinase on the plasmid pKD46. Disruption of the
flhD or spiC gene was confirmed using PCR with flhD or
spiC gene-specific primers. The kanamycin resistance gene
was then removed by transforming the strain with plas-
mid pCP20 that expresses FLP recombinase, resulting in
an in-frame deletion of the flhD or spiC gene. Plasmid
pEG9127 is a derivative of pBAC108L containing the
cloned spiC gene [7]. The bacteria were grown at 37°C in
Luria broth (LB). Kanamycin was used at 50 μg/ml.

RNA preparation and primer extension analysis
Bacteria were grown in LB. When the OD600 reached 0.3,
0.7, 1.1, and 1.5, the total RNA was isolated using an RNe-
asy kit (Qiagen, Hilden, Germany) in accordance with the
manufacturer's protocol. The RNA (50 μg) was mixed
with 32P-end-labeled synthetic oligonucleotide (5'-
GCAGGATGCCCATCAATAGTCATT-3'), and 50 units of
SuperScript II reverse transcriptase (Invitrogen, Carlsbad,
CA) was added to 30-μl reaction mixtures containing 1
mM of deoxynucleoide triphosphates, 5 mM dithiothrei-
tol, and 1 unit of RNasin/μl. The reaction was performed
at 42°C for 1 h. The extension products were analyzed
using electrophoresis on a 6% polyacrylamide-7 M urea
gel and compared to sequence ladders initiated with the
same primer.

Quantitative RT-PCR
Bacteria were grown in LB, and the total RNA was isolated
when the OD600 reached 1.6. The isolated RNA was
treated with DNase I (Invitrogen) to remove contaminat-
ing DNA, and 2 μg of RNA was reverse-transcribed using
SuperScript II reverse transcriptase with random primers.
Real-time PCRs were performed in a 50-μl reaction mix-
ture containing 1 μl cDNA, 0.9 μM each primer, 0.25 μM

each fluorescent probe, and TaqMan Universal Master Mix
(Applied Biosystems, Foster City, CA). Amplification was
performed in 96-well optical plates using the 7300 Real-
Time PCR System (Applied Biosystems) with an initial
incubation of 2 min at 50°C; followed by 10 min at 95°C;
and then 40 cycles: 95°C for 15 s and 60°C for 1 min. The
housekeeping gene 16S ribosomal RNA (rRNA) was used
as an internal standard for quantification of the total RNA.
The primer pairs and fluorescent probes were designed
using Primer Express Software ver. 3.0 and were synthe-
sized by Applied Biosystems. The specific fluorescent
probes were labeled at the 5'-end with the reporter dye 6-
carboxyfluorescein (FAM). The sequences of the primer-
probe combinations are shown in Table 1. Threshold
cycle values were calculated from the amplification plots,
and the amount of each gene expression was determined
relative to the level of the gene expression in wild-type Sal-
monella after both values were normalized to the 16S
rRNA levels. Each sample was analyzed in triplicate.

Preparation of whole-cell proteins
An overnight culture in LB was inoculated into 15 ml of
fresh LB at a 1:100 dilution. The cultures were grown at
37°C with mild aeration to an OD600 of 1.6 (the spiC-
inducing condition). After a 1-ml sample of the culture
was centrifuged at 18,500 × g for 15 min, the bacterial pel-
let suspended in 1 ml of cold water was mixed with
trichloroacetic acid (final concentration 6%), placed on
ice for 30 min, and centrifuged at 14,000 × g for 20 min.
After drying, the pellets were dissolved in 100 μl of

Table 1: Oligonucleotide primers and fluorescent probes used in 
RT-PCR

Target gene Nucleotide sequence (5'-3')

fliD CGCGAAGCTGAACGTAAACG
GCGTCGGTTACGGTATTGC
6-FAM-TCTGACGCTCAATGTC

motA GCTTTCATGGGTTTCAATCTCTTCA
CAGCGGCAACATGAATACGTT
6-FAM-TCAACGCTTCAATTTC

fliA TCGATGCTATCGCCATGCT
TTGCGGAGTATCGTCAGATGTT
6-FAM-CGCCACTCATCGTAAGA

fliF GCAGACGGAAGAGCACTACAG
GCCTACCTGTTCGCTAATATTCAAC
6-FAM-TCGAAGGCCACTCTGC

flgB CGTCGCGTTAACGTTGACTTC
TCCACTGCGGGAGAAGAGA
6-FAM-CTCTCACCATATTCCC

flhD TGATGATCGTCAAACCGGAAA
TGCCGCAGATGGTCAAACTG
6-FAM-AACTAACTGGTTCGTCTCC

16S rRNA AGATGGGATTAGCTTGTTGGTGA
GTAACGTCAATGCTGCGGTTA
6-FAM-CCACAACACCTTCCTC

Fluorescent probes are shown in italic.
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sodium dodecyl sulfate (SDS)-sample buffer and boiled
for 5 min.

Construction of the fliA or flhD-lacZ fusion on a plasmid
To construct the transcriptional fusion of the fliA or flhD
promoter region to the promoterless lacZ gene using the
promoter-probe vector pRL124 [65], a 0.51-kbp DNA
fragment containing the fliA promoter region or a 0.73-
kbp DNA fragment containing the flhD promoter region
were amplified using PCR with the following primers: for
fliA, 5'-ACGCGTCGACTATGCGCCTGTTAGGGCGCG-3'
and 5'-CGGGGTACCCACCCAATCGCGGCTGCGTA-3';
and for flhD, 5'-ACGCGTCGACGCCACATTAATGTGAAG-
GAC-3' and 5'-CGGGGTACCCGGATGTATGCATTGT-
TCCC-3'. The PCR products digested with Sal1 and Kpn1
were ligated into the same site in pRL124, producing pRL-
fliA and -flhD.

-Galactosidase assay
Bacteria were grown overnight in LB at 37°C and diluted
to 1:100 in fresh LB and grown with aeration to an OD600
of 1.6. β-galactosidase activity was measured using the
substrate o-nitrophenyl β-D-galactoside as described else-
where [66]. Each sample was assayed in triplicate.

Transmission electron microscopy
Bacterial cells grown in LB for 20 h at 37°C without shak-
ing were deposited on carbon-film grids, partially dried,
and stained with 2.0% uranyl acetate. The negatively
stained samples were observed using a 2000EX electron
microscope (JEOL) at an acceleration voltage of 100 kV.

Western Blot Analysis
Whole-cell proteins (150 μg) from bacteria were fraction-
ated in 16% Tricine-SDS-polyacrylamide gel, electro-
phoresed, and then electrotransferred onto a
polyvinylidene difluoride membrane (Millipore, Bedford,
MA) as described previously [14]. The bands were
detected using the ECL plus Western blot detection system
(GE Healthcare, Little Chalfont, UK) according to the
manufacture's instructions. The peptide fragment,
DHQTITRLTQDSRV, from the FlhD polypeptide was syn-
thesized and an antiserum specific for the oligopeptide
was obtained by immunization of rabbits with the pep-
tide coupled to keyhole limpet hemocyanin using benzi-
dine. The resulting anti-FlhD peptide antibody was used
at a dilution of 1:300. DnaK was detected with a 1:1000
dilution of anti-DnaK antibody (Assay designs, Ann
Arbor, MI). Bands were analyzed using a GS-800 cali-
brated densitometer (Bio-Rad).

Statistical analysis
Each experiment was performed at least three times. The
results are expressed as means ± the standard deviations.
The data were analyzed using analysis of variance with the

Dunnett's test. A value of p < 0.05 was considered statisti-
cally significant.
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