
     315Dixon L, et al. Stroke & Vascular Neurology 2020;5:e000652. doi:10.1136/svn-2020-000652

Open access�

Cerebral microhaemorrhage in 
COVID-19: a critical illness 
related phenomenon?
Luke Dixon  ‍ ‍ ,1 Cillian McNamara,1 Pritika Gaur,1 Dermot Mallon,1 
Christopher Coughlan,2 Francesca Tona,1 Wajanat Jan,1 Mark Wilson,3 
Brynmor Jones1

1Department of Neuroradiology, 
Imperial College Healthcare NHS 
Trust, London, UK
2Department of Cardiac 
Intensive Care, Imperial College 
Healthcare NHS Trust, London, 
UK
3Department of Neurosurgery, 
Imperial College Healthcare NHS 
Trust, London, UK

Correspondence to
Dr Luke Dixon;  
​Luke.​dixon03@​ic.​ac.​uk

To cite: Dixon L, McNamara C, 
Gaur P, et al. Cerebral 
microhaemorrhage in 
COVID-19: a critical illness 
related phenomenon?. Stroke 
& Vascular Neurology 2020;5: 
e000652. doi:10.1136/svn-
2020-000652

Received 28 September 2020
Revised 8 October 2020
Accepted 24 October 2020
Published Online First 
18 November 2020

Original research

© Author(s) (or their 
employer(s)) 2020. Re-use 
permitted under CC BY. 
Published by BMJ.

ABSTRACT
Background  Cerebral microhaemorrhages are 
increasingly being recognised as a complication of 
COVID-19. This observational retrospective study aims 
to further investigate the potential pathophysiology 
through assessing the pattern of microhaemorrhage and 
clinical characteristics of patients with COVID-19 and 
microhaemorrhage. By comparing with similar patterns 
of microhaemorrhage in other non-COVID-19 disease, 
this study aims to propose possible common pathogenic 
mechanisms.
Methods  A retrospective observational case series 
was performed identifying all patients with COVID-19 
complicated by cerebral microhaemorrhage on MRI. The 
distribution and number of microhaemorrhages were 
recorded using the microbleed anatomical scale, and 
patients’ baseline characteristics and salient test results 
were also recorded.
Results  Cerebral microhaemorrhages were noted to have 
a predilection for the corpus callosum, the juxtacortical 
white matter and brainstem. All patients had a preceding 
period of critical illness with respiratory failure and 
severe hypoxia necessitating intubation and mechanical 
ventilation.
Discussion  This study demonstrates a pattern of cerebral 
microhaemorrhage that is similar to the pattern reported 
in patients with non-COVID-19 related critical illness and 
other causes of severe hypoxia. This raises questions 
regarding whether microhaemorrhage occurs from 
endothelial dysfunction due the direct effect of SARS-
CoV-2 infection or from the secondary effects of critical 
illness and hypoxia.

INTRODUCTION
Numerous reports have highlighted different 
neurological complications of COVID-19, 
including cerebrovascular disease, enceph-
alopathy and peripheral neuropathy.1–4 The 
pathogenesis of these varied presentations 
is unknown. It remains to be seen whether 
neurological disease in COVID-19 is directly 
caused by SARS-CoV-2 infection, indirect as 
a sequala of critical illness or entirely coinci-
dental.5 6

White matter microhaemorrhage (MH) has 
been reported as a radiological presentation 
in COVID-19.4 Cerebral MHs detected on 

susceptibility-weighted MRI are a radiolog-
ical–pathological correlate of tiny focal bleeds 
in the brain that occur due to transient focal 
disruptions in the blood–brain barrier.7 Many 
different disease processes can lead to MH 
often with distinctive distributions.8 Here we 
report the clinical characteristics and radio-
logical pattern of MH in a series of patients 
with severe COVID-19 and draw comparisons 
with previous studies to cast light on potential 
pathophysiological mechanisms.

METHODS
This retrospective observational case series 
was approved by local ethics review. Patient 
data were anonymised at the point of analysis, 
and the need for informed consent was waived. 
Patients who underwent brain MRI between 1 
April 2020 and 1 June 2020 with a confirmed 
diagnosis of SARS-CoV-2 infection (on reverse 
transcriptase PCR assay of an airway tract 
sample) were identified using searches of elec-
tronic health records at a university-affiliated 
hospital. MRI examinations were performed 
according to a routine brain protocol, which 
included a susceptibility-weighted sequence. 
The susceptibility-weighted sequence tech-
nique varied across scanners. Two radiolo-
gists collectively reviewed the imaging, and 
a third radiologist reviewed the cases inde-
pendently. If there was disagreement, cases 
were reviewed jointly for consensus opinion. 
Patients were included in the case series if 
they had tested positive for SARS-CoV-2 prior 
to the MRI and had MH on their MRI, which 
was separate to other CNS pathology such as 
ischaemic stroke. The location and volume of 
MH was scored according to the microbleed 
anatomical scale (modified to also include the 
middle cerebellar peduncles) and manually 
mapped to a simplified brain diagram. These 
diagrams were used to generate a heatmap of 
composite MH distribution across all patients, 
as described elsewhere.9 The MH heatmap 
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was generated using Heatmapper, an R-based online 
tool.10 The presence of T2-weighted signal abnormality 
and restricted diffusion was also recorded. We reviewed 
the electronic health records of all patients included in 
the case series and extracted salient laboratory results and 
investigations.

RESULTS
We identified 30 MR brain scans performed on 28 adult 
patients with confirmed COVID-19 between 1 April and 
1 June 2020. Of these, 10 patients were noted to have 
MH distinct from other central nervous system (CNS) 
pathology.

Radiology
MRI was of diagnostic quality in 9 of the 10 patients. In 
one patient, imaging was degraded by motion artefact, 
and therefore, MH could not be quantified accurately. 
All 10 patients demonstrated MH in the corpus callosum 
with a predilection for the splenium. In the nine MRIs 
included in the quantitative assessment (table  1), the 
median number of MH was 35 (range 16–270). In addi-
tion to the corpus callosum, MHs were predominantly 
in the juxtacortical and subcortical white matter of both 
cerebral hemispheres, particularly the parietal lobes, and 
in the cerebellum and brainstem. Figure 1 demonstrates 

example images, and figure  2 shows a heatmap of MH 
distribution across all nine scored patients. We observed 
abnormal areas of high T2-weighted signal in the supraten-
torial white matter in two scans, and one MRI also showed 
separate macroscopic haemorrhages in the occipital and 
parietal lobes. No MRI demonstrated restricted diffusion. 
No repeat follow-up imaging had been performed at the 
time of publication.

Clinical
Patient clinical features are summarised in table 2. Median 
age was 56 years (range, 48–66 years), and eight patients 
were male. All patients required critical care admission 
for intubation and mechanical ventilation due to type 1 
respiratory failure (T1RF) from acute respiratory distress 
syndrome (ARDS), and all patients had recorded episodes 
of severe hypoxia and hypercapnia.

The median time to MRI scan was 37.5 days after admis-
sion (range: 24–59 days). Indications included altered 
mental state (6/10), weakness (1/10), seizure (1/10), 
tremors (1/10) and an abnormal brainstem pattern of 
ventilation (1/10). Seven out of 10 patients required 
haemodialysis or haemofiltration for acute kidney injury. 
One patient needed extracorporeal membrane oxygen-
ation (ECMO) for refractory T1RF. All patients received 
antithrombotic therapy with heparinisation.

Table 1  Microhaemorrhage score and additional imaging findings for each patient (1–10)

1 2 3 4 5 6 7 8 9 10 Median

Brainstem 5 5 5 7 0 1 – 0 4 0 4.00

Cerebellum 1 2 2 19 4 3 – 0 0 2 2.00

Middle cerebellar peduncle 0 4 3 7 0 0 – 0 0 0 0.00

Basal ganglia 0 2 3 5 2 0 – 0 1 1 1.00

Thalamus 0 0 0 1 0 0 – 0 0 0 0.00

Internal capsule 1 2 0 19 2 2 – 0 6 0 2.00

External capsule 0 9 0 7 0 0 – 0 2 0 0.00

Corpus callosum 17 2 12 52 5 4 – 1 15 14 12.00

 � Genu 5 16 1 7 1 0 – 0 7 2 2.00

 � Body 0 2 1 8 0 1 – 1 0 0 1.00

 � Splenium 12 4 10 37 4 3 – 0 8 12 8.00

Deep periventricular white 
matter

0 10 0 20 0 5 – 2 0 0 0.00

Frontal 0 0 0 51 0 16 – 2 4 3 2.00

Parietal 0 18 0 35 4 7 – 2 6 9 6.00

Temporal 0 8 0 30 3 2 – 9 1 3 3.00

Occipital 0 4 0 16 1 4 – 0 0 3 1.00

Insula 0 4 0 1 0 0 – 0 0 0 0.00

T2 signal change No Yes No Yes No No No No No No

Restricted diffusion No No No No No No No No No No

Macroscopic haemorrhage No No No Yes No No No No No No

Total 24 70 25 270 21 44 – 16 39 35 35.00

Bold values refer to theareas with the greatest number of microhaemorrhages.
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Biochemistry and haematology
All patients had recorded periods of acidosis, raised 
lactate dehydrogenase, anaemia, lymphopaenia and 
neutrophilia. Nine of the 10 patients had episodes of 
acute kidney injury. All patients had raised CRP, ferritin 
and high D-dimer. Nine patients had high fibrinogen, and 
five patients had mildly prolonged prothrombin time.

Clinical outcome
All patients were alive at the time of this report, and all 
had been discharged from critical care. At the time of 
discharge abnormal laboratory findings had improved or 
normalised for all patients.

Summary of findings
We present a case series of 10 patients with COVID-19, 
abnormal neurology and a common distribution of white 
matter MHs, with a predilection for the splenium of the 
corpus callosum. This pattern of MH is unusual and 
distinct from the typical MH distributions in other causes, 
in particular it would not fit diagnostic criteria for either 
hypertensive arteriopathy or amyloid angiopathy.7 8 This 
is the first series to specifically look at MH in COVID-
19, and it highlights several clinical features. First, the 
majority of patients were male (80%) and relatively young 
with a median age of 58 years (range 48–66 years). This 

is younger than the average age that MH is typically seen 
in the normal ageing population, 70–76 years.11 12 Second, 
half of the patients had at least one comorbidity including 
hypertension, chronic kidney disease and diabetes. This 
observation is expected; it is now well established that 
certain comorbidities are associated with a greater risk of 
respiratory failure, critical care admission and death.13 The 
presence of comorbidity was not however a decisive factor 
for MH as several patients had no significant prior medical 
history. Finally, the median interval from admission due 
to COVID-19 and neurological presentation and diag-
nosis of MH was 37 days. In all cases, there was preceding 
systemic inflammation and critical illness characterised 
by ARDS and respiratory failure that required intubation 
and mechanical ventilation. In all patients, there was also 
anaemia and in the majority acute kidney injury (90%). 
Our findings complement two recent case series that found 
the same MH pattern in a collective total of 16 patients with 
severe COVID-19. The patients described in these studies 
also required critical care due to ARDS and severe hypoxia 
and showed evidence of systemic inflammation, coagulop-
athy, anaemia and a degree of acute kidney injury.4 14 This 
final observation raises the question whether MH occurs 
as a direct consequence of SARS-CoV-2 infection or as an 
epiphenomenon of severe systemic illness.

Figure 1  Axial susceptibility-weighted MRI sequences of patient 4 (A–C) and patients 2 (D), 5 (E) and 10 (F). All demonstrating 
microhaemorrhages in the splenium of the corpus callosum and juxtacortical and subcortical white matter. Patients 4 (A–C) 
and 2 (D) also both exhibit microhaemorrhages in the internal capsule. The axial image of the posterior fossa in patient 4 (C) 
demonstrates further microhaemorrhages in the pons, middle cerebellar peduncles and cerebellum.
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DISCUSSION
Cerebral MH occurs secondary to endothelial dysfunc-
tion causing focal extravasation of red blood cells into 
the brain.7 9 In COVID-19, there are several different, 
potentially synergistic mechanisms that may lead to this 
cerebral endothelial dysfunction. Multisystem endotheli-
alopathy has emerged as a key feature of severe COVID-
19, with microthromboses and endothelial inflammation 
noted in the vessels of the lung, heart, kidneys, liver and 
small intestine.15 16 The cause of this endothelial inflam-
mation in COVID-19 remains unclear, with both direct 
viral infection and indirect inflammatory-mediated 
processes proposed.17 18 Direct binding of SARS-CoV-2 
to the endothelium via the putative ACE-2 receptor 
has been postulated as one cause. This is supported by 
a report that demonstrated possible viral elements in 
the endothelial cells of multiple organs and the obser-
vation that ACE-2 receptors are expressed in the brain 
in both the cerebral endothelium and non-vascular 

tissue including neuronal cell bodies.16 19 20 Whether 
SARS-CoV-2 directly invades vascular endothelium is 
however contentious and remains uncertain.21 Another 
proposed effect of ACE-2 receptor downregulation is 
disruption of the renin-angiotensin system causing cere-
brovascular dysautoregulation, altered cerebral perfusion 
and secondary endothelial dysfunction.22–24 The finding 
of altered cerebral perfusion in critically ill patients 
with COVID-19 adds weight to this theory, with fronto-
temporal hypoperfusion noted in a series of 11 patients 
on MR perfusion imaging.25 Interestingly, in a separate 
isolated case report parieto-occipital hyperperfusion was 
noted in a patient with COVID-19 and a similar pattern 
of callosal predominant MH.26 This overlaps with recent 
reports of COVID-19 related posterior reversible enceph-
alopathy syndrome (PRES).27 These early suggestions of 
posterior circulation hyperperfusion perhaps accounts 
for the splenial and posterior fossa distribution of MH in 
our series, although MH was not exclusively distributed 

Figure 2  Heatmap of microhaemorrhage density and distribution across all patients measured, based on manual labelling of 
microhaemorrhage locations on a simplified brain schematic.
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in the typical areas that PRES involves. Furthermore, 
although cerebrovascular dysautoregulation appears to 
be an important factor, there are several indirect causes 
of endothelialopathy and altered cerebral perfusion that 
need to be explored beyond direct effects of the virus. 
The role of systemic inflammation and hypoxia specifi-
cally warrant discussion.

Severe COVID-19 is associated with a hyperinflamma-
tory syndrome and cytokine storm, which itself is thought 
to mediate endothelial dysfunction and coagulopathy.28 
Circumstantial evidence for this in COVID-19 related 
MH is the common finding of systemic inflammation 
and coagulopathy in both ours and other cohorts. One 
possible explanation for the corpus callosal MH predi-
lection is that the corpus callosum, particularly the sple-
nium, has a relatively high concentration of cytokine and 
glutamate receptors that may confer greater sensitivity to 
these inflammatory factors.29 Interestingly, the same sple-
nial predominant pattern of MH was reported in a case 
series of 10 non-COVID-19 critically ill patients all with 
systemic inflammation, coagulopathy and high D-dimer. 
The authors suggested an association of endothelial 
dysfunction, DIC and thrombotic microangiopathy as a 
common potential cause of MH in critically ill patients.30 
In our study and across all similar COVID-19 case series 
published to date, there was evidence of coagulopathy, 
but no patients met international consensus criteria 
for overt DIC.4 14 31 This aligns with a recent study that 
suggests that COVID-19 coagulopathy is distinct from 
DIC.32 Of note, no patients in our series had macroscopic 
evidence of intracranial arterial or venous thrombosis, 
and only two patients had systemic evidence of venous 
thrombotic disease.

Comparison with other accepted causes of MH may 
also help illuminate pathogenesis. A similar distribution 
of MH has been described in mountaineers who develop 
high-altitude cerebral oedema (HACE) and in patients 
with non-COVID-19 related respiratory failure and critical 
illness.33–36 This shared pattern across COVID-related MH 
and these other disparate groups may suggest an under-
lying common pathogenesis. Exposure to severe hypoxia 
is universal in these otherwise distinct cohorts. The mean 
worst recorded hypoxaemia in our series was a partial 
pressure of oxygen (PaO2) of 6.8, which is equivalent to 
the PaO2 at an altitude of 5000 feet.37 The pathophysi-
ology of MH in hypoxia is not fully understood. HACE 
is thought to result from rapid ascent to high altitudes 
resulting in acute exposure to hypobaric hypoxia, which 
leads to disruption of the blood brain barrier, vasogenic 
oedema and leakage of blood products.38 Cerebral capil-
lary hypertension is a postulated cause for this and is 
thought to occur secondary to disturbances of cerebro-
vascular autoregulation and/or from impaired cerebral 
venous return, particularly in the context of hypoxia-
induced cerebral vasodilatation.34 38 39 The suggested role 
of venous hypertension in HACE may also be relevant in 
COVID-19 and other critical illness related MH. In these 
groups, there are potentially further causes of raised 

central venous pressure, including positive pressure venti-
lation, ECMO therapy and haemodialysis.35 The impact 
of these factors is uncertain; however, not all our patients 
(20%) required multiorgan support and our patient with 
the greatest burden of MH did not receive either haemo-
dialysis or ECMO. Interestingly, biochemical abnormal-
ities leading to increased vascular permeability are also 
thought to contribute to blood–brain barrier breakdown 
in patients with HACE and severe hypoxia. This includes 
hypoxia-induced release of vascular endothelial growth 
factor, reactive oxygen species and cytokines.37 40

Aside from pathogenesis, the long-term influence of 
COVID-19 related MH on cognitive, neurological and 
psychological outcomes are also unknown. In other 
diseases, MH has been independently associated with 
cognitive impairment and disability.41 In our series formal 
cognitive assessment had not yet been undertaken but 
several of the patients still reported ongoing issues with 
memory at discharge.

This study adds weight to previous work demonstrating 
a common but unusual pattern of cerebral MH in crit-
ically ill patients with COVID-19. As a small case series, 
there are however limitations. Patients were retrospec-
tively selected for the specific finding of MH creating a 
selection bias. Second, as imaging was performed as part 
of routine clinical care, MRI scans were performed at 
different time points within the patients clinical course. 
Resultantly, MRIs were likely performed several days to 
weeks after the neurological event as the neurological 
presentations were probably concealed by sedation and 
only apparent on weaning. Finally, there were differences 
in the susceptibility-weighted sequence employed that 
had different sensitivities to MH limiting comparison 
between patients.

CONCLUSION
In conclusion, we present further evidence of a distinc-
tive pattern of MH in COVID-19. Whether direct effects 
of SARS-CoV-2, systemic inflammation, coagulopathy or 
hypoxia mediate the MHs observed in COVID-19 remains 
unclear. The observation that the same pattern of MH is 
also seen in high altitude exposure and different types 
of critical illness perhaps implies that COVID-19 associ-
ated MH is a more phenomenon of hypoxia and critical 
illness as opposed to a unique feature of SARS-CoV-2 
infection. Various discussed mechanisms may contribute 
to a final common pathway of endothelial dysfunction 
and blood–brain barrier breakdown. Further larger series 
and prospective case–control studies are needed to better 
understand the pathogenesis of COVID-19 related MH. 
Long-term follow-up is also needed to assess the impact 
on cognitive and functional outcome.
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