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Abstract

Human language contains regular syntactic structures and grammatical patterns that should

be detectable in their co-occurence networks. However, most standard complex network

measures can hardly differentiate between co-occurence networks built from an empirical

corpus and a body of scrambled text. In this work, we employ a motif extraction procedure

to show that empirical networks have much greater motif densities. We demonstrate that

motifs function as efficient and effective shortcuts in language networks, potentially explain-

ing why we are able to generate and decipher language expressions so rapidly. Finally we

suggest a link between motifs and constructions in Construction Grammar as well as specu-

late on the mechanisms behind the emergence of constructions in the early stages of lan-

guage acquisition.

Introduction

The pioneering linguist de Saussure defined language as “a system of interdependent terms in

which the value of each term results solely from the simultaneous presence of the others” [1].

Under this definition, it becomes reasonable to employ the framework of complex networks in

linguistic studies. The network approach is especially appropriate in analyzing the complex

relationships among components in a complex system [2–4]. In the case of language, networks

relate words or other linguistic components within the context of semantic, syntactic, co-

occurring, or other types of relationships. Semantic networks have been shown to possess

small-world and scale-free properties [5, 6]. The syntactic relationship between linguistic com-

ponents has also been examined by building co-occurring word networks [7, 8] and with net-

works of syntactic dependencies [9, 10]. Such networks also display the same small-world and

scale-free properties.

The works cited above have largely concentrated on the macro-structural properties of lan-

guage networks. These global approaches, however, are unable to detect grammatical/syntactic

structures in the networks. For instance, it has been found that measures like mean path length

[11], mean degree [11, 12], and mean clustering coefficient [11, 12] are not significantly differ-

ent in syntactic networks and non-syntactic networks derived from scrambled text. In fact,
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Zipf’s Law, the scale-free distribution of word frequencies said to be responsible for the scale-

free topology of language networks, can be derived from various language models that do not

consider syntax at all [13–15]. An exception is noted in [12] which introduced a selectivity

measure that distinguished shuffled text from real ones. Given that the existence of grammati-

cal patterns is universal in all human languages, should these patterns manifest in localized

regularities in the language network as detectable micro-structures? If so, then the detection of

such micro-structures becomes a generalized process to characterize the grammar of any lan-

guage since the network approach is universal.

Ultimately, the macro and micro-structures of language exist to serve the purpose of effi-

cient communication. Human languages are vastly more complex than any other forms of

animal communication [16–19]. Tellingly, the vastness of the lexicon and the recursive appli-

cation of structural patterns allow language an almost infinite creative potential in producing

meaningful utterances [20, 21]. Despite the complexity and variety of language, the processes

of creating and understanding expressions are accomplished remarkably rapidly [7]. This effi-

ciency can be partially attributed to the small-world organization [22] in both semantic and

syntactic networks [5, 7, 23–25]. If detectable micro-structures reside within language net-

works, is it possible that they also play a role accelerating the speed of network access and

navigation?

In this work, we adopt an unsupervised learning algorithm developed by Solan et al. [26],

called the Motif EXtraction (MEX) algorithm that identifies micro-structures called motifs

from patterns in word-to-word networks of natural languages and other sequential data. The

MEX algorithm has been shown to be capable of learning syntax of both artificial and natural

languages. In the first instance, MEX extracted motifs from synthetic context-free grammar

corpora that correspond very closely to their underlying production rules [26]. In natural lan-

guage, the motifs learnt by MEX from the ATIS-2 English language corpus were used to gener-

ate novel sentences that were largely judged to be grammatical [26]. Here, we propose and

demonstrate that motifs extracted by MEX in language networks are not only objects to repre-

sent syntax but also serve as effective and efficient navigational shortcuts in the production

and deciphering of language. We also show that motif densities are drastically different

between real corpora and their non-syntactic (i.e. scrambled) equivalents, examine how struc-

tural properties of motifs evolve through different embedding levels, and speculate on how

these motifs arise during language acquisition.

Complex-network approaches to the study of languages

There is now a large body of work applying complex-network approaches to the study of lan-

guages. In this section, we will review how complex-network methods have been used to ana-

lyze the styles of different authors [27–29], analyze the multi-layer structure of languages [30–

32], identify documents with similar contents [33–35], and in doing scientific research, what

references should we consider and which are the most important ones [36].

In literary circles, it is common for an author to use a pen name instead of his or her real

name. Some authors even use multiple pen names, depending on which genres, or which age

groups of readers they are writing for. On the other hand, we can also have multiple for-hire

authors, writing different books of a series under the same pen name. Naturally, we expect the

habits of different authors to be different, and these would manifest themselves as different lit-

erary styles. To detect different writing styles, Segarra et al. constructed the network of function
words (also called stop words) [27]. The links between function words are weighted, to distin-

guish different separations between the function words, and also to allow these separations to

be averaged. Treating a weighted network as a Markov chain, and using the relative entropy as
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the distance between Markov chains, the weighted networks between different texts can then

be compared using hierarchical clustering. If there are not too many authors and styles, but

many texts for each style, the different styles (and hence authors) can be accurately identified.

In contrast, Amancio et al. removed stop words from a text to work only with semantically

meaningful words, which they further mapped to their singular and infinitive forms before

linking adjacent words to form a word-to-word network. They then combined network

features with linguistic features such as word frequency, intermittency, n-grams, and used

machine learning techniques to identify the authors of various texts with reasonable accuracy

[28, 29].

Whether written or spoken, we can break words down into alphabets or phonemes, which

are then aggregated into words, and in turn aggregated into phrases, sentences, and higher-

level organizations where syntax and semantics emerge. Therefore, we should think of a lan-

guage as multiple layers of linguistic entities interacting within layers and also between layers.

In Ref. [30], Liu and Cong investigated the differences and similarities between the semantic,

syntactic, co-occurrence, and phonemes layers of modern Chinese, while by comparing the

multilayer structures of Croatian and English [31, 32], Martinčić-Ipšić and her co-workers

found universal structural properties regardless of the language at the word-level layers,

whereas at the syllabic subword-level, there are more language-dependent structural

properties.

Going further, we might also wonder whether network-based approaches can help us get at

the meaning behind a text. Traditional ways to do this would be to automatically identify key-

words from a text, or to extract the list of n-grams from the text, so that to compare multiple

texts at the semantic level, all we need to do is to compare the lists of keywords or the lists of n-

grams. In fact, complex-network approaches can be used to discover the keywords [35]. To

disambiguate between words with different meanings, Silva and Amancio combined tradi-

tional classifiers like those mentioned above, and pattern-based network classifiers, to demon-

strate machine learning accuracies in excess of 70% [33]. Realizing that genre is frequently

correlated with style, which manifests itself in the structure of the text, Amancio and co-work-

ers used machine learning techniques to compute the semantic similarity between texts [34].

They found that topological measurements on the network in conjunction with semantic fea-

tures give the best performance.

Finally, using the semantic comparison methods they have developed, Amancio et al. tested

the idea of whether it is possible for researchers to do an automatic survey of the literature

using a prescribed set of keywords to discover a corpus of related papers. By incorporating

citation information for this set of papers, Amancio et al. were able to discover the subset of

papers which can be considered seminal or highly related [36].

Syntactic network of languages

There are two general approaches in constructing the syntactic networks of languages. The

first is with a syntactic dependency network [9, 10, 23] obtained usually from corpora that

have been manually annotated with dependency trees [37]. The second is through means of a

co-occurrence network [8, 11] which models the linear ordering of words (or other linguistic

units) [38] in a corpus. We focus on the latter technique because the former requires expert

guidance in generating the dependency trees whether it is done manually or automatically

(algorithms for parsing require supervised training data). Using dependency networks also

precludes the analysis of very large or new corpora, esoteric languages with no existing training

sets, as well as languages with unknown grammars.
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The most straightforward method of constructing co-occurrence networks is to simply

draw an edge (directed or undirected) for all pairs of neighbouring words (distance d = 1) in a

corpus. With this, we risk missing out on interactions that take place at longer distances (i.e.

d� 2). Fig 1A illustrates a co-occurrence network converted from a small toy corpus of the fol-

lowing 4 sentences:

Fig 1. Toy co-occurrence network and pseudograph. (A) shows the co-occurrence network based on Sentences 1 to

4. We draw a directed edge between all adjacent word pairs. The unrestricted path from elephants to equities is

highlighted in yellow. The unrestricted distance between the two words is 6. The pseudograph of the same toy corpus is

shown in (B). Each sentence is represented by a different colored path on the network. A restricted path from elephants
to equities does not exist. The box highlights the motif a lot of. It is marked by a fan-in of edges at the start (indicated by

the sharp drop in the leftward extension probability PL) and a fan-out at of (indicated by the sharp drop of the

rightward extension probability PR). A new node for the significant motif is created in (C) and the edges are routed

through it. (D) identifies an equivalence class within a window Lw = 4. An equivalence class ‘supernode’ will be created

and the edges are now routed through this new node. However, the unlike motif nodes, the new equivalence class node

does not reduce distances between the terminal word nodes that lie on either side of it.

https://doi.org/10.1371/journal.pone.0203025.g001
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1. Elephants drink a lot of water.

2. He owns a lot of risky equities.

3. The students have a lot of homework.

4. The baby cries a lot in the morning.

The simplicity of constructing co-occurrence networks means that it can be applied for any

language. Even artificial ones can be cast on a network as long as the language is tokenizable.

That is, the corpus can be split into tokens of linguistic units and expressed linearly with tokens

arranged one after another. However, keeping only short-range correlations while discarding

the long-range ones produces an over-generalized network. In the toy corpus, the words ele-
phants and equities do not appear in the same sentence nor should they do so in normal

English usage. Yet, in the network in Fig 1A, one can easily navigate along an unrestricted path

pur from elephants to equities and produce a grammatical but unlikely phrase elephants drink a
lot of risky equities. Clearly, not all possible paths in a co-occurrence network are accessed, or

even allowed, in regular language use. In the later sections of this paper, mentions of language/

linguistic networks will refer to such co-occurrence networks.

To overcome this over-generalization, Solan et al. [26] proposed a pseudograph which lim-

its the number of allowable paths in the network. Instead of having edges that merely join

pairs of words, edges in the pseudograph span multiple nodes (i.e. words). Multiple edges

between nodes and loops are also allowed. In [26], each edge in the pseudograph connects all

the words in a sentence in a linear order. Fig 1B shows the pseudograph of the same toy cor-

pus. Since allowable paths must trace the available edges, a restricted path pr (not to be con-

fused with the rightward extension probability PR) that leads from elephants to equities does

not exist. Although the pseudograph does not lend itself well to traditional complex network

analysis, the same work uses such a network to detect micro-structures called motifs. These

motifs appear as coherent bundles of edges spanning short sequences of words and are book-

ended at both ends with the convergence (fan-in) and divergence (fan-out) of edges. In the

example in Fig 1B, the sub-sequence a lot of represents such a motif. The procedure of motif

detection is described in detail in the methodology section. The motif is then embedded back

into the corpus as a single linguistic unit (i.e. a single node, see Fig 1C), acting essentially as a

shortcut by reducing network distances between words on opposite sides of the condensed

phrase. Here, let us note that the hierarchy of motif embedding is related, but not entirely simi-

lar to the multi-layer network representation of language discussed earlier [30–32].

The idea of using network representations to model language goes back a long way (e.g.

Jean Aitchison’s book on the mental lexicon [39]). With recent advances in network modelling

of human cognition, more and more is known about how word and syntactic structure are

stored and accessed in the human mind [40]. Although there is little direct evidence of lan-

guage networks, experiments have suggested that (i) degrees and local clustering coefficients

in phonetic language networks [40] influence speed and accuracy in aural word recognition

[41–43]; and that (ii) PageRank (a variant of network eigenvector centrality) of word nodes of

the semantic network is better than raw frequencies in predicting human performance in lan-

guage fluency tasks [44]. Moreover, it is thought that dependency crossings are minimized in

the sequential order of sentences to optimize cognitive efficiency [45, 46]. The combined find-

ings all indicate that networks can indeed be useful tools in modelling language processes in

the human mind.

It has also been suggested that generating and deciphering language can be usefully mod-

elled as navigation on language networks by means of various strategies [47] such as random
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walks [48], switching random walks [49], random walks with memory [50], and using ‘land-

marks’ with high network closeness centralities [51]. We further propose that linguistic net-

works contain shortcuts that optimizes their ease of navigation and access. The speed at which

humans process language leads us to believe that syntactic networks are not navigated at a

purely word-to-word level as this would entail longer path lengths (� 20 words, the average

length of a sentence) than can be stored in our much smaller working memories of 7 ± 2

objects [52, 53]. Shortcuts would allow us to traverse multiple nodes at a time, shortening the

effective path lengths and utilizing less cognitive effort. We will demonstrate in this paper that

the motifs detected are not just effective but also efficient network shortcuts.

Results

Motif detection in language networks

We applied the Motif EXtraction algorithm (MEX) [26] on three English corpora approxi-

mately 106 words in length. They are: i) the Uppsala Student English Corpus (USEC) (1007839

tokens, 22471 words, mean sentence length μsent = 19.6) [54] of essays collected from 1999 to

2001 from students at Uppsala University in Sweden taking English as a second language

which represents a learner’s corpus; ii) the Brown Corpus (BC) (988331 tokens, 41018 words,

μsent = 25.3) [55] which is compiled from samples of mainly professionally written American

English text complied in the 1960s to represent English usage at a high level of sophistication;

and iii) a single-author corpus (SAC) (757542 tokens, 14456 words, μsent = 19.2) of Jane Aus-

ten’s writings freely available from Project Gutenberg [56] to represent also high proficiency

but from a single user’s perspective. The drop threshold parameter is set η = 0.65 and the con-

text window length is Lw = 6 following [26] which selected these criteria based on the optimal

trade-off between precision and recall.

MEX found the greatest number of patterns/motifs and equivalence classes (collectively

termed objects) in the USEC. Fig 2A details the results. For example, at level 1, we detected

(6466 + 10191)/22471 = 0.74 as many objects as there were terminal words in the original cor-

pus (i.e. the motif density). It is followed closely by the SAC with 0.64 while the BC lags sub-

stantially with 0.16. We define corpus compression by measuring the change in the number

of tokens ΔNtoks remaining in the corpus at each embedding level. It is greatest for the USEC

which at level 5 contains 794922/1007839 = 0.79 as many tokens as it did at level 0 (i.e. the nor-

malized token count) and has a mean sentence length μsent = 15.4. The SAC and the BC follow

at 0.81 and 0.88 respectively. With other network measures (see Table 1), the BC also stands

out with its very low clustering coefficient C [22] and density ρ when compared to the other

two real corpora (1.1 vs. 3.1 and 4.4, all ×10−2).

We then tested MEX on artificially-generated corpora with little or no syntactic structures

of real language. In Fig 2B, the word order in each sentence of the USEC was shuffled to pro-

duce the shuffled corpus (USEC-S) and the POS-shuffled corpus (USEC-PS) was generated by

swapping words of the same Part-of-Speech (POS) category within the corpus. The POS cate-

gories for the USEC and SAC were created using a Maximum Entropy tagging algorithm

implemented through Python’s Natural Language Toolkit (NLTK) while the BC came with

the POS tags included. As expected, only a negligible number of objects were identified in the

scrambled corpora. The USEC-S and USEC-PS had motif densities of 0.01 and 0.05 respec-

tively compared to 0.74 of the original USEC at level 1 and at level 2, the ratios of objects

extracted from the USEC to its scrambled equivalents are even larger. However, we noted that

the scrambled corpora have remarkably higher C, ρ, and average degree hki (Table 1). The rela-

tively low ρ and hki in the USEC indicate selectivity in edge formation relative to scrambled

corpora. Edges are selective in the sense that some connections in the unscrambled network
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(e.g. to to the) are in fact accessed many times in the corpus and after scrambling, these words

become adjacent to a larger diversity of neighbours than they originally were.

The MEX algorithm identified motifs from overlaps in the word-to-word pseudograph. The

BC is purposefully curated to include a diverse range of genres, subjects, and authorship to rep-

resent a wide range of American English usage and thus likely contains only a small number of

overlaps in its network structure. Accordingly, the algorithm detected only a small number of

motifs in this corpus. The USEC and the SAC, on the contrary, have much greater overlap densi-

ties. The USEC is built from students’ essays written on a limited number of topics, with many

essays per topic, guaranteeing content overlap. The SAC, composed of only 8 books from Jane

Austen, contains both content and stylistic overlaps. It is apparent that selecting a corpus with

the appropriate overlap density is more crucial for MEX to detect motifs than it is to choose a

large corpus. The network measures C, ρ, hki, and assortativity r [57] proved to be unreliable in

determining whether the word-to-word network contains MEX-detectable syntactic regularities.

Fig 2. Results of MEX embedding. The bar graphs in the sub-plots show the motif densities (number of motifs divided by the number of original terminal words) and

the line plots chart decrease in the number of tokens Nk
toks=N

0
toks as more motifs are embedded in the network. (A) gives the results for the real corpora (USEC, SAC, and

BC) while (B), (C), and (D) show the difference between each real corpus, its shuffled equivalent and its POS-shuffled equivalent.

https://doi.org/10.1371/journal.pone.0203025.g002
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In real corpora, increases in C, ρ, and hki seem to correlate loosely with a larger motif density.

However, the correlation is completely reversed with the scrambled corpora in the sense that

they register hardly any objects in MEX despite possessing higher C, ρ, and hki. This agrees with

the results of [11] which found that hmin(dur)i, hki, and C are slightly, but not significantly,

higher for non-syntactic networks compared to their syntactic equivalents.

Network distances

Network distances will invariably shrink when a sequence of words is condensed into a single-

node shortcut as it does under MEX. We quantify the evolution of network distances under

MEX and compare it with an equal-cost null model (see methodology section) to demonstrate

that MEX motifs are efficient in shrinking network distances. We consider distances only

along paths pr already existing on the pseudograph (i.e. the restricted distances). The reason

is two-fold: i) as stated, many of the unrestricted paths are not accessed, or even allowed, in

regular language use and ii) as shown in Table 1, unrestricted distances hmin(dur)i are much

smaller (� 1/3) than the observed restricted distances hmin(dr)i in the network. This is effec-

tively what Margan et al. have found in Ref. [31].

The decrease of average mean network distances hmean(dr)i are charted in Fig 3A and

S2(A) and S2(B) Fig (see S2(C)–S2(E) Fig in for hmin(dr)i). At level 5, the maximal layer of

embedding, hmean(dr)i for the USEC, SAC, and BC are respectively 8.571/11.027 = 0.777,

16.637/20.696 = 0.804, and 9.936/11.481 = 0.865 of the values of hmean(dr)i at level 0 (i.e. the

normalized distances). These fractional reductions seem large, but to convince ourselves that

they are significant we need to compare them against the decrease of hmean(dr)i from null

models where the shortcuts are random, and thus meaningless. As we will explain the Methods

section, for a proper comparison between empirical distances and null-model distances, some-

thing must be kept constant. Since it is extremely difficult to keep the numbers of new nodes

and new edges constant, we constructed a family of null models where we can keep the total
cost of adding new nodes and new edges the same as for the empirical network. Regardless

of the node-formation cost ΓNode, the distances of the MEX-embedded networks are always

smaller than the null models (see Methods section). This is especially true when ΓNode of the

null models are set larger than 0.5. Null model distances shrink and approach the MEX results

when ΓNode< 0.5. For hmin(dr)i, null models with ΓNode< 0.5 sometimes even surpass MEX

in distance reduction (e.g. in SAC and BC). It is not trivial to determine which ΓNode yields the

most realistic null model. In this, one may be guided by empirically calculating the ratio of

Table 1. Table of network measures. The measurements are density ρ, average degree hki, clustering coefficient C, assortativity r, average minimum unrestricted distances

hmin(dur)i (i.e. distances along unrestricted paths as in Fig 1A), average minimum restricted distances hmin(dr)i, and average mean restricted distances hmean(dr)i (i.e. dis-

tances along restricted paths as in Fig 1B). For scrambled (appended with -S) and POS scrambled (appended with -PS) corpora, the values are given up to the precision not

affected by fluctuations in the random scrambling.

Corpus ρ × 104 hki C × 102 r hmin(dur)i hmin(dr)i hmean(dr)i

USEC 5.1 23.0 3.05 −0.21 3.08 8.97 11.03

SAC 9.7 28.1 4.41 −0.26 2.89 16.10 20.70

BC 2.3 19.2 1.10 −0.19 3.09 9.79 11.48

USEC-S 8.4 37.5 7.66 −0.24 2.96 8.37 10.57

USEC-PS 7.8 34.9 5.43 −0.24 2.85 8.71 10.62

SAC-S 15.2 44.1 9.34 −0.29 2.83 15.52 20.24

SAC-PS 13.8 40.0 7.20 −0.29 2.78 15.73 20.32

BC-S 3.2 25.9 2.73 −0.18 3.03 9.44 11.18

BC-PS 2.9 23.7 1.61 −0.20 2.98 9.99 11.48

https://doi.org/10.1371/journal.pone.0203025.t001
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new nodes to new edges created at each MEX level k and set GNodeNðV
ðkÞ
P Þ ¼ GEdgeNðE

ðkÞ
P Þ. This

assumes that equal cost is expanded in node and edge creation. This yields ΓNode between 0.82

to 0.97 which is well within the range where MEX shrinks the network more than the null

model in both hmean(dr)i and hmin(dr)i. The choice of ΓNode/ΓEdge> 0.5 can also be motivated

from neuropsychology—the creation of new memory that can be associated to previously

acquired knowledge (i.e. edges) requires less effort than remembering a new and isolated piece

of information (i.e. nodes) [58].

Taxonomy of MEX patterns

We also attempted to create a taxonomy of MEX-detected patterns. We use the POS tags

attached to each token to create POS templates of MEX patterns. For example, the phrase the
united states would have the template DT (Determiner) JJ (Adjective) NN (Noun) as would the

phrase a short man. Significant POS templates are singled out by how their standard scores (z-

score) measure against the null ensemble of patterns V ðkÞ�P . The most significant POS templates

at the first level is DT (Determiner) NN (Noun) IN (Preposition) (e.g. a lot of) with z = 56.75 and

frequency f = 371. The next is IN (Preposition) DT (Determiner) (e.g. in the) (see Table 2 for

results of the USEC and S1 and S2 Tables for the SAC and the BC). Additionally, the 6466

MEX pattern motifs at level 1 of the USEC can be represented by 1190 POS templates whereas

the null model required twice the number of template types (2290). The relatively small set of

POS templates used suggests that motifs at this level are in part characterized by a small class

of grammatical/syntactic regularities. Significant templates are also detected in G(2) such as

[[IN DT] JJ NN]. There are no significant (z> 3) POS templates beyond G(2).

Classification templates for patterns can also be constructed from stop words [59] which in

computational linguistics refer to very common closed-class words such as prepositions, con-

junctions, and pronouns with little semantic value. While the determination of POS tags

demands expert input, stop word templates can be constructed from a purely data-driven

approach. The list of stop words is not universal and varies among natural language processing

Fig 3. Shrinking distances in the USEC and ranked word frequencies. (A) show how hmean(dr)i decreases in the USEC and how it compares to null models set at

different cost parameters ΓNode. (B) shows relative the word frequencies f(r) against rank r and highlights the stop word cutoff in each corpus. The cutoffs mark sudden

drops in the ranked word frequencies.

https://doi.org/10.1371/journal.pone.0203025.g003

Functional shortcuts in language networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0203025 September 11, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0203025.g003
https://doi.org/10.1371/journal.pone.0203025


tools. We can, however, adopt an operational definition of stop words from empirical data. In

Fig 3B, we plotted the ranked relative word frequencies f(r) of each corpus on log-log plots and

observed that there are sudden drops in frequency after r = 8, 4, 6 for respectively the USEC,

SAC, and BC. This boundary marks a conservative rank cutoff rcutoff to define an operational

list of stop words for a particular corpus. It is entirely possible that stop words (in the closed-

class definition sense) exist beyond these cutoffs but are not reflected in the trend of the data

and thus cannot be unambiguously identified. For example, stop words like the and to are

common for all three corpora and others like is is USEC-specific.

We employ these stop words to construct the stop word templates. Stop word templates are

defined by replacing the non-stop words in a motif with a blank. For example, the stop word

template of the {reason, explanation} for is _ the _ for _ with the inclusion of blanks also at the

front and back. Of the 6466 MEX patterns at level 1 of the USEC, 4038 contain at least one

stop word in them and can be classified by a template (Table 2). At G(1) of the USEC, we find

significant templates in _ the _ of _ (e.g. the age of) (z = 39.77, f = 227) and _ a _ of _ (e.g. a lot
of) (z = 39.77, f = 227). Similar templates are also found in the other two corpora (see S1 and

S2 Tables). Beyond G(1), the significance and frequency of stop word templates fall drastically

with very few registering z> 3. This suggests that at G(> 1), motifs stop being organized around

these operational lists of stop words. We also observe that at the first level G(1), stop words

appear in MEX-detected motifs 58 to 83% more frequently than by chance (see S3 Table). The

trend is inverted at higher levels G(>1) as the rates of stop word usage decrease below that of

random noise (e.g. at level 2, 16 to 30% below null rate). Although, stop word templates cannot

classify patterns as precisely as POS templates (fewer possible template types), they are never-

theless a good unsupervised alternative.

Discussion

In linguistics, the theories of Construction Grammar (CxG) describe a family of grammar

models in which constructions are the basic units of grammar [61–63]. Constructions, in this

Table 2. Motif templates of the USEC. We present for levels 1 and 2 the top 3 ranked (in terms of Z-score) POS templates and stop word templates respectively. The Penn

Treebank [60] POS tags are used here. Beyond level 2, there were no regularly used templates. For each level, we also gave the number of template types used by the motifs

in the corpus and also the number of template types that appeared in randomly extracted motifs.

Rank Template Z F Example

Level 1 POS Templates: 6466 Motifs; 1190 Types; 2290 Null Types

1 [DT NN IN] 56.75 371 [a lot of]

2 [IN DT] 41.70 434 [in the]

3 [DT VBZ] 34.00 81 [this is]

Level 2 POS Templates: 1662 Motifs; 1312 Types; 1442 Null Types

1 [[IN DT] NN [IN DT]] 12.97 6 [[as a] {consequence, result} [of this]]

2 [[IN DT] JJ NN] 12.04 22 [[in the] first place]

3 [[IN DT] NN NN] 7.43 11 [[in the] right way]

Level 1 Stop Word Templates: 4038 Motifs; 83 Types; 98 Null Types

1 _ the _ of _ 39.77 227 [the age of]

2 _ a _ of _ 26.54 110 [a lot of]

3 _ the _ to _ 19.46 58 [the right to]

Level 2 Stop Word Templates: 353 Motifs; 24 Types; 38 Null Types

1 _ of _ to _ 7.88 3 [[in the] ages of {15, 16. . .} to]

2 _ of _ 3.81 47 [[as a] matter of fact]

3 _ to _ to _ 3.37 2 [to {quick, young} to]

https://doi.org/10.1371/journal.pone.0203025.t002
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framework, are pairings of form and function [62, 63]. Form refers to the morphological and

syntactic features of the construction while function specifies its semantic features [64]. Con-

sider the idiom kick the bucket [62]. One cannot derive its meaning by considering its syntax

(the ‘X does something to Y’ form) and its component words separately. In CxG, not only idio-

matic expressions, but all constructions are said to be form-function pairings. There is also “a

continuum from schematic complex constructions to substantive atomic constructions” [65].

Isolated words and complex grammatical arrangements are treated on equal footing in CxG.

One of the processes through which children acquire constructions is entrenchment [66].

Entrenchment is when a person performs a task successfully enough times, the way they per-

form this task becomes habitual and automatic. Similarly, MEX detect motifs in language

pseudographs by searching for repeated sub-sequences. They are reminiscent of constructions

in CxG. Take, for example, the generalized pattern [i {feel, think, believe} that] found in the

USEC. All three variants of the pattern are identical in their functions of expressing an opin-

ion. Even though it shares an identical form with a pattern like [i suggest that], MEX considers

them to be different entities due to their usage in different contexts. Such form-function pair-

ings in MEX motifs are features found also in CxG. Of course, it would be presumptuous to

claim that all motifs in MEX are constructions, or that all constructions in the corpus are

detectable with MEX. Nevertheless, MEX remains a useful tool to quickly and crudely process

a corpus for possible constructions.

Frequently used constructions become entrenched in the mental grammar [64]. These con-

structions become mental routines directly accessed without invoking higher schemas [64].

This is consistent with our earlier claim that the language network has to contain shortcuts to

account for how rapidly we navigate it. In MEX, significant motifs are similarly entrenched in

the network as condensed routines. As shown, motifs reduce observed network distances dr
effectively and efficiently. We believe that the creation of such shortcuts in the mental lexicon

comes at the expense of using more memory to store the new linguistic units and the new asso-

ciations that come with it. This cost, modelled in Γ, is offset by the reduction of network dis-

tances which we associate with an increase in language processing speed. Earlier, we alluded

to the usefulness of modelling language processes in the human mind as network processes.

Here, we suggest that these networks are not merely a simple matter of concatenating adjacent

words to form strings, but rather contain complex shortcut structures that can be deduced

from motif detection.

We can also speculate on the mechanisms that guide the formation of constructions by

investigating the properties of MEX motifs. We showed that incidence rates of stop words in

level-1 motifs are higher than expected from the frequencies of the stop words themselves. In

syntactic networks of natural languages, stop words are hubs owing to their high usage fre-

quency and their flexible combinatorial potential [24]. It has been shown that stop words only

become hubs in the syntax network of a child after the syntactic spurt [67] stage of language

acquisition [23]. If we assume that level-1 motifs correspond to constructions acquired in early

stages of language development, this study lends credence to our observation that stop words

are important building blocks of low-level motifs. Therefore, depending on the questions we

are interested in, we should not always remove stop words from our word co-occurrence net-

work (as is done, for example, in Refs. [28, 29]).

In linguistics, stop words fall under the category of function words [68] which can be prepo-

sitions, pronouns, auxiliary verbs, conjunctions, articles, or particles. Function words by them-

selves have little lexical meaning and, instead, serve to mediate and/or to emphasize the

interaction between words. We believe that function words arise necessarily out of cognitive

limitations. Before they undergo the syntactic spurt, toddlers have small one-word lexicons

[67] which can be easily searched through when producing or deciphering utterances. As the
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lexicons grow, and as the children start to produce 2-to-3 word phrases [67], the numbers of

possible expressions explode combinatorially. The same linear search strategy becomes too

slow for real-time linguistic interactions. Function words are constrained by the word category

preceding them and they in turn constrain the word category following them. For example, a

toddler may say ‘put table/bed/box’ to mean ‘put the toy on the table/bed’ or ‘in the box’. With

the introduction of a function word like on, after saying ‘put on’, it is much more probable to

produce table or bed than box. As such, the function word on reduces the search space of the

possible productions after it.

Methods

Motif EXtraction algorithm

The MEX (Motif EXtraction) algorithm was developed by Solan et al. [26] to automatically

extract patterns and syntax from language corpora. Consider a corpus of Nsents sentences of

varying lengths totaling Ntoks tokens made up of Nwords unique words. It is useful to visualize

this corpus as a pseudograph where each word is represented by a node and each sentence is a

directed edge or path going through multiple nodes. As described, motifs are coherent sub-

sequences of nodes where a number of edges bundle up and are bookended with fan-ins and

fan-outs of edges.

We define a path in this graph as (ei; ej) = (ei+1, ei+2,. . .,ej) where each ek represents some

word node wl. The extension probabilities of such a path are

PR ei; ej
� �

¼
‘ðei; ejÞ
‘ðei; ej� 1Þ

; j > i ð1Þ

and

PL ej; ei
� �

¼
‘ðei; ejÞ
‘ðeiþ1; ejÞ

; j > i: ð2Þ

The function ℓ(ei; ej) returns the number of edges that traverse the sequence (ei, ei+1,. . .,ej).
Therefore, the equation for PR(ei;ej) describes the probability that a sub-path (ei, ei+ 1,. . .,ej−1) is

found to extend rightward (or forward) to word ej. Similarly, PL(ej;ei) measures the leftward

(or backward) extension probability i.e. the probability that a sub-path (ei+1, ei+2,. . .,ej) is pre-

ceded by word ei. PR(ei;ei) = PL(ei;ei) is simply the occurrence probability of ei. As illustrated in

Fig 1B, the start and end of a significant motif are marked by sudden drops in their rightward

and leftward extension probabilities. There also is precedence of using such extension proba-

bilities to analyze transitions in phonological linguistic elements in [69, 70]. The drop ratios
are defined as

DR ei; ej
� �

¼
PRðei; ejÞ
PRðei; ej� 1Þ

; j > i ð3Þ

and

DL ej; ei
� �

¼
PLðej; eiÞ
PLðej; eiþ1Þ

; j > i: ð4Þ

When D< η, the drop threshold cutoff, we consider the sub-sequence a significant motif. A

new pattern node epatt = [ei+1, ei+2,. . .,ej] which contains the condensed sequence is created.

Paths that previously went through (ei+1, ei+ 2,. . .,ej) are now routed through the epatt pattern

‘supernode’ like in Fig 1C. When there are overlapping significant sub-sequences, we prioritize

Functional shortcuts in language networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0203025 September 11, 2018 12 / 18

https://doi.org/10.1371/journal.pone.0203025


the one with greater significance based on the smallest combined cumulative binomial proba-

bility Bcomb = BR + BL where

BRðei; ejÞ ¼
X‘ðei ;ejÞ

x¼0

Binomð‘ðei; ej� 1Þ; x; ZPðei; ej� 1ÞÞ; j > i ð5Þ

and

BLðej; eiÞ ¼
X‘ðej;eiÞ

x¼0

Binomð‘ðeiþ1; ejÞ; x; ZPðeiþ1; ejÞÞ; j > i ð6Þ

where

Binomðk; n; pÞ ¼
n
k

� �
pkð1 � pÞn� k: ð7Þ

Intuitively, low individual probabilities BR and BL mean that there are fewer extended sub-

sequences than expected and thus the drop ratios are more significant. MEX can also accom-

modate equivalence classes of linguistic units that share the same context. Fig 1D shows an

example of an equivalence class contained within a context window of length Lw = 4. The slot

for the equivalence class can exist at any position of a context window except at the edges. The

equivalence class is then merged into an equivalence class ‘supernode’. As seen, the equiva-

lence class node does not shrink distances in the network.

In our implementation of MEX, we consider the network formed from the original

corpus of terminal words to be the 0-th level graph with its collection of vertices and edges

(G(0) = (V(0), E(0))). From this, we scan the graph first for all possible level 1 equivalence classes

(i.e. the generalization step) and embed them to G(0), obtaining G(1)−OnlyEC. We then seek for

pattern candidates from all possible sub-sequences in G(1)−OnlyEC and rank the candidates by

Bcomb. The patterns are embedded into the network starting from the most significant and the

process is repeated until no more level-1 pattern vertices V ð1ÞP are found (i.e. the embedding

step). This culminates in the level 1 network G(1). This ordering of steps enables the equiva-

lence class detection and pattern detection procedures to bootstrap each other to create more

equivalence classes and pattern motifs. The algorithm then moves on to construct G(2) and so

on until no more new objects are identified. This recursive search creates a kind of hierarchy

in the embedding of motifs in the network where motifs at a higher embedding layer are com-

positions of lower-level motifs akin to hierarchies in syntactic structures [71]. For instance,

short sequences of words form simple noun-phrase or verb-phrase type motifs which are

assembled into complex sentence segments as a higher-level motif.

Equal-cost null model for network shortcuts

As we perform the MEX procedure on a linguistic network, we create motif ‘supernodes’ that

act as distance-reducing bridges (see Fig 1C where, for example, the distance from drink to

water was reduced from 4 to 2 with the creation of the [a lot of] shortcut). We believe that

there is a ‘cost’ involved in forming such shortcuts. To calculate this cost, recall that when we

derive the pseudograph G(k) from G(k−1) using MEX, NðV ðkÞP Þ number of motifs are found and

embedded into the G(k) pseudograph as shortcut ‘supernodes’. Concurrently, NðEðkÞP Þ edges are

also created to link these new nodes to existing ones. We hypothesize that these new network

objects are created in the mental lexicon at the cost of

GðGðkÞ;Gðk� 1ÞÞ ¼ GNodeNðV
ðkÞ
P Þ þ ð1 � GNodeÞNðE

ðkÞ
P Þ: ð8Þ
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where ΓNode and ΓEdge = 1−ΓNode, both in [0, 1], model the creation costs per node and per

edge respectively. Γ(G(k), G(k−1)) thus gives the total embedding cost when MEX is performed

on the G(k−1) network.

To determine if such MEX-detected shortcuts are in fact efficient in shrinking distances,

we compare them against a null model where shortcuts are randomly created. We start with

G(0)† = G(0), which is an instance of the null model of G(0). To obtain G(1)†, we keep selecting

random sub-sequences in the network to be condensed into shortcuts until Γ(G(k)†, G(k−1)†) =

Γ(G(k), G(k−1)) i.e. the total cost of creating the random shortcuts becomes equal to that of the

MEX shortcuts. The subsequent levels G(2)†, G(3)†, etc. are similarly derived from G(1)†, G(2)†,

etc.

Different G(k)† null models can be obtained by setting different values of ΓNode. When the

ratio ΓNode/(1−ΓNode) is high (ΓNode� 1 and ΓEdge� 0), the null model G(k)† will contain a sim-

ilar number of new shortcut nodes to the MEX-processed corpus (i.e. NðV ðkÞyP Þ � NðV ðkÞP Þ). In

this scenario, G(k)† has somewhat fewer new edges (i.e. NðEðkÞyP Þ < NðEðkÞP Þ) since the MEX cri-

teria implies that each new shortcut sub-sequence is traversed by more than one sentence path

(i.e. more than one edge incident on the new node) whereas the randomly created shortcuts

are often only used by a single sentence. Conversely, a low ΓNode/(1 − ΓNode) ratio results in a

G(k)† model where the total number of edges incident on the randomly created shortcuts is

similar to the original (NðEðkÞyP Þ � NðEðkÞP Þ) and, by the same argument, a greater number of

new nodes (i.e. NðV ðkÞyP Þ > NðV ðkÞP Þ).

Null rate of pattern properties

In examining the properties of the pattern motifs detected by MEX, it is essential to compare

these quantities to a null rate i.e. the properties of the ensemble of patterns detected in level

k if, instead of being detected with the MEX criteria, they were randomly defined. We take

G(k)−OnlyEC, which is network G(k) after embedding the equivalence class nodes but before
patterns are embedded using MEX, and define the ensemble of null model patterns V ðkÞ�P by

selecting an equal-length random sub-sequence in this network for every actual motif sub-

sequence found by MEX. The null values of the pattern properties are then computed from

this ensemble.

Supporting information

S1 Fig. Embedding example. An example sequence taken from the USEC is shown here at dif-

ferent levels of embedding. At G(0), only terminal word nodes exist. At G(0)−OnlyEC, some of the

terminal word nodes are embedded inside equivalence class supernodes such as totally being

embedded within {quite, totally, entirely}. At G(1), the nodes merged into 3 separate level-1 pat-

tern motifs and at G(2) these 3 motifs combine to form a level-2 pattern motif.

(PDF)

S2 Fig. Decrease of network distances under motif embedding. A and B shows the decrease

of hmean(dr)i in the SAC and BC and how they compare to null models set at different cost

parameters. Sub plots (C-E) chart the decrease of hmin(dr)i and their null models for the

USEC, SAC, and BC respectively.

(PDF)

S1 Table. POS templates of motifs in the SAC. This table is interpreted in the same manner

as Table 2.

(PDF)
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S2 Table. POS templates of motifs in the BC. The BC uses a different list of POS tags which

can be obtained from http://www.comp.leeds.ac.uk/ccalas/tagsets/brown.html. This table is

interpreted in the same manner as Table 2.

(PDF)

S3 Table. Stop word templates of motifs in the SAC.

(PDF)

S4 Table. Stop word templates of motifs in the BC.

(PDF)

S5 Table. Table of pattern properties. Here we show the properties of the patterns extracted

by MEX for the first 3 levels. hNlen(P) = 2i gives the mean occurrence frequency of length-2 pat-

terns and hNlen(P)>2i is for patterns with lengths greater than 2. FSWinP, FCinP, and FPinP are the

proportions of objects in the patterns that are stop words, classes, and lower-level patterns

respectively. The values are presented with the difference between the observed values and the

null values in parentheses together with the error margin. For example, hNlen(P) = 2i for the

USEC at level 1 is 44.3 and the null model yields 44.3 − 1.3 = 43.0 with and error margin of

±0.3.

(PDF)

S6 Table. Table of stop words. Operationally-defined stop words for each of the 3 corpora is

given here together with the the part(s) of speech they belong to.

(PDF)
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16. Solé RV. Phase Transitions. Primers in Complex Systems. Princeton University Press; 2011. Available

from: https://books.google.com.pe/books?id=YcEY1OwDgMkC.

17. Maynard Smith J, Szathmary E. The major evolutionary transitions. Nature. 1995; 374:227–232. https://

doi.org/10.1038/374227a0

18. Bickerton D. Language and human behavior. University of Washington Press; 1995.

19. Hockett CF. The origin of speech. Scientific American. 1960; 203:88–96. https://doi.org/10.1038/

scientificamerican0960-88

20. Chomsky N. Language and mind. Cambridge University Press; 2006.

21. Hauser MD. The evolution of communication. MIT press; 1996.

22. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998; 393(6684):440–

442. https://doi.org/10.1038/30918 PMID: 9623998
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