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Abstract: The damage and repair of DNA is a continuous process required to maintain genomic
integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require
timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic
cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a
lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain
neuronal populations upset delicate neural networks required for higher cognition and disrupt vital
motor functions. Mammalian cells engage with several different strategies to recognize and repair
chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recom-
bination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and
the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing
body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and
the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of
neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we
describe contemporary research characterizing the mechanistic roles of these non-canonical proteins
in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common
neurological diseases.

Keywords: TDP-43; hnRNPs; DNA double-strand break repair; DNA damage response;
neurodegeneration; dementia

1. Introduction: DNA Double-Strand Break (DSB) Repair in the Central Nervous
System (CNS)

Genomic stability is crucial for the maintenance of homeostasis and normal phys-
iological functions of cells and tissues throughout the body. While the study of DNA
damage has been classically associated with neoplastic pathologies, its role in neurological
disease has been increasingly appreciated by a growing body of literature. Studies charac-
terizing the functions of DNA repair processes in nondividing, post-mitotic neurons have
unlocked a new understanding of neuronal biology and associated pathologies that include
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
and brain aging. In this section, we will describe how neurons in basal and pathological
states respond to breaks in both strands of the DNA molecule, and how these breaks affect
brain physiology. Furthermore, we will highlight the roles of key proteins involved in the
recognition, repair, and signaling of neuronal DSBs, as well as discuss how these processes
are affected by chromatin dynamics.
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1.1. Functions and Resolution of DSBs in Neurons

Cells experience a near-constant assault on the integrity of the genome, resulting in
the accumulation of broken DNA strands that interfere with cellular functions. DSBs are
the most lethal form of DNA damage, and mammalian cells are estimated to accumulate
up to 50 DSBs per day [1]. If left unrepaired, these aberrant DNA structures always lead to
cell cycle arrest and apoptosis.

DSBs can occur either directly by the action of a DSB inducing agent (e.g., the topoiso-
merase II inhibitor, etoposide) or indirectly by the conversion of single-strand breaks (SSBs)
into a DSB lesion [2]. Whereas direct DSBs typically initiate a defined set of damage-specific
repair pathways, indirect DSBs require activation and integration of multiple pathways
to resolve both SSBs and DSBs simultaneously, particularly when clustered with other
oxidative damage [3]. Direct DSBs are repaired via two canonical pathways: homologous
recombination (HR) or non-homologous end-joining (NHEJ). The choice of the repair path-
way largely depends on the cell cycle status. The HR pathway occurs in dividing cells,
where it is restricted to the late S and G2 phases of the cell cycle. Of the canonical repair
pathways, the HR product exhibits the greatest fidelity to the original DNA sequence. This
error-free result is achieved primarily through the use of homologous sequences found
in sister chromatids that flank the break site during cell replication [4] as well as in the
RAD52-mediated and RNA-templated repair process [5,6].

In the CNS, HR has been linked to both disease progression of glioblastoma multiforme
(GBM) but also critical to the cells of the developing and aging brain. In GBM, chemothera-
peutic targeting of the HR pathway has become a mainstay of treatment, and upregulation
of HR factors tends to correlate with worse prognosis and resistance to DNA alkylating ther-
apies. Interestingly, targeting other DNA repair pathways, such as the NHEJ pathway, has
no proven therapeutic benefit [7–10]. On the other hand, in the healthy developing brain,
as well as the aging brain, HR is key to maintaining a genetically healthy neuronal stem
and progenitor cell populations that are vital for continued learning, memory, and other
cognitive functions. While HR is the primary mechanism of DNA repair in these early cell
types, the post-mitotic neurons into which they develop primarily rely on the error-prone
NHEJ pathway, and its associated factors, such as Ku 70/80 heterodimer, XRCC4, and DNA
Ligase 4. Unlike HR, the NHEJ pathway remains active throughout the cell cycle, including
in the early S and G1 phases [11]. However, NHEJ is considered less reliable, because its
repair product may contain insertion-deletion mutations or even chromosomal transloca-
tions [12]. Importantly, while NHEJ is the prevailing mechanism of DSB repair in neurons,
a recent study demonstrated that virus-mediated delivery of the CRISPR-Cas9 genome
editing system was able to successfully perform homology-directed repair in post-mitotic
neurons. Similarly, others have demonstrated the transcription-dependent recruitment of
recombination repair factors to oxidative DNA lesions in the neuronal genome, suggest-
ing that an RNA templated HR repair mechanism exists outside of actively replicating
cells [5,6]. These findings suggest that neurons possess a repertoire of common DSB repair
factors controlled by incompletely characterized regulatory pathways [13]. In the event
a neural cell is unable to rely on either of the canonical DSB repair pathways, a separate,
non-canonical DSB repair pathway, the microhomology-mediated end-joining (MMEJ),
also termed alternative end-joining (AltEJ), generally proceeds, and typically utilizes SSB
repair factors to repair DSBs [14,15]. In the absence of NHEJ, particularly in the absence
of the Ku70/80 heterodimer, exonuclease-mediated degradation of the broken DNA ends
results in single-stranded DNA (ssDNA) overhangs. AltEJ factors, including PARP1 and
DNA Polθ, utilize sequences of microhomology between these overhangs to direct ligation
of the DNA molecule. This process generally provides a repair product with the least
fidelity to the original DNA sequence, and classically leads to microhomology-mediated
chromosomal rearrangements. Because of this error-prone nature, the physiological role
of AltEJ is typically restricted to immunoglobulin class switching recombination [16–19].
In neurons, AltEJ-mediated DSB end-joining can be severe enough to induce neuronal
apoptosis, and multiple reports have connected the development of AltEJ-related chromo-



Int. J. Mol. Sci. 2022, 23, 4653 3 of 34

somal translocations to neuropathological abnormalities, including developmental delay,
schizophrenia, and affective disorders [20,21]. Despite the severe functional consequences
of low fidelity DSB repair, little is known regarding the pathways and conditions that may
lead to hyper-activated AltEJ in neurons.

The functional effects of DSBs are wide and often deleterious. Traditionally, it was
thought that breaks in the DNA would always halt cell division and transcription, par-
ticularly at sequences adjacent to breaks [22]. New evidence now challenges this notion
and posits the counterintuitive point that localized DNA strand breaks and their repair are
required for gene activation in certain contexts [23]. Experiments conducted by Bunch et al.
demonstrated that DSB-induced signaling pathways were required for the expression of
stimulus-inducible genes in humans [24]. Specifically, the enrichment of DSB-associated
proteins, γH2AX and phospho-TRIM28, at serum-induced genes was modulated by key
DNA repair enzymes: DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia
mutated (ATM). The resulting complex was demonstrated to orchestrate RNA polymerase
II (RNAPII) pause-release with subsequent transcriptional elongation of actively tran-
scribed genes [24]. This transcriptional activation-coupled DNA damage response (DDR)
signaling suggests that actively transcribed genes require special support in maintaining
genetic integrity [25]. Furthermore, Hegde and colleagues have previously demonstrated
that ligand-induced gene activation resulted in oxidative damage-mediated SSBs and
indirect DSBs via demethylation of histones and cytosine-phosphate-guanines (CpGs) sur-
rounding transcription start sites [23]. The repair of the resulting damage was required
for successful gene activation and was preferentially performed in promoter regions. Con-
versely, the activation of ligand-independent heat shock proteins is associated with the
generation of direct DSBs in the promoter region, where efficient repair is likewise required
for successful gene expression [23]. Subsequent studies have confirmed those findings,
and a genome-wide association study (GWAS) conducted by Wu et al. reported that SSB
susceptible DNA sequences were more frequently located within enhancer sequences or
near CpG islands of promoter regions in the neuronal genome [26]. These observations
are particularly significant for understanding neurogenesis and neural plasticity during
development. These processes are regulated by retinoic acid (RA) signaling, where RA
receptors and peroxisome proliferator-activated receptor β/δ (PPAR β/δ) are activated in
a ligand-inducible manner [27,28]. Furthermore, other studies have identified recurrent
DSB clusters within genes involved in synaptic function and cell-cell adhesions that govern
spatial and functional behaviors of neurons in developing brains [29].

The association of DNA strand breaks and gene expression also extends to post-mitotic
neurons of the adult brain. In one study, the formation of DSBs in the promoter region of
a subset of immediate early-response genes (IERGs), including FOS, EGR1, and NPAS4,
was demonstrated to affect experience-driven synaptic modulations required for successful
cognitive functions [30]. Notably, the link between IERG expression and DSBs appears
unique to the neuron, where topoisomerase IIβ strictly regulates the induction of DSB
formation within topological domains characterized by CCCTC-binding factors (CTCF)
before IERG expression is observed. Conversely, the same group demonstrated a serum-
induced upregulation of IERGs involved topoisomerase IIα and occurred independently of
DSB induction by facilitating the promoter-proximal stalling of RNAPII in retinal pigment
epithelial cells [31]. These observations are relevant because the functional effects indirectly
mediated by DSB formation are extensive; most IERGs encode transcription factors, includ-
ing AP1, c-Jun, c-Fos, and c-Myc, that regulate gene activation of down-stream, late-response
genes (LRGs) (e.g., FGF1, HOMER1, and BDNF) in neurons following environmental stim-
uli [32,33]. The activation of LRGs, unlike IERGs, is associated with activity-induced
oxidative damage at promoter regions, and is crucial for long-lasting phenotypic changes
that include: modulating synaptic plasticity, neurite outgrowth, neural circuitry, and bal-
anced excitatory-inhibitory synaptic activities [34]. Taken together, these findings suggest
that neurons have evolved multiple mechanisms that utilize DSBs to specifically regulate
the expression of the IERG and LRG genes. When this process is considered in the context



Int. J. Mol. Sci. 2022, 23, 4653 4 of 34

of the DNA break-induced chromatin opening, it seems reasonable that neurons may utilize
DSB-induced acute chromatin openings for immediate genes, whereas oxidative stress
and/or SSBs induce slow, partial chromatin openings for the activation of long-term genes.

In non-dividing cells, DSBs participate in the homeostasis of two non-canonical DNA
secondary structures that include R-loops and guanine quadruplexes. R-loops are transient
3-strand RNA:DNA hybrid structures that form under physiological conditions when a
nascent RNA transcript remains hybridized to the template DNA strand. Importantly, part
of this structure includes the creation of a displaced region of non-template single-stranded
DNA (ssDNA), which affects genome instability and R-loop resolution. Functionally,
R-loop structures are closely associated with gene regulation via chromatin dynamics,
transcription factor recruitment, and regulation of RNAPII processing, among others [35].
R-loops are usually processed by RNA and DNA binding proteins (discussed in detail in
later sections), many of which are associated with post-mitotic/motor neuron diseases [36].
If the R-loop remains unresolved, the persistent ssDNA flank can initiate the DDR, resulting
in a cytidine to uracil transversion. This transversion triggers the formation of a DNA nick,
which causes the collapse of the replication fork and possible conversion into a secondary
DSB via mismatch repair [37,38]. As a result, R-loops represent a potential source of DSBs
that may significantly contribute to genomic instability in non-replicating, transcriptionally
active cells. Notably, most R-loops are observed at non-template DNA regions enriched
in G over C nucleotides [37,38]. Within these G-rich regions, unique secondary structures
comprised of four guanine nucleotides organized in four interspaced tandem repeats may
develop. These stable single-stranded secondary structures are termed G-quadruplex or G4
structures. Similar to R-loops, these structures are closely associated with gene regulation,
especially when located at promoter sequences of transcriptionally active genes [39]. Some
investigations have even suggested that a positive feedback relationship may exist between
G4 and R-loop structures. In this scenario, the R-loop-induced exposure of ssDNA regions
permits the spontaneous formation of G4 structures that in turn confer resistance to R-
loop resolution [39]. Indeed, multiple studies have reported the increased presence of
DNA damage and enhanced cytotoxicity in cell lines treated with G4-stabilizing ligands,
particularly when the HR response is impaired [40]. These results imply that the R-loop/G4
structure formation may act as a double-edged sword. On one hand, the G4 structure can
stabilize the transcription initiation bubble within an R-loop. On the other hand, it may
activate the DDR or exacerbate the R-loop-mediated replication stress, ultimately causing
DSB formation and synthetic lethality [40–43]. G4 structures are not exclusively related to
genome instability; however, recent studies have characterized their other functions in the
context of AD. Specifically, it was demonstrated that G4 sequences are enriched in neurons
with reduced polycomb group protein BMI1 expression and/or relaxed chromatin, such
as those found in sporadic AD. The G4 complexes were concentrated at transcriptionally
active sequences and co-localized with RNAPII. Furthermore, the intergenic G4 structures
altered splicing events of the transcribed regions and were associated with decreased
neuronal gene expression [44]. Taken together, these studies suggest DSBs and the DDR
are closely linked to G4 structures that in turn may contribute to the etiopathogenesis of
neurological disease.

1.2. DNA Damage Response (DDR) in the Chromatin Context

Over the years, a growing body of evidence has demonstrated how DSB repair takes
place as a highly orchestrated balance between dynamic nucleosome organization and
DNA damage sensing/repair. This is particularly important in the mammalian genome,
as it contains a wide array of evolutionarily conserved specialized chromatin structures,
that include actively transcribed genomic regions, replication forks, intergenic regions,
telomeres, and highly compact heterochromatin [41]. Following DSB induction, two key
signaling pathways are activated to begin the repair process that involve the DDR and
cell cycle checkpoint regulation. Within 0–5 min of DSB formation, the MRN complex
(MRE11, RAD50, and NBS1) binds to DSB sites and facilitates the recruitment and activation
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of ATM kinase [42,43]. In cycling cells, human single-strand binding protein 1 (hSSB1)
plays a crucial role in stimulating the recruitment of the MRN complex at DSBs by directly
binding to NBS1 and modulating the endo-nuclease activity of MRN [44]. In addition,
the phosphorylation of Rad17 at Threonine 622 by ATM initiates its direct interaction
with the MRN complex via NBS1, thereby enhancing the early recruitment of MRN and
amplification of ATM signaling [45]. In the early phase of chromatin remodeling, Bloom
Syndrome protein (BLM) is recruited in an MRN/ATM-dependent manner. RNF8-mediated
polyubiquitylation of BLM is critical for its helicase activity and interaction with NBS1.
Activated BLM plays crucial roles in the DSB repair pathway choice in a cell cycle-stage
dependent manner, such as inhibiting the recruitment of HR factors at the S phase and NHEJ
factors at the G1 phase [46]. BLM also plays a key role as an apoptosis sensor during DSB
induction in post-mitotic, immature cortical neurons [47]. BLM expression is upregulated
by the p53 and AP1 signaling pathways during DDR. Moreover, its deficiency leads to the
accumulation of oxidative genome damage and mitochondrial fragmentation [48]. Next,
activated ATM sequentially phosphorylates a series of signaling proteins involved in the
cell cycle checkpoint (e.g., p53 and Chk2) and DDR (e.g., BRCA1 and p53BP1) pathways [49].
Phosphorylation of histone γH2AX at serine 139 (as γH2AX) by ATM kinase results in a
binding site for the BRCA1 C-terminal domain of the Mediator of DNA damage Checkpoint
protein 1 (MDC1) and its subsequent recruitment to break sites [50,51]. The positioning of
MDC1 is critical for the efficient recruitment of the MRN complex and ATM kinase [52,53].
Notably, γH2AX wraps broken DNA ends along with hundreds of kb flanking DNA to
facilitate the active turnover of the DNA damage sensor and repair proteins, and protects the
damaged DNA ends from dissociation and degradation [54,55]. Given that the chromatin
structure contains different topological borders, DSBs that disrupt these boundaries allow
the γH2AX signal extension across either side of the breaking point; however, DSBs at or
within the borders of a topological domain form a highly asymmetric γH2AX-regulated
DDR platform [56]. Subsequently, MDC1 recruits the late performing effectors (within
5–60 min) such as ubiquitin ligases RNF8 and RNF168, which then promote the loading of
BRCA1 and 53BP1 at DSB sites [57,58]. RNF168 mediates the ubiquitination of histone H2A
at lysine 27, a major ubiquitin mark on damaged chromatin, in response to DNA damage.
This chromatin ubiquitination then facilitates the recognition and recruitment of 53BP1,
Rap80, RNF169, and RNF168 [59]. The reversal of chromatin ubiquitination is carried
out by two E3 ligases, namely, TRIP12 and UBR5, promoting the ubiquitin-dependent
degradation of RNF168 [60]. Like ubiquitylation, timely deubiquitylation is also important
for the successful release of DSB repair factors, so that the next step of the repair process
can occur. Deubiquitinase USP8 specifically removes the lysine 27-linked ubiquitin chain,
which promotes the deacetylase activity of histone deacetylase 1 (HDAC1) [61]. Deletion of
USP38 impairs the dissociation of NHEJ factors from DSB sites. Nucleosome destabilization
around the DSB is actively conducted by histone acetyltransferase Tip60 and the ATPase
activity of p400 in an MDC1-dependent but ATM-independent fashion. p400-mediated
nucleosome destabilization is a key step toward RNF8-dependent ubiquitination of the
10 s kb of the chromatin region, and subsequent recruitment of 53BP1 and BRCA1 at the
DSBs [62]. Furthermore, p400 ATPase also regulates the extent of AltEJ activity at the
damaged chromatin. It has been reported that depletion of p400 significantly increased
the frequency of AltEJ events by stimulating the recruitment of PARP1 and DNA ligase
3, leading to the deletion of large segments of chromosomes following DSB repair [63].
Like ubiquitylation, SUMOylation also plays an important role in chromatin remodeling
during DDR signaling. It has recently been demonstrated that the interaction of TIP60
with DNA-PK catalytic subunit (DNA-PKcs) is crucial in making pathway choices in the S
phase. The protein inhibitor of the activated STAT 4 (PIAS4) E3 ligase mediates SUMO2
modification of TIP60 at lysine 430 which attenuates its interaction with DNA-PKcs, thus
promoting HR. The lysine 430 to arginine mutation of TIP60 suppresses HR, without
affecting the NHEJ pathway, and abnormally increases DNA-PKcs phosphorylation at
serine 2056 [64]. SUMO E3 ligase PIAS1 has been found to modulate the activity of



Int. J. Mol. Sci. 2022, 23, 4653 6 of 34

polynucleotide kinase-phosphatase (PNKP), a damaged DNA-end processing enzyme, in
response to the transcription-coupled DSB repair in genes associated with Huntington’s
disease (HD) pathology. RIF1 is another DDR factor that plays a role in pathway choice
between HR and NHEJ. During HR, BLM and RIF1 follow similar recruitment kinetics
to stalled replication forks and form complexes [65]. However, RAD51 localization to
damaged replication fork depends on its interaction with SUMOylated BLM [66]. Moreover,
RIF1 SUMOylation by PIAS4 is critical for its interaction with 53BP1 to promote the NHEJ-
mediated DSB repair at the G1 phase of the cell cycle [67,68]. In summary, different
post-translational modifications (PTMs) of the DDR and repair proteins are essential for
proper interaction modulating the chromatin landscape, to assemble an appropriate DDR
platform for efficient DSB repair.

2. The Emerging Role of RNA/DNA-Binding Proteins in the DDR and DSB Repair

In the last decade, new research has identified several novel RNA/DNA binding
proteins (RDBPs) as novel regulators of DDR and repair pathways. While many of these
RDBPs have been demonstrated to possess well-defined roles in gene regulation and RNA
metabolism, emerging studies have highlighted several non-canonical roles that include
chromatin remodeling, DNA damage signaling amplification, and scaffolding of dynamic
repair complexes at damaged chromatin. The heterogeneous nuclear ribonucleoprotein
(hnRNP) family comprises a growing collection of RDBPs that have been extensively linked
to nucleic acid metabolism. The hnRNP family was founded on the discovery of hnRNPs
A/B and C, with later studies identifying a further 18 major protein members. Subsequent
additions to the hnRNP family have generally been denoted by a letter to indicate the
order of discovery or structural similarity to previously identified members; this naming
convention is not universal, however, as other members such as TDP-43 and FUS lack both
the hnRNP prefix and letter identifier [69,70]. While hnRNPs are classically recognized for
their RNA binding activities, they have also been proven vital to successful DNA repair.
In this section, we will critically review the mechanistic features of these non-canonical
functions of RDBPs in the context of the DDR and repair. A summary of how and where
important RDBPs interact in the DSB repair process is shown in Figure 1 with greater detail
provided in Table 1.

2.1. The Diverse Roles of hnRNP Family Proteins in Multiple DDR and DSB Repair Pathways

DSB induction triggers the recruitment of dozens of damaged sensors and repair
proteins to the break sites. A sudden increase in the local concentration of effector proteins at
these sites accelerates the rate of DDR signal amplification and transduction to various parts
of the cell, resulting in the rapid accumulation of repair pathway-specific proteins. New
studies have demonstrated that these concentrated proteins coalesce into “membrane-less
organelles” (MLO) due to their collective liquid–liquid phase separation (LLPS) properties.
RDBPs have been reported to play critical roles in the formation and stability of these LLPS
properties on chromatin [71,72]. Generally, proteins with low complexity domains (LCDs),
such as the hnRNP family protein hnRNP-A1, have a greater propensity to form LLPS [73].
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Table 1. Summary of hnRNP Roles in genome maintenance.

hnRNP Protein Specific Role in the DDR and/or DSB Repair Citations

TDP-43

• Participates in DSB recognition by facilitating
phosphorylation of H2AX

• Promotes recruitment of early NHEJ repair proteins
53BP1 and DNA-PKcs to DSB sites

• Permits DNA damage-induced nuclear translocation
of NHEJ ligation complex and its specific recruitment
to DSB sites

• Prevents transcription-dependent accumulation of
R-loops and subsequent defects in DNA repair and
replication in human dividing cell lines

• Associates with HDAC1 to maintain normal cell cycle
activity and prevent DNA damage accumulation in a
transgenic mouse model of FTLD

Konopka et al., 2020a
Mitra et al., 2019
Guerrero et al., 2019
Wu, C. et al., 2020

P/P2/FUS/TLS

• Participates in recognition of DSBs
• Facilitates efficient NHEJ and HR repair, possibly by

recruiting HDAC1 to damage sites and enhancing its
pro-DNA repair activity

• Enhances PARP-1 activity following oxidative
DNA damage

• Recruits XRCC1/DNA Ligase3 to DNA damage sites
and directly enhances ligation activity of DNA Ligase 3

• Exerts transcription regulation of multiple DDR
related proteins

Wang, H. et al., 2018
Wang. W. et al., 2013a
Sukhanova et al., 2020
Mastrocola et al., 2013

BioRender.com
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Table 1. Cont.

hnRNP Protein Specific Role in the DDR and/or DSB Repair Citations

hnRNP-U/SAF-A

• Facilitates NHEJ repair by interacting with Ku70 in its
phosphorylated form

• Facilitates BER repair by interacting with NEIL1 in its
nonphosphorylated form

• Functions as a molecular switch ensuring
NHEJ-mediated repair of DSBs occurs before BER
repair in IR-treated cells

• Facilitates resolution of RNA:DNA hybrid structures
(R-loops) formed during HR-mediated DSB repair

Hegde et al., 2016
Britton et al., 2014a

A1

• Prevents aberrant DDR activation to telomeric
structures by facilitating association of telomerase with
3′ telomeric ends, enhancing telomerase activation,
and promoting the formation of the Shelterin complex

• Coordinates with proteins SRSF10 and Sam68 to alter
transcript splicing of pro-apoptotic genes following
DDR activation

Clarke et al., 2021
Ghosh and Singh, 2018
Sui, J. et al., 2015
Wang, T. et al., 2019

A2/B1

• Negatively regulates DNA-PK activity following
DSB induction

• Overexpression delays repair kinetics of IR-induced
DNA damage

Iwanaga et al., 2005a
Kamma et al., 2001
Liu & Shi, 2021

C/C1/C2

• Maintains expression of HR repair-associated proteins
BRCA1, BRCA2, RAD51, and BRIP, likely by
preventing Alu exonization-induced
nonsense-mediated decay of nascent
mRNA transcripts

• Demonstrates RNA-dependent recruitment to DNA
damage sites and interaction with HR-related
PALB2/BRCA repair complexes.

• Cellular depletion causes diminished HR and
enhanced alt-EJ-mediated DSB repair

Anantha et al., 2013

D/AUF1

• Promotes HR-mediated DSB repair by facilitating
DNA end resection processing of DSB ends

• Facilitates resolution of R-loop RNA:DNA hybrid
structures, possibly in conjunction with hnRNP-U

Alfano et al., 2019a

F/H

• Facilitates escape of p53 expression from DNA
damage-induced global transcriptional repression by
enhancing p53 pre-mRNA 3′-end processing and
recruitment of CstF and PAP factors essential for
cleavage and polyadenylation of p53 transcripts

• Indirectly affects the expression of DDR and
apoptosis-related genes by enabling p53 expression

Decorsière et al., 2011

G/RBMX

• Enhances DNA end joining repair fidelity in a p53
dependent manner by preventing nuclease
degradation of ssDNA and dsDNA ends via
direct binding.

• Indirectly promotes HR-mediated DSB repair via its
RRM domain

• Enhances transcription of BRCA2

Shin et al., 2007
Adamson et al., 2012

K • Promotes transcriptional activation of p53 and p21 in
an ATR-dependent manner

Lee, Seong Won et al., 2012
Pelisch et al., 2012
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Table 1. Cont.

hnRNP Protein Specific Role in the DDR and/or DSB Repair Citations

L
• Enhances NHEJ and HR-mediated DSB repair, in part

by promoting recruitment of 53BP1 and BRCA1 to
DNA damage sites

Hu et al., 2019
Hu et al., 2015

UL1, UL2

• Promotes ATR-dependent DDR signaling
• Promotes HR-mediated repair by enhancing DNA end

resection, possibly by interaction with EXO1nuclease
and BLM helicase

Gurunathan et al., 2015
Hong et al., 2013a
Polo et al., 2012

CIRBP/A18

• Modulates DDR signaling in response to cell stressors
• Promotes NHEJ and HR repair by enhancing

recruitment of repair proteins to damaged sites in a
PARP1-dependent manner

Chen et al., 2018
Lee, Hae Na et al., 2015
Sun et al., 2021
Yang, C. and Carrier, 2001
Yang, R. et al., 2010

RBM14

• Promotes the NHEJ-mediated DSB repair by
facilitating dissociation of Ku70/80 from DNA ends
and/or the docking of DNA Ligase 4 complex

• Contributes to error-free NHEJ by facilitating
recruitment and co-activation of RNAPII at
damaged sites

Simon et al., 2017
Jang et al., 2020

While there is extensive overlap in the functions of many hnRNPs between DDR
signaling and DNA repair, some hnRNPs primarily affect the DDR signaling cascade.
Specific damage recognition is critical for avoiding unnecessary activation by physiolog-
ical DNA structures that mimic DNA lesions. Telomeres are characterized by TG-rich
repeats of double-stranded DNA (dsDNA) that produce a unique secondary structure
and terminate with a single-strand 3′ overhang [74,75]. These unique structures can be
inadvertently recognized as DSBs by DNA repair proteins, resulting in the disruption of
cellular homeostasis by inducing the DDR. Both hnRNP-A1 and -A2/B1 participate in
telomere metabolism and prevent the telomeric DNA break-induced activation of the DDR.
HnRNP-A1 accomplishes these effects by facilitating the association of telomerase enzymes
with the 3′ telomeric ends, enhancing telomerase activation and promoting the formation
of the Shelterin complex [76–79]. Phosphorylation of hnRNP-A1 by vaccinia-related kinase
1 (VRK1) and DNA-PKcs enhances its interaction with telomerase enzymes and accelerates
the formation of the Shelterin complex, respectively [79,80]. Genome-wide mapping of
the frequent DSB sites reveals a non-random distribution of DSB hotspot locations that
are typically delimited into 50–250 kb DNA segments. Interestingly, nearly 30% of these
hotspots contain clusters of coordinately expressing gene sequences with binding sites
for PARP1 and hnRNP-A2/B1 [81]. HnRNP-A1 also regulates the transcription and alter-
native splicing of DDR-associated genes. Studies using oxaliplatin-treated HEK293 cells
demonstrated that hnRNP-A1 and hnRNP-A2/B1 coordinate with other protein factors
to drive DNA damage-induced alternative splicing of genes associated with apoptosis,
cell cycle progression, and DNA repair [82]. Additionally, hnRNP-A2/B1 plays a direct
role in DSB repair. Experiments using nuclear extracts of A549 cells demonstrated that
hnRNP-B1 directly interacted and co-localized with DNA-PKcs following irradiation (IR)
exposure. Notably, when hnRNP-B1 is ectopically overexpressed, a dose-dependent in-
hibition of DNA-PKcs’ phosphorylation activity is observed. As expected, the siRNA
knockdown (KD) of hnRNP-B1 in ionizing radiation (IR)-exposed human lung cancer
bronchial epithelial cells caused faster resolution of neutral comet assay tail moments when
compared to controls [83]. These findings are clinically relevant because the overexpres-
sion of hnRNP-A2/B1 is observed in early-stage lung cancer and premalignant bronchial
dysplasia, concomitant with the accumulation of unrepaired DSBs [84]. Despite the close
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structural similarities between hnRNP-A2/B1 and TDP-43 [85], their effects on DSB repair
appear to be in direct opposition.

Once the DDR is activated, it induces myriad effects on cell physiology designed to
confer a survival advantage. One major part of this response is a global decrease in mRNA
levels that coincide with DNA repair [86]. In the basal state, coding mRNA transcripts
undergo cleavage at pre-mRNA 3′ ends and polyadenylation (pA) to confer stability and
permit translation [87,88]. However, following the genotoxic stress disruption of pre-mRNA
3′ end processing can subvert this event and contribute to cell stress-induced transcriptional
repression [89–92]. Yet, for DDR signaling and DNA repair to be successful, their respective
components must be expressed, suggesting that a compensatory mechanism exists to
allow their escape from damage-induced global suppression. To this end, hnRNP-A2/B1
exerts a multivariant recognition capacity conferred by its (RNA recognition motif) RRM1
motif for “AGG” and RRM2 motif for “UAG” sequences, thus playing an important role
in the RNA matchmaker mechanism [93]. The hnRNP-F/H protein also contributes to
this process by facilitating the expression of certain DDR genes, including p53. This is
accomplished when hnRNP-F/H binds to the G4 forming a G-rich sequence in the 3′-
UTR of the p53 pre-mRNA transcript. Under physiological conditions, this binding is
accompanied by the concomitant recruitment of the cleavage stimulation factor (CstF) and
poly(A) polymerase (PAP) leading to p53 translation. Following DNA damage induction,
this binding activity is increased several-fold, thereby allowing p53 expression to escape
downregulation [86]. Without this binding in hnRNP-F/H deficient cells, p53 expression is
significantly impaired following UV exposure, leading to PARP1 cleavage and increased
expression of the cellular senescence marker, p21 [94]. HnRNP-K also facilitates p53
expression during the DDR by enhancing its transcription and counteracting the human
double minute 2 protein (HDM2)-mediated ubiquitination of p53. Among the targets of
early DDR kinases, the phosphorylation of HDM2 and p53 disrupts their interaction and
prevents p53 degradation [95,96]. At the same time, hnRNP-K undergoes damage-induced
PTMs that prevent its HDM2-mediated degradation, and induce its translocation into the
nucleus, where it promotes the transcriptional activation of p53 [95]. Multiple studies
have reported that these effects were achieved by DNA damage-induced SUMOylation of
hnRNP-K, secondary to the activation of several enzymes, including PIAS3 and polycomb
protein 2 (Pc2) [97]. Importantly, these modifications are enhanced by the actions of the ATR
kinase. Experiments using UV exposed cells treated with caffeine, an ATR kinase inhibitor,
or siRNA KD of ATR, demonstrate a loss of both UV-induced hnRNP-K SUMOylation
and its interaction with PIAS3. Analysis of hnRNP-K deletion mutants using pull-down
assays revealed that the SUMOylation of the C-terminus confers increased stability by
interfering with HDM2 binding, thus facilitating the mobilization of SUMO-hnRNP-K to
the nucleus while leaving the N-terminal region free to interact with p53 [98]. A functional
assessment reveals a loss of hnRNP-K delays or prevents cell cycle arrest, coinciding with
decreased p53 and p21 expression [98]. hnRNP-L has also been linked to successful DNA
damage repair. Following genotoxic stress, hnRNP-L is localized to damage sites, where it
supports DSB repair by effectively recruiting early DDR factors such as ATM, 53BP1, and
BRCA1 [99]. HnRNP-L depletion before oxaliplatin treatment causes significant decreases
in the formation of 53BP1 and BRCA1 foci, while simultaneously increased staining for ATM
phosphorylation at serine 1981 (pATM) and γH2AX foci, indicating persistent accumulation
of unrepaired DSBs [99]. In vitro assays using NHEJ- and HR-specific reporter cell lines
further demonstrate that the loss of hnRNP-L significantly impairs the efficiency of both
pathways, and co-immunoprecipitation (co-IP) studies suggest that this may be secondary
to decreased interaction with ATM, 53BP1, and BRCA1 [99].

In addition to being induced by DSBs, the p53 protein also participates in AltEJ
repair, where it directly binds to ssDNA and dsDNA ends and exerts 3′–>5′ exonucle-
ase activity [100,101]. Using extracts of p53 depleted cells incubated with DSB plasmids
demonstrates an increased rate of nuclease-mediated degradation of both blunt and over-
hang DSB ends, suggesting that p53 facilitates AltEJ by preventing excessive DNA end



Int. J. Mol. Sci. 2022, 23, 4653 11 of 34

degradation [102]. While many mechanistic details of this function remain elusive, it has
been reported that hnRNP-G may facilitate p53 activity during DNA repair by protecting
broken DNA ends from nuclease degradation [102]. Furthermore, p53 KD cells exhibit
a decreased expression of hnRNP-G, with a three-fold reduction in AltEJ repair fidelity
compared to controls. These effects are likely mediated by the direct interaction between
damaged ssDNA or dsDNA ends and the RRM domain of hnRNP-G [102]. Following
DNA damage, hnRNP-C appears to play a role in DSB repair pathway choice, where
specific HR deficiencies are compensated by enhanced AltEJ activity. Tandem affinity
purification and mass spectrometry analyses demonstrate that hnRNP-C interacts with
the HR-associated PALB2/BRCA complex, and that hnRNP-C deficient cells exhibit sig-
nificant decreases in expression of the HR-related proteins BRCA1, BRCA2, RAD51, and
BRIP. Indeed, cross-linking immunoprecipitation (CLIP)-sequencing experiments confirm
hnRNP-C’s binding to these transcripts at the expected sites and demonstrates the exoniza-
tion of Alu elements within the same transcripts. Furthermore, these events are abrogated
when cells are pretreated with RNaseA, confirming that the effect of hnRNP-C on HR repair
is RNA-dependent [103]

2.2. Involvement of hnRNP-U in DSB Repair

Another critical aspect of the DDR involves the temporal order of repair pathways
following genotoxic stress. HnRNP-U or Scaffold attachment factor A (SAF-A) is a 90 kDa
protein, and the largest member of the hnRNP family. There are many roles ascribed
to hnRNP-U, but among them is an increasing body of evidence linking it to the DDR
and multiple DNA damage repair pathways [104–106]. Co-immunoprecipitation assays
using FLAG-tagged hnRNP-U in HEK293 and U2OS cell lines treated with IR show a time-
and phosphorylation-state-dependent interaction between hnRNP-U, Ku70, and DNA-
PKcs [107]. The hnRNP-U protein is associated with modulating the balance between the
NHEJ and BER pathways at the beginning of DNA repair. Following DSB induction, NHEJ-
mediated DSB repair occurs within ~15–60 min, while BER occurs following successful
NHEJ repair [107–109]. During this period, hnRNP-U undergoes DNA-PKcs-dependent
phosphorylation, allowing preferential binding to Ku70, which favors the progression of
NHEJ repair activities. Conversely, the interaction between BER factor NEIL1 and non-
phosphorylated hnRNP-U enables NEIL1 binding to damaged chromatin and initiates BER
after completing NHEJ.

The hnRNP-U protein also plays a role in the two-phase dynamics of the association–
dissociation process of DNA repair factors at the chromatin coupled with R-loop resolu-
tion [110]. The hnRNP-U protein binds to damaged chromatin in a PARylation-dependent
manner; however, its dissociation from chromatin is mediated by ATM, ATR, and DNA-
PKcs, thus restarting the ongoing transcription. These findings suggest an active DDR-
linked anti-R-loop mechanism that excludes mRNA processing factors, such as hnRNP-U,
TAR DNA binding protein 43 kDa (TDP-43), and Fused in Sarcoma (FUS), from the dam-
aged transcribed sites in the chromatin. Similarly, hnRNP-D has been found to regulate
R-loop resolution following DNA damage. Studies suggest that hnRNP-D accomplishes
this function by directly coordinating with hnRNP-U at damaged sites. Notably, loss of
hnRNP-D not only results in increased R-loop accumulation but also the failure of hnRNP-
U to colocalize at damage sites [111]. Furthermore, hnRNP-D depletion has been linked to
impaired HR-mediated DNA DSB repair by blockade of DSB end resection.

2.3. Involvement of TDP-43, FUS, and RBM14 in DSB Repair

Neurodegeneration-associated RDBPs TDP-43, FUS, and RBM14 have recently been
implicated in DDR and DSB repair mechanisms for their direct roles in modulating genome
integrity and fidelity. Previous studies have indicated that these proteins regulate DNA
repair mechanisms in association with HDAC1, a critical chromatin modifier, the depletion
of which can lead to genotoxic stress in neurons [112–115]. The hnRNP proteins, TDP-43
and RBM14, have both been associated with direct roles in NHEJ-mediated DSB repair.
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TDP-43 is a 414 amino acid protein of the hnRNP family encoded by the TARDBP
gene. It was first discovered as a transcriptional repressor targeting the TAR DNA sequence
of human immunodeficiency virus 1 (HIV-1) [116] and is highly conserved across multiple
species, including humans, mice, drosophila, and C. elegans. It is ubiquitously expressed,
with its RNA detected in all tissues, but most strongly expressed in CNS, endocrine, muscle,
and gastrointestinal tissues (proteinatlas.org v20.1). Structurally, TDP-43 consists of two
RNA RRMs, a prion-like glycine-rich domain, bifurcated nuclear localization sequences
(NLS), and nuclear export sequences (NES) [85]. Among the hnRNP family of proteins,
it closely resembles hnRNP A1 and A2/B1 [117], but is unique for its combined RNA
and DNA binding capabilities. TDP-43 has been implicated in myriad roles related to
RNA metabolism, including transcriptional repression, pre-mRNA maturation, alterna-
tive splicing, micro-RNA biogenesis, interaction with long non-coding RNA, and even
autoregulation of its transcription [85].

The possible role of TDP-43 in DNA damage repair was first indicated by a proteomic
study, which identified a significant interaction between TDP-43 and Ku70, one of the
apoenzymes critically involved in classical NHEJ repair [118]. A subsequent investigation
by Hegde and colleagues expounded on this finding, and for the first time, we demon-
strated the direct role of TDP-43 in NHEJ-mediated DSB repair [119]. At baseline, TDP-43
depleted neuronal cells exhibit increased genomic instability, increased expression of pro-
apoptotic factors, and persistent DSB accumulation over time, without any external DSB
inducing agent. Using neutral comet assays and kinetics of DSB foci disappearance via
live-cell imaging, DSB-inducing etoposide or bleomycin treatment of TDP-43 depleted
cells demonstrate ~10-fold higher tail moment and slower disappearance of 53BP1 foci
compared to controls. Furthermore, induction of DSBs leads to an enhanced association
between TDP-43 and DDR factors γH2AX, pATM, and p53BP1, and NHEJ proteins Ku,
DNA-PKcs, DNA polymerase lambda (Polλ), XRCC4, and DNA Ligase 4. This study
also revealed that TDP-43 neither associates with the XRCC1/DNA Ligase 3 complex
nor dynamically interacts with DNA polymerase µ (Polµ) in response to DSB induction;
this underscores the specificity of TDP-43′s association with XRCC4/DNA ligase 4 and
Polλ [119].

At the micro-irradiated DSB track, TDP-43 follows the recruitment kinetics of Ku70
and remains at the site until the completion of the repair process, a fact further supported
by TDP-43′s critical scaffolding role in the recruitment of DNA end ligation complex
(XRCC4/DNA Ligase 4), the rate-limiting step of NHEJ, to the DSB sites. Subsequent
in vitro biotin-affinity co-elution experiments have demonstrated TDP-43′s affinity toward
the free DSB end [119]. It is important to mention in this context that the loss of TDP-43
neither inhibits DDR activation nor prevents the formation of the DSB ligation complex
consisting of XRCC4, XRCC4-like factor (XLF), and DNA Ligase 4; however, the impaired
DSB ligation step, in turn, leads to the accumulation of unrepaired DSBs and simultaneous
hyperactivation of DDR signaling, resulting in chronic inflammation and cell death. Fur-
thermore, a mutant TDP-43 that mislocalized to the cytosol traps XRCC4 and DNA Ligase
4 complex, which may prevent their translocation from the cytosol to the nucleus following
genomic DSB induction [120].

Another RDBP protein, FUS, has also been reported to modulate the recognition and
repair of DSBs in neurons [114]. Although this study highlights the role of FUS in the forma-
tion of post-damage γH2AX and 53BP1 foci in cells, the interactions of FUS with classical
NHEJ repair factors have also been demonstrated in this study. Wang et al. reported that
FUS was essential for the PARylation-mediated activation of the XRCC1/DNA Ligase 3
complex in response to oxidative DNA damage [121]. A recent proteomics interactome
study revealed that the levels of TDP-43 and FUS in the cell were not dependent on each
other, and they often shared common interacting partners [122]. Some of the first character-
izations of FUS in knockout (KO) mice models discovered that the genetic deletion of either
the zinc finger motif of the 8th exon human homolog in mice resulted in perinatal death
and impaired fertility; cell lines derived from these models exhibited increased genomic
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instability and sensitization to IR [123,124]. Its effect on fertility prompted the discovery
of its contribution to homologous recombination, wherein it promotes the formation of
DNA D-loops and the annealing of homologous DNA [125]. Finally, FUS participates
in stress granule (SG) formation following genotoxic stress. This key step in the cellular
defense against genotoxic stress occurs in parallel with DDR activation, and largely func-
tions to protect long mRNA/pre-mRNA transcripts. Abrogating SG formation cell cultures
results in enhanced apoptotic cell death after genotoxic stress, suggesting an essential
role in cell survival [126]. Interestingly, both TDP-43 and FUS have been recognized as
important factors for efficient SG assembly/disassembly dynamics in response to cellular
stresses [127,128].

RBM14, also known as the RRM containing coactivator activator (CoAA), is highly
expressed in early embryonic stem cells and has been implicated in DNA repair and cell
proliferation in cancer cells [129]. RBM14 is primarily known for its regulatory role in RNA
metabolism; however, some reports have linked it to the cell stress response, where it joins
other RDBPs such as FUS, as a component of stress-induced nuclear paraspeckles [130–133].
Although the function of paraspeckles continues to be the subject of investigation, some
components have been associated with the DDR, especially FUS and NONO [134,135].
RBM14 is also involved in DDR and DNA repair. Glioblastoma cell lines lacking RBM14
demonstrate enhanced sensitivity to IR, and evidence of unrepaired DSB accumulation
concomitant with decreased levels of phosphorylated DNA-PKcs and NHEJ repair effi-
ciency [129]. Recent evidence demonstrates that RBM14 plays a critical role in the execution
of the NHEJ process. Using HEK293 cells expressing DSB reporter constructs, the loss
of RBM14 was demonstrated to drastically increase the activity of mutagenic NHEJ re-
pair [136]. The DNA deep sequence analysis of the DSB repair junctions demonstrates that
RBM14 KD cells contain a seven-fold decrease in reads exhibiting faithful DSB repair and
a significant increase in reads containing microhomology signatures [136]. Interestingly,
the dissociation of the Ku protein complex from damaged ends appears to require RBM14
and is necessary for the progression of the NHEJ pathway [136]. The loss of RBM14 nearly
triples the time needed for the Ku protein complex to dissociate, and DNA Ligase 4 to bind
to damaged sites [134]. Taken together, RBM14 appears to facilitate NHEJ-mediated DSB
repair by promoting the dissociation of the Ku70/80 heterodimer from DNA ends and/or
the docking of DNA Ligase 4 complex at the DSB sites.

3. DNA Damage and Its Pathological Consequences in Neurological Disorders

The formation of DNA damage and its downstream signaling are increasingly recog-
nized as fundamental contributors to neurodegeneration and brain aging. While it is known
that unrepaired DNA DSBs is uniquely toxic to vulnerable long-lived cells of the CNS, the
exact mechanisms linking DNA repair defects to neuronal loss are incompletely under-
stood. One potential consequence of unrepaired DNA breaks may involve post-mitotic
neurons re-entering the cell cycle, resulting in apoptosis [137]. Alternatively, unrepaired
DNA damage may induce neurons to adopt a senescence-like phenotype characterized
by dysfunctional neurophysiology, metabolic dysregulation, and secretion of harmful
senescence-associated molecules. Moreover, neurons harboring unrepaired DNA breaks
with accompanying nuclear membrane damage may cause nuclear DNA-mediated acti-
vation of the cytosolic cyclic GMP-AMP Synthase (cGAS)- Stimulator of Interferon Genes
(STING) pathway [138,139]. The STING pathway involves the TANK Binding Kinase 1
(TBK1)- Interferon Regulatory Factor 3 (IRF3) signaling-mediated activation of the innate
immunity to sustain the chromosomal stability in a p21-depedent manner. Activation
of this pro-inflammatory pathway may contribute to the development of a proinflamma-
tory milieu surrounding neural tissues altering the cellular function. In either case, the
neuronal activity becomes abnormal, and if left unresolved, persistent inflammation may
lead to apoptosis and irreversible tissue loss. For these reasons, DNA damage is critically
positioned to help explain how neurons change with aging, respond to environmental
exposures, and contribute to genetic neuropathological phenotypes.
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Furthermore, initially discovered in both the normal and cancer cell lines, extrachro-
mosomal circular DNA (eccDNA) has been identified to cross-talk with STING-associated
pro-inflammatory pathways [140–142]. The eccDNA structure is derived from transcrip-
tionally active, exon rich, and non-repetitive DNA sequences [143]. Interestingly, eccDNA
production involves neither NHEJ nor HR machinery. Instead, mismatch repair factor
MutS Homolog 3 (MSH3) has been implicated in regulating the cellular load of eccDNA
molecules [143]. Some have suggested the origin of eccDNAs in post-mitotic neurons may
be associated with R-loop dysregulation at transcriptionally active genomic regions [144].
However, in another study by Zhu et al. [145], eccDNAa were produced from DNA DSBs
flanking short microhomology sequences, suggesting critical roles of NHEJ and MMEJ
in post-mitotic neurons. To date, most studies examining the functions of eccDNAs have
focused on their multi-faceted, regulatory roles in the cell, including apoptosis, aging, and
neurodegenerative diseases [141]. Additional investigation will be required to elucidate the
relationship, if any, between eccDNA production and function with members of the hnRNP
family of proteins and their disease-relevant mutations [146]. In the following sections, we
describe the contributions of DNA damage and DSBs to common motor neuron diseases,
dementias, and finally brain aging.

3.1. DNA Damage in Motor Neuron Disease

Motor neurons are specialized cells that relay electrochemical signals from the brain
to the musculoskeletal system to facilitate smooth, controlled voluntary limb movements.
Motor neurons and their respective diseases may be subdivided into two groups: upper
motor neurons (UMNs) and lower motor neurons (LMNs). UMNs are glutamatergic
neurons with cortical somas and axonal projections that extend inferiorly through the
brainstem and spinal cord to synapse onto LMNs. These LMNs in turn have somas in the
ventral spinal cord with distal cholinergic projections terminating at the neuromuscular
junction (NMJ) of skeletal muscles. Worldwide, the burden of motor neuron diseases
(MNDs) is growing at an alarming rate. Approximately 331,000 people suffer from MNDs,
ultimately resulting in 34,325 deaths in 2016 alone. To date, dozens of pathology-associated
genes and related signaling pathways have been linked to the ages of symptom onsets
and rates of disease progressions for several MNDs. In this section, we survey selected
genetic factors associated with selected MNDs and highlight their contributions to genome
instability and/or defective DDR signaling.

3.1.1. Amyotrophic Lateral Sclerosis (ALS)

Perhaps the most widely recognized motor neuron disease is ALS or Lou Gehrig’s
Disease. ALS is a devastating disease that usually begins around the fifth decade of life
and has an incidence rate between 1.5 and 2.7 per 100,000 person-years in Europe and
North America [147–150]. The hallmark clinical feature of ALS is the combination of upper
and lower motor neuron signs; the classical presentation involves asymmetric spasticity
and paresis, beginning with the distal limbs. The disease progression is relentless with
median survival from time of symptom onset limited to just 3–5 years. The proximal
cause of death in most patients is respiratory failure and cardiac arrest [151]. Although
ALS predominates in the adult population, juvenile ALS cases have also been reported.
Juvenile ALS patients progress similarly to that adults, but while the genetic origins of
adult-onset ALS are commonly sporadic, juvenile cases are remarkable for their association
with discrete, inherited mutations. Several of these genes participate in DNA repair, DDR
signaling, reactive oxygen species (ROS) production, and neuroinflammation. Although
more than a dozen genes have been implicated in ALS pathogenesis, some of the most
studied mutations involve TARDBP, FUS, C9ORF72, syntaxin (SETX), and ataxin 2 (ATXN2),
TANK-binding kinase 1 (TBK1), and matrin 3 (MATR3) genes [85].

SETX acts as an essential R-loop-associated helicase for the resolution of DNA:RNA
hybrids that are formed when a template DNA strand hybridizes with its nascent RNA
transcript [152]. SETX acts by removing R-loops flanking sites of DNA DSBs in actively
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transcribed genes by recruiting RAD51 to prevent aberrant chromosomal translocation.
As expected, SETX depletion enhances γH2AX at DNA break sites. Although SETX has
not been specifically marked to enhance DSB repair or mediate DSB end resection, it is
known to modulate cross-talk between replication stress-induced DDR activation and the
unfolded protein response via the PERK/ATF4 signaling axis [153]. SETX itself is also
under the regulation of multiple factors, including ubiquitin-specific peptidases that may
play a role in neurodegeneration [154]. Several pathogenic SETX mutations have been
reported linking SETX proteinopathy with juvenile-onset ALS [155,156].

Mutations in TDP-43 and FUS have also been extensively linked to the pathogenesis
of ALS. Mutations in TDP-43 have been identified in up to 95% of sporadic ALS cases, and
mutations in both TDP-43 and FUS have been linked to rare familial forms of ALS [157].
The nucleo-cytoplasmic mislocalization of mutated TDP-43 and FUS is a hallmark feature
of ALS. Both TDP-43 and FUS are concentrated in the nuclei of healthy neurons; however,
in ALS-affected tissues, both proteins accumulate in the cytosol as intranuclear inclusion
bodies. The current view regarding this mislocalization is that it leads to a simultaneous loss
of function in the nucleus and a gain of toxicity in the cytosol [85]. As previously discussed,
TDP-43 and FUS play critical roles in the resolution of DNA damage, and their pathological
nuclear loss causes increased genomic instability. Loss of nuclear TDP-43 and FUS also
results in substantial alterations to mRNA processing and gene expression. Previous studies
have demonstrated that FUS alone affects the processing of at least 5500 RNA targets
with TDP-43, likewise demonstrating a significant overlap [158,159]. One major function
of TDP-43 and FUS in RNA metabolism is the mediation of pre-mRNA splicing. For
example, the P525L mutation in FUS causes nuclear clearance with subsequent inhibition
of select intron splicing events due to poorly-localized spliceosome components [160]. TDP-
43 also exerts multiple effects on RNA processing with consequences for motor neuron
regenerative capacity. Studies have demonstrated that TDP-43 regulates the expression
of neuronal growth factor, stathmin-2. In vitro experiments have revealed that TDP-43
binds to the first intron of stathmin-2 pre-mRNA where it prevents access to a cryptic
poly-adenylation site by other RNA processing factors. Without TDP-43, the retention of
this site results in a truncated mRNA product that disrupts axonal regeneration in motor
neuron cell cultures [161]. Interestingly, TDP-43 has also been linked to ALS pathology
outside the context of inherited mutations. A recent investigation identified cell stress-
induced alternative splicing of TDP-43 itself as producing a shortened splice variant with
decreased cytoplasmic solubility and a propensity to sequester full-length TDP-43 in
cytosolic granules [162,163]. These findings suggest that exogenous influences, such as
neuronal activity, may contribute to TDP-43 pathology, and may help explain the role
of TDP-43 in sporadic ALS disease. Finally, the effects of mutated TDP-43/FUS in ALS
may synergize with mutations in other ALS-associated proteins. For example, ALS-linked
mutations in MATR3, an RNA binding protein, were demonstrated to disrupt global nuclear
mRNA export that specifically includes TDP-43 and FUS transcripts [164].

The C9ORF72 gene mutation is another well-described genetic cause of ALS. This
mutation consists of an intronic hexanucleotide expansion repeat within the C9ORF72 gene.
While the function of the C9orf72 protein is unknown, its mutation is the most common
genetic cause of familial ALS [165]. Neurons carrying the mutation exhibit cytoplasmic
mislocalization of TDP-43, cytoplasmic aggregates, transcriptomic abnormalities, and a
marked elevation in markers of DNA DSBs [85,166]. One way in which the mutation
achieves these effects is through the production of expansion-encoded dipeptide repeat
proteins. One recent study demonstrated that the expression of these peptides could slow
DSB repair by decreasing the efficiency of NHEJ, single-strand annealing, and MMEJ
pathways [167]. The C9orf72 expansion mutation has also been demonstrated to promote
persistent R-loop structures with resulting increases in R-loop-mediated DSBs in mutant
cell lines [168,169].

ATXN2 is another RNA binding protein classically associated with autosomal domi-
nant spinocerebellar ataxia type 2 (SCA2), but also confers an increased risk of developing
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ALS. Wildtype ATXN2 is a cytosolic protein that primarily facilitates RNA metabolism.
While the expansion of repeat mutations exceeding 35 repeats is linked to SCA2, intermedi-
ate repeat mutations, between 24 to 34 repeats, confer three-fold greater odds of developing
ALS [170]. Mutated ATXN2 is believed to increase the risk of ALS by promoting stress
granule formation and cytosolic sequestration of TDP-43 [171].

3.1.2. Other Selected Motor Neuron Diseases

Primary lateral sclerosis (PLS) and ALS are often regarded as pathological members of
a spectrum of motor neuron diseases. Indeed, both PLS and ALS share many characteristics;
however, PLS is rare in comparison and is defined by its restriction to UMNs [172,173].
Although relatively few studies have examined the pathology of PLS, one study of seven
PLS patients revealed extensive TDP-43 positive inclusions in cortical and corticobulbar
tract neurons. As expected, few inclusions were identified in LMNs [174]. Interestingly,
this study and others have noted significant concordance between the extent of UMN
TDP-43 inclusions with comorbid frontotemporal atrophy and abundant cortical TDP-43
pathology [175,176]. These results suggest the location of TDP-43 pathology likely plays a
decisive role in determining disease phenotype.

Spinal muscular atrophy (SMA) is the leading cause of pediatric neurodegenerative
disease and affects 4 to 10 per 100,000 live births annually [177]. SMA results from the
mutation or loss of the survival motor neuron 1 (SMN1) gene. Without SMN1, motor
neurons exhibit degenerative changes leading to progressive diffuse proximal weakness and
hypotonia that often leads to premature death [178,179]. While much is unknown regarding
the pathways connecting the loss of SMN1 to motor neuron degeneration, DNA DSBs have
been reported as a possible contributor. In healthy neural tissue, SMN1 co-localizes with
SETX and DNA-PKcs in subnuclear bodies. Experiments using patient-derived fibroblasts
and spinal cord tissue have reported that a loss of SMN1 causes decreased expression
of SETX and DNA-PKcs with a concomitant increase in unresolved R-loop structures,
DSB markers, and DDR activation [180]. These findings demonstrate that persistent DNA
damage and DSB accumulation via unresolved R-loop structures likely contribute to motor
neuron degeneration in the absence of SMN1.

Machado–Joseph disease (MJD) is the most common cause of spinocerebellar ataxia
worldwide. The hallmark clinical features of MJD include progressive ataxia and prominent
cerebellar signs, although clinical manifestations can vary widely and often include pyra-
midal signs with peripheral amyotrophy [181]. These signs result from the degeneration of
multiple CNS systems, including the cerebellum and spinal cord due to CAG expansion
repeats within the ATXN3 gene [182]. The resulting expansion repeat proteins lack their
native function and contribute to characteristic intraneuronal inclusions that aggregate
with other cytosolic proteins. Recent studies have demonstrated that native ATXN3 nor-
mally associates with polynucleotide kinase 3’-phosphatase (PNKP), a DNA repair protein
required for processing broken DNA ends, RNAPII, in addition to major NHEJ repair
proteins. Subsequent in vitro experiments demonstrate that KD of ATXN3 abrogates the
activity of PNKP and decreases the rate of error-free DSB repair of linearized reporter
plasmids. Furthermore, brain extracts from MJD patients and transgenic mice confirmed
diminished PNKP activity with simultaneous increases in phospho-53BP1 expression and
markers of DNA strands [183,184].

3.2. Dementia-Associated Neurodegenerative Diseases

Dementia is a disorder characterized by a decline in cognitive abilities across at least
one cognitive domain, such as learning and memory, executive function, apraxia, and
aphasia, according to ICD 10 criteria [185]. As the US population continues to age, the
overall burden of dementia has likewise increased, and this trend is expected to continue
over the coming decades. Unlike mild cognitive impairment (MCI), dementia is generally
irreversible, more severe, and not considered a normal aspect of aging. The two most
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common causes of neurodegenerative dementia include AD and frontotemporal dementia
(FTD), followed by dementia with Lewy bodies and PD dementia [186–188].

FTD describes a spectrum of neurological disorders affecting distinct brain networks
that result in characteristic clinical and neuropathologic patterns. It is one of the more
common causes of early-onset dementia (i.e., ages < 65 years), where it is observed with
roughly the same incidence as AD [189]. FTD can be distinguished from AD by clinical
signs of altered personality, behavior, and language preceding memory loss. Like other
neurodegenerative diseases, neuropathological findings include macroscopic atrophy of
frontal and temporal lobes with microscopic findings of gliosis, neuronal apoptosis, and
prominent neural inclusion bodies. The two most common proteins found in these inclusion
bodies are tau and TDP-43; other proteins, such as FUS, are also found to a lesser extent [190].
Mechanisms underlying the toxic effects of tau aggregates in neurons remain uncertain;
however, the combined loss of function and gain of toxicity model is likely relevant.
Conversely, the pathological contributions of TDP-43 aggregates in FTD are much the same
as those previously discussed in motor neuron diseases. Like ALS, the genetic origins of
FTD are mostly sporadic with monogenic cases comprising just 20% of cases. Known genetic
causes of FTD include microtubule-associated protein tau (MAPT), C9orf72, TDP-43, FUS,
TBK1, and others [165]. As previously discussed, mutations in TDP-43 and FUS are closely
associated with genomic stability and have been implicated in neurodegeneration [191].
Repeat expansion mutations in C9orf72 have also been described in FTD [192]. Interestingly,
recent work by Gitler and colleagues identified p53 as a central factor in driving C9orf72-
mediated neurodegeneration. Neurons expressing the dipeptide repeat translated from
C9orf72 expansion mutations promote neurodegenerative changes via broad transcriptional
alterations that require a functional p53 transcription factor. Remarkably, the ablation of
p53 in a mouse model of C9orf72 ALS/FTD completely reversed the neurodegenerative
changes, and increased survival [193]. These results suggest that neurodegeneration in
ALS/FTD likely proceeds from complex transcriptional reprogramming regulated by the
integrated influences of the cell stress response, DNA strand breaks, chromatin remodeling,
and the DDR.

Alzheimer’s disease is the most common cause of dementia in older adults, affecting
an estimated 47 million people worldwide [190,194]. Age is the strongest risk factor for AD,
with patients rarely becoming symptomatic before the fifth decade. AD is characterized by
the insidious onset of impaired higher cognitive functions followed by progressive deficits
in memory, judgement, personality, language, and mobility. Over 5–10 years, most patients
become profoundly disabled [190]. Neuropathological hallmarks of AD include intraneu-
ronal aggregates of amyloid-beta (Aβ) plaques and neurofibrillary tau tangles. Aβ plaques
are pathognomonic for AD, and the current view regarding these inclusions suggests Aβ

generation may serve as an initiating event for AD through various mechanisms including
defective autophagy and mitophagy [195]. Consistent with this view, emerging evidence
suggests DNA DSB repair may play an important part in the pathogenesis of AD. Analysis
of post-mortem human brain tissue has demonstrated excessive DNA damage associated
with AD at all stages of the disease, along with simultaneous alterations in the expression
of repair factors [196–198]. Some reports indicate that the burden of DSBs may specifically
predict clinical severity, as the staining of human cortical tissues for DSB marker γH2AX
and DDR factor 53BP1 inversely correlate with clinical measures of cognitive function [198].
The findings of positive γH2AX staining in human postmortem and transgenic mouse
tissues have been corroborated by multiple studies. Furthermore, DSB markers are usually
observed in neurons and astrocytes, but not in oligodendrocytes, of the hippocampus and
frontal cortex of AD and MCI tissues [199,200], which is consistent with the expected AD
pathology. The source of AD-related DSBs remains uncertain. One explanation involves the
dysregulated expression and activity of DNA repair enzymes. Given the prominent role of
NHEJ in post-mitotic neuron DSB repair, it follows that disruptions in this pathway may
promote DSB accumulation. However, evidence supporting this notion is limited. One ret-
rospective study of postmortem human tissues demonstrates a decreased expression of DSB
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sensing factors Ku70/80 heterodimer and an insignificant trend in the decreased expression
of DNA-PKcs [201]. In subsequent in vitro experiments, it was observed that PC12 cells
treated with exogenous Aβ demonstrate decreased DNA-PKcs expression with expected
increases in DSB accumulation. This result is not recapitulated in APP/PSEN1 transgenic
mouse models, however. Alternatively, these tissues demonstrate decreased expression
of RAD51, an HR-associated repair factor [202,203]. HR has also been implicated in AD
pathogenesis by other studies. Notably, the tumor suppressor breast cancer susceptibility
gene 1 (BRCA1)-ATM kinase signaling axis plays a crucial role in the development of brain
function and size by modulating the polarization of neural progenitor cells (NPC) [204].
Given the essential role of BRCA1 in the HR-mediated DSB repair [205] and exploitation
of this pathway by NPCs toward neuronal plasticity related to cognitive functions [206],
the BRCA1 pathology seems more relevant to the hippocampal and entorhinal cortex
neurons as well as migratory NPCs from the subventricular zone in the AD and dementia.
Further research is needed to understand whether this mechanism can also affect the motor
neurons, and if yes, then to what extent. Furthermore, the measurement of neuron-specific
DNA methylation patterns across multiple brain regions identified hypomethylation of
the BRCA1 gene promoter region, with subsequent increased protein expression in AD
neurons of the hippocampus, cerebellum, and occipital lobes. Although these regions
also exhibit tau pathology, only the hippocampus exhibits significant DSB burden and
cytosolic mislocalization of insoluble BRCA1 aggregates. Hippocampal BRCA1 aggregates
strongly co-localize with both tau and Aβ inclusions, suggesting that Aβ may contribute
to AD-related DSBs. In vitro experiments using human amyloid precursor protein (APP)
overexpressing N2a swe.10 cells, N2a cells treated with exogenous Aβ, and N2a cells
co-incubated with N1a swe.10 cells, all demonstrate increased cytosolic BRCA1 proteins.
Lentiviral transfection of BRCA1 specific shRNA in N2a swe.10 cells significantly increases
the DSB burden [207]. Although these findings point toward a causative role for BRCA1
and HR repair in AD-linked DSBs, other studies have reported conflicting results. Studies
using Chinese Hamster Ovary (CHO) cells overexpressing APP and Aβ demonstrate per-
sistent increases in DSB accumulation with decreased expression of BRCA1 protein, but not
MRN or 53BP1. In the same study, hippocampal neurons of transgenic mice demonstrate
no change in expressions of BRCA1, MRN, or 53BP1 protein or mRNA despite the presence
of DSBs. Additionally, the qRT-PCR analysis of postmortem human tissues demonstrates
decreased BRCA1 and MRN transcripts, but not for 53BP1, compared to controls [200].
Collectively, these data support the role of HR repair proteins in the pathogenesis of AD-
related DSBs, although additional work is needed to elucidate underlying mechanisms.
Moreover, in light of recent evidence linking Aβ plaques with other neurologic diseases
such as autism [208], it is all the more interesting that these data suggest a causative role of
Aβ in neuronal DSB induction. Aberrations in the DDR have also been linked to AD-related
DSBs. Similar to that observed with BRCA1, postmortem human cortical neurons exhibit
combined evidence of DSBs with cytosolic aggregates of p53 that strongly co-localize with
tau inclusions. In the presence of DNA damage, activated phospho(p)-p53 levels are ex-
pected to increase and translocate to the nucleus to activate specific DDR pathways. In
both human AD and transgenic mouse tissues, however, p-p53 remains trapped in the
cytosol. Importantly, DSB-related downstream targets of p53 are also disrupted, including
decreased levels of acetylated K382 p53, and p53-inducible ribonucleotide-reductase small
subunit 2 [209]. Hence, these findings indicate neuronal DSBs are closely linked to AD
pathogenesis from its earliest stages. Whether DSBs are a cause, or an effect of AD pathol-
ogy remains uncertain. It is clear, however, that the neuron’s ability to manage DSBs in the
context of AD is severely compromised, and that targeting DNA repair or DDR signaling
proteins may prove useful as therapeutic strategies.

3.3. Brain Hemorrhage and Associated Neurological Consequences

Intracerebral hemorrhage (ICH) is the second most common cause of stroke and car-
ries a significant risk of morbidity and mortality. ICH may occur secondary to several
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mechanisms, but is defined by the leakage of blood from the vasculature either into or
around the brain parenchyma; bleeding usually happens in the anterior and posterior
regions of subcortical territory [210]. In an acute setting, ICH poses an immediate danger as
the accumulation of blood within the cranial space exerts pressure on the brain and reduces
cerebral perfusion. In chronic phases, neural toxicity mediated by the effects of extravasated
blood and its breakdown products leads to excitotoxicity and oxidative stress [211]. These
effects are thought to develop secondarily to the exposure of neural tissue to blood-derived
products (BDP), such as iron, which is a prooxidant [212]. Erythrocyte hemoglobin, an
oxygen-transporting protein, carries four heme prosthetic groups amounting to four atoms
of iron and is the source of iron toxicity following ICH. The breakdown of erythrocyte
corpuscles begins within minutes from initial contact with brain parenchyma. Over the
ensuing days to weeks, the slow release of BDPs from the hematoma saturates local tissue
where its cytotoxic effects are observed [213]. Hemoglobin, when outside of the erythro-
cyte, is oxidized to methemoglobin, which then dissociates into dimers. With time these
intermediates form hemichromes that break down into heme, which is finally catabolized
by heme oxygenase to release free iron ions [214]. During this process, heme released from
Hb retains its oxidizing characteristics and directly leads to the overproduction of ROS,
oxidative stress, inflammation, and tissue damage [215]. Free radicals in the released ROS
act to indiscriminately modify and destroy membranes, lipids, proteins, and nucleic acids
that disrupt cellular and organ function [216]. Oxidative stress-mediated genomic damage
and instability observed in neural tissue following ICH are also attributed to both hemin
and free iron [217]. Importantly, some studies demonstrate that hemin has DNA strand
cleavage activity in plasmid DNA [218], which may result in widespread induction of
SSBs [219]. Hegde and colleagues recently demonstrated that hemin induced DNA DSBs in
both the nucleus and mitochondria of treated cells. Notably, the DDR-mediated senescence-
like phenotype adopted by these cells also appeared to confer resistance to iron-mediated
ferroptosis, which was likely a critical adaptation for safe degradation/detoxification of
hemin [220].

Heme products released after ICH also have been demonstrated to upregulate pro-
inflammatory markers, including IL-6. Increases in IL-6 are credited with activating NF-kB
inflammatory signaling pathways and driving phosphorylation of STAT3, which is associ-
ated with the induction of mediators of iron metabolism, such as hepcidin [221,222]. No-
tably, hepcidin is also associated with chronic cognitive impairment in ICH survivors [223].
Hepcidin has been detected in both serum and brain tissue following ICH. In serum, hep-
cidin binds the iron exporting channel protein, ferroportin, which inhibits iron efflux from
microvascular endothelial cells and macrophages. However, some studies have reported
elevated hepcidin in neurons of the brain exacerbates oxidative injury [224].

Free iron, the second major constituent of BDPs, is typically distributed in the basal
ganglia, thalami, and white matter following intraparenchymal bleeds [225]. Nonheme
iron is capable of generating ROS that causes oxidative brain damage via a process termed
ferroptosis [226]. Iron is reported to affect the neural genome in two ways: the first is
through direct oxidative damage of the DNA molecule itself, and the second is by oxidation
of repair proteins such as NEIL1. In this manner, the iron component of BDPs acts to
directly damage DNA integrity while simultaneously inhibiting DNA repair [227]. In
many cases, iron exposure is insufficient to directly cause cell death but instead induces a
senescence-like phenotype via activation of DDR signaling [220,228]. These senescence-like
cells may express ROS-associated markers of cell cycle arrest, such as p21 [229], and may
exhibit altered morphology characterized by an enlarged, aberrant organellar structure.
Importantly, some reports suggest that this senescence-like state may confer resistance
to ferroptosis-mediated cell death [230]. While telomere shortening is a considered the
classic mechanism for cellular senescence, others have shown post-mitotic cells/tissues
may undergo telomere length-independent damage, which may then lead to a senescent
state via a non-canonical, senescence-linked, pro-hypertrophic, and pro-fibrotic secretory
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phenotype [231,232]. It remains an open-ended question how the senescence mechanism in
post-mitotic cells can be accelerated by the biological aging processes [233].

Hegde and colleagues have reported a connection between such a senescence-like state
and ferroptosis during ICH pathology. Even minimal concentrations of hemin can induce
the formation of DSBs that cause senescence-like changes in 40% of cultured endothelial
and neuronal cells. Furthermore, these cells display resistance to cell death after adding
cytotoxic concentrations of iron compared to the controls [228]. These findings suggest that
hemin exposure induces stress-related adaptations that permit survival after exposure to
otherwise lethal doses of iron.

3.4. DSB Damage in the Aging Brain

In 2018, the World Health Organization declared aging a cause of disease [234]. In
response to this new status, researchers and clinicians shifted their study of this universal
condition to better understand the underlying effects of aging. The effects of aging are
widespread throughout the body; however, of particular note to this review is the study of
the aging brain. Each day the neuronal genome is under constant assault by deleterious
factors derived from environmental and physiological origins [235]. The resultant molecular
damage inevitably leads to genomic instability and progressive degradation of the genetic
blueprint. These changes in the structure and composition of genetic molecules may help
explain why organisms become increasingly vulnerable to disease with increased mortality
as they age. This so-called DNA damage theory of aging is one of many developed to
explain how organisms predictably and naturally change over time.

The effect of DNA damage is especially relevant to the brain because its nondividing
neuronal cell population must survive for the duration of an organism’s life with limited
capacity for self-renewal. Consistent with the DNA theory of aging, some studies have
observed an increased frequency of positive γH2AX cell staining in multiple tissues from
aged animals, including the brain. The γH2AX is widely recognized as an indicator of
DSB presence in the genome. Its increased persistence in aged animals, therefore, suggests
an accumulation of unrepaired DSBs and implicates γH2AX as a molecular marker of
aging [236,237]. While the exact reasons for this increase are likely multifactorial, studies
from the early 2000s clearly demonstrate that aging neurons exhibit a diminished capacity
for DSB repair and that the remaining capacity for repair is driven primarily by the error-
prone NHEJ [238,239].

One mechanism by which DSBs may contribute to brain aging is through the conver-
sion of damaged neurons into a senescence-like state. Because DNA DSB is a particularly
lethal form of damage, the cellular response to their development is swift and complex.
The resulting DDR induced by DSBs can either lead to repair of the lesion, initiation of
apoptosis, or induction of a senescence-like phenotype [229,232,233,240,241]. The mecha-
nisms by which DSBs are repaired in neurons may also vary in their fidelity to the original
sequence, thus introducing new mutations with uncertain consequences. The choice of
the repair pathway also influences the outcome of DSB repair and is likely determined by
numerous factors, such as type and number of DSBs, among others [242]. When chronic,
these senescence-like changes can occur in nearly every CNS cell type and have been
attributed to functional aberrations found in both healthy aging and neurodegenerative
diseases [243–246]. It is believed that the continuous activation of the DDR produces these
changes in neurons [247]. The choice of cell fate following the induction of DDR depends
largely on the duration and severity of the DNA damage. Post-translational modifications
of various effector proteins within the DDR ultimately modulate the activation of p53 and
the apoptotic pathway. When the level of damage is insufficient to activate apoptosis, its
effects may still be observed as neuronal cell cycle activation [247]. Several studies have
demonstrated that following different forms of stress such as, stroke, traumatic brain injury
(TBI), MCI, and early AD [247–252], neurons may aberrantly re-enter the cell cycle at the
G1 or S phases, causing permanent changes to neuronal metabolism and the development
of a senescence-like state [247,253,254]. Once in the senescence-like state, these neurons
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release various signaling factors and toxins that damage neighboring cells, while instigating
internal positive feedback loops of mitochondrial dysfunction and ROS production that
reinforce persistent activation of the DDR [255–257]. In this way, the dysfunction of DSB-
induced senescence-like cells and the paracrine effects of those cells on surrounding tissues
may help explain how DNA damage can disrupt the delicate neural networks required for
higher cognition.

Alternatively, DSBs may affect the aging brain through the adult neural stem cell
population. Adult neuronal stem cells (NSCs), also called radial glia-like cells (RGLs), are
primarily located in the subventricular zone of the lateral ventricles and the subgranular
zone of the dentate gyrus, where they are believed to contribute new interneurons to the
striatum and dentate gyrus, respectively [258–260]. While the subventricular zone stem cells
support the maintenance of the olfactory bulb, the subgranular zone of the hippocampus is
critical for spatial learning, memory, and mood regulation [261–264]. Importantly, many
studies have demonstrated that significant declines in the number of NSCs are closely
associated with advancing age and neurodegenerative diseases [260,265,266]. Whereas
neurons exist only in a post-mitotic state, NSCs can adopt several states, such as quiescent,
activated, and differentiated. Several studies have demonstrated that advanced age disrupts
the balance of these states, ultimately leading to diminished regenerative capacity [266,267].
DNA damage, including DSBs, is thought to contribute to the age-related demise of these
NSCs by disrupting the natural stem cell state. In dividing cells, replication-induced stress
is a major contributor to genomic instability and mutational burden [268]. NSCs typically
avoid this stress by entering a quiescent state. Upon stress induction from tissue and
DNA damage, however, adult NSCs are stimulated into cell cycle re-entry to replenish
damaged cells, and in so doing, accumulate replication-induced mutations [269,270]. This
mechanism is believed to explain the significant increase in genetic abnormalities found in
NSCs isolated from aged mice when compared to those from younger mice [271].

Another explanation linking adult NSCs to age-related decline is based on observations
that the efficiency of DNA repair mechanisms declines with age [266]. Because NSCs fail
to proliferate and appropriately differentiate in the absence of functional DNA repair
mechanisms [272], maintenance and deployment of adult NSCs are likewise perturbed
in the aged brain [273]. The precise mechanisms underlying age-related declines in DNA
repair pathways are unclear. Multiple studies have demonstrated evidence indicating
transcriptional repression repair proteins, or age-related decreases in enzyme activity may
contribute to pathway disruption [274,275], thus suggesting a possible role for currently
unidentified accessory proteins such as those from the hnRNP family.

As hnRNP family proteins are involved in multiple fundamental cellular mecha-
nisms, such as metabolism, inflammation, genome stability, identification of suitable
aging-associated disease mechanism-oriented biomarkers, both physical and molecular, in
susceptible individuals can provide clinicians with an early hint of pathological onset and
buffer time to pre-determine the therapeutic strategy [276–278].

4. Targeted DNA Repair Therapeutics

Historically, DNA-targeted therapeutics have been relegated to the treatment of neo-
plastic pathologies. As new evidence has been reported and the link between genome
maintenance and neurodegenerative disease has strengthened, it seems we are closer than
ever to discovering potential disease-modifying therapies aimed at DNA damage and
repair. Some contemporary approaches to DNA-based therapies for neurologic disease
can be loosely categorized by target strategy: DNA damage-induced signaling, RNA
metabolism, and chromatin modifications. Some of the earliest approaches to DNA repair-
based therapies in neurologic disease targeted enzymes controlling chromatin organization.
Histone deacetylase (HDAC) inhibitors comprise a major drug class but have relatively
weak evidence of beneficial effects on neuronal genome stability. Some studies have demon-
strated that increased acetylation of H4K16 is sufficient to disrupt 53BP1 recruitment to
DSB sites while simultaneously increasing BRCA1 recruitment. Despite these changes,
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HDAC inhibition in neurons leading to H4K16 acetylation also decreases NHEJ efficiency
and demonstrates increased γH2AX staining [279,280]. Nevertheless, the potential still
exists for HDAC inhibition in neuronal DNA repair. As other studies have pointed out,
HDAC2 inhibition is associated with improved learning and memory, increased number
of synapses, and enhanced activity-induced transcription in mouse models of aging and
neurodegeneration [279,281].

Targeting the DDR signaling network is perhaps the most well-developed area of DNA
therapeutic ideas. Persistent activation of the DDR has clear negative effects on neuronal
homeostasis but is also required for the repair of similarly deleterious mutations. Given the
non-dividing state of post-mitotic neurons, it seems feasible that these cells may tolerate
certain levels of DNA damage but are instead forced into more acutely harmful cell cycle
re-entry or apoptosis secondary to DDR overactivation. To this end, targeted suppression
of the DDR may prove beneficial for preserving neuronal function despite the presence
of DNA damage. Early studies touched on this notion by identifying the neuroprotective
role of caffeine, a nonspecific ATM kinase inhibitor, against etoposide-induced primary
DSBs in cultured neurons [282]. Similarly, inhibiting the cyclin-dependent kinases (CDKs)
involved in DNA damage-induced cell cycle re-entry also prevented neuronal death in a
cerebral ischemia model [283]. As previously discussed, more recent studies have reported
how the ablation of p53 in a mouse model of C9orf72 ALS/FTD completely reversed
neurodegenerative changes and increased survival [193]. Attenuation of the DDR also
appears beneficial for neuronal DSBs. Recent reports have demonstrated that blocking DSB
recognition by the MRN complex not only confers a survival advantage to neurons but may
also promote vital regenerative capacity. Specifically, the genetic knockdown or pharma-
cologic inhibition of MRE11 exonuclease by mirin, or the ATM kinase by KU-60019, were
effective in mitigating neurodegenerative phenotypes in drosophila models. Furthermore,
similar inhibition prevented the neuronal loss in DSB-containing primary hippocampal
neuron cultures and decreased markers of apoptosis while stimulating axonal regeneration
in rat models of the spinal cord and optic nerve injury [284]. As previously mentioned,
the STING-IRF3 axis constitutes type-1 interferon-mediated inflammation that occurs in
parallel with the ATM-NF-κB pathway. Recent studies have suggested that C9orf72 may
be a therapeutic target in ALS/FTD with the effect of suppressing STING-mediated in-
flammation, particularly in the context of autoimmune activation [285,286]. Specifically, it
was demonstrated that the cGAS-STING pathway activation is a critical step in promoting
neuroinflammation via microglial recruitment in neurodegenerative and aging-associated
conditions [287,288]. Additionally, it is known that C9ORF72 repeat expansions induce
TDP-43 proteinopathy [289], one effect of which is the release of mitochondrial DNA, which
in turn activates the cGAS-STING system [139]. The resulting inflammation leads to a
neuronal senescent-like phenotype and apoptosis [290]. In this way, it is conceivable that
targeting C9orf72 may prove to be a useful therapeutic target for ALS/FTD.

Another DNA target involves DNA damage associated with RNA metabolism. As
previously mentioned, the hnRNP family of proteins is closely associated with RNA
processing at multiple levels, and some members are linked to specific RNA processing
deficiencies. TDP-43, for example, has a role in ALS-associated microRNA dysregulation
and DNA repair defects [291]. In this context, the fluroquinolone derivative enoxacin
has been proposed to ameliorate neuromuscular dysfunction by facilitating microRNA
processing [292]. A more recent study also highlights the potential of enoxacin to affect DSB
repair via RNA processing mechanisms. Upon DSB induction, small non-coding RNAs,
termed DNA damage response RNAs (DDRNAs), are generated in a DROSHER/DICER-
dependent manner. Although these DDRNAs are not required for DSB recognition, there is
strong evidence indicating their role in amplifying the DDR [293]. In IR-treated U2OS cells,
enoxacin exposure enhanced the ATM-CHK2-P53 signaling axis, increased recruitment
of DDR factors to break sites, and promoted NHEJ repair while decreasing the HR repair
without altering the cell cycle state [294]. Subsequent sequencing analysis of the cell lines
also indicated that the enoxacin exposure increased the accuracy of NHEJ-mediated repair
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compared to controls. Importantly, similar findings were observed in IR-treated primary
cultures of mouse cortical neurons in addition to findings of decreased γH2AX staining.
Taken together, these reports suggest that modulation of DDRNAs by enoxacin can rescue
neuronal DNA damage by regulating the repair pathway choice which favors increased
repair efficiency.
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