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ABSTRACT: Intrinsically disordered proteins (IDPs) play an
important role in an array of biological processes but present a
number of fundamental challenges for computational modeling.
Recently, simple polymer models have regained popularity for
interpreting the experimental characterization of IDPs. Homopol-
ymer theory provides a strong foundation for understanding generic
features of phenomena ranging from single-chain conformational
dynamics to the properties of entangled polymer melts, but is difficult
to extend to the copolymer context. This challenge is magnified for
proteins due to the variety of competing interactions and large
deviations in side-chain properties. In this work, we apply a simple
physics-based coarse-grained model for describing largely disordered
conformational ensembles of peptides, based on the premise that
sampling sterically forbidden conformations can compromise the faithful description of both static and dynamical properties. The
Hamiltonian of the employed model can be easily adjusted to investigate the impact of distinct interactions and sequence specificity
on the randomness of the resulting conformational ensemble. In particular, starting with a bead−spring-like model and then adding
more detailed interactions one by one, we construct a hierarchical set of models and perform a detailed comparison of their
properties. Our analysis clarifies the role of generic attractions, electrostatics, and side-chain sterics, while providing a foundation for
developing efficient models for IDPs that retain an accurate description of the hierarchy of conformational dynamics, which is
nontrivially influenced by interactions with surrounding proteins and solvent molecules.

1. INTRODUCTION
Despite lacking stable tertiary structure under physiological
conditions, intrinsically disordered proteins (IDPs) are
involved in a large number of important biological functions,
including intracellular signaling and regulation, and are also
associated with a broad range of diseases, including cancer,
neurodegenerative diseases, amylidoses, diabetes, and cardio-
vascular disease.1,2 The experimental characterization of IDPs
is complicated by the heterogeneous nature of their disordered
conformational ensembles (i.e., conformational distributions),
which challenges traditional techniques developed for folded
proteins. For example, X-ray crystallography and cryo-EM,
which recover high-resolution images of biomolecules in the
crystalline or frozen state, are fundamentally inappropriate for
characterizing the distribution of relevant IDP conformations.3

However, techniques including nuclear magnetic resonance
(NMR), small-angle X-ray scattering (SAXS), single-molecule
Förster resonance energy transfer (FRET), dynamic light
scattering (DLS), and two-focus fluorescence correlation
spectroscopy (2f-FCS) are capable of identifying the
conformational transitions sampled by IDPs,4−7 since they
perform measurements of the protein as it fluctuates within its
“natural” environment. However, these measurements provide
limited resolution in terms of the specification of a unique

corresponding microscopic distribution of conformations. In
other words, there may exist multiple distinct conformational
ensembles which reproduce the experimental measurements,
requiring molecular models to infer the correct underlying
distribution. As a result, molecular simulations have become
increasingly important tools for obtaining microscopic insight
that supports experimental observations (e.g., for the character-
ization of IDP conformational ensembles).4

All-atom (AA) models have gained significant popularity for
providing detailed descriptions of complex biomolecular
processes and, in conjunction with reweighting techniques,
can also be used to assist in the interpretation of experimental
measurements. The application of AA simulations to study
IDPs has brought to light transferability problems of standard
models, which were constructed to stabilize three-dimensional
structures of folded proteins. These force fields not only
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predict overly compact structures,8 but distinct AA models can
also generate widely varying and qualitatively different
secondary structure content for a given protein sequence.9

Recent efforts have been made to adjust these models to more
accurately describe the properties of IDPs.8,10,11 Despite these
improvements, AA simulations remain prohibitively expensive
for investigating the environment-dependent conformational
dynamics of IDPs, due to the expansive conformational
landscape traversed by these systems. Moreover, the large
range of time scales (from picoseconds to hours), thermody-
namic or chemical conditions (e.g., denaturation concen-
trations), as well as system variations (e.g., sequence
mutations) commonly explored in experimental studies
represent an overwhelming gap in computational accessibility
for AA models that is unlikely to be overcome in the near
future through improvements in software or hardware.
The computational expense of these detailed models has

motivated the use of much simpler polymer models12,13 (e.g.,
ensemble construction methods14 or analytically solvable
polymer models)4 to provide microscopic interpretations for
the experimental characterizations of processes involving IDPs.
The disordered nature of IDPs results in conformational
heterogeneity and broad intramolecular distance distributions,
reminiscent of generic models from the study of polymer
physics.15 However, these models are limited in resolution and
often lack the ability to provide significant microscopic insight
beyond what can already be inferred from experiments.
Moreover, the simplicity of the model approximations have
been shown to generate inconsistencies in the interpretation of
experimental measurements.16−19 Native-biased models (e.g.,
Go̅-type models)20, which use experimentally determined
protein structures to construct a potential energy function
with the protein’s native state at the global minimum, have
contributed immensely to our basic understanding of the
driving forces for protein folding.21−23 When combined with
additional non-native interactions, these models provide a
straightforward route to elucidate the essential features for
reproducing a given experimental observation.24−26 Although
these models have been useful for investigating the environ-
ment-dependent folding processes of IDPs27,28 (i.e., coupled
folding and binding processes), their reliance on a well-defined
native structure limits their ability to describe unfolded or
disordered conformations. This limitation can even propagate
into the characterization of the folding process of globular
proteins, resulting in a qualitatively incorrect representation of
folding pathways.29 Recent work from Shell and co-workers
aims to partially alleviate this limitation by combining
transferable bonded interactions with traditional nativelike
“nonbonded” interactions.30 There have also been significant
advancements in the development of physics-based coarse-
grained (CG) models to describe the temperature-dependent
collapse and liquid−liquid phase separation of IDPs.31,32

Recently, Rudzinski and Bereau proposed a simple physics-
based model33 for describing largely disordered conformational
ensembles of peptides. The foundational premise of the model
is that the sampling of sterically forbidden conformations, due
to missing degrees of freedom, can seriously complicate the
faithful description of both static and dynamic properties in
CG models of proteins. This complication is perhaps most
severe for disordered ensembles, where conformational
entropy plays an important role in shaping the free-energy
landscape. For this reason, the steric interactions and local
stiffness of the protein are described at a united-atom

resolution (i.e., explicit representation of all heavy atoms).
These interactions account only for excluded volume and chain
stiffness, without explicit attractions between atoms which
reside at significant separation along the peptide chain. In
addition to these detailed interactions, CG attractive
interactions are added to represent the characteristic driving
forces for peptide secondary and tertiary structure formation.
For example, in the introductory studies,33,34 the authors
employed a generic attractive interaction between Cβ carbons
in order to model the effective attractions between side chains
due to the hydrophobic effect. Additionally, attractive
interactions between Cα atoms separated by three peptide
bonds along the protein backbone were employed to model
helix-forming hydrogen-bonding interactions. These two
interactions represent the minimum set of interactions
necessary for qualitative reproduction of the conformational
ensemble of short peptides, that is, to sample helical, coil, and
swollen (i.e., hairpinlike) structures. The model was shown to
accurately characterize both structural and kinetic properties of
helix−coil transitions in small peptides, demonstrating its
potential for efficiently describing disordered ensembles, while
retaining relevant microscopic details.33,34 Furthermore, the
Hamiltonian of the model can be easily adjusted to investigate
the driving forces for particular processes.
In this work, we apply variants of this simple physics-based

model to investigate the role of distinct interactions in shaping
disordered protein ensembles. As a model system, we consider
the activation domain, ACTR, of the SRC-3 protein, a “fully
disordered” protein with only transient helical propensity.35−37

One way in which IDPs perform their function is by adapting
to their environment through so-called coupled folding and
binding processes.38 For example, ACTR can form a structured
complex with the nuclear-coactivator binding domain (NCBD)
of the transcriptional coactivator CREB-binding protein
(CBP), which plays an important role in the regulation of
eukaryotic transcription.39 CBP demonstrates the functional
advantages of IDPs in the regulation of genes,39 participating in
interactions with more than 400 transcription factors in the
cell.40 In the absence of a binding partner, NCBD is a molten
globule with three substantial helical regions39 but undergoes
coupled folding and binding processes with a variety of distinct
ligands.41 Within the NCBD/ACTR complex, the three helices
of NCBD form a bundle with a hydrophobic groove in which
ACTR is docked, and the assembly of the two proteins
promotes three helices in ACTR37 (see Figure 1).
Great efforts have been made to understand how IDPs

recognize their binding partners.42,43 For example, electrostatic
attractions have been shown to play an important role in
driving the formation of encounter complexes between the
binding pair.38,44 Additionally, the change in the solvent-
accessible surface area of IDP residues upon binding suggests
that IDPs can utilize different residues along the amino acid
sequence for interactions with different binding partners.2 The
conformational diversity of IDPs leading to the folded state
makes it challenging to precisely characterize their binding
mechanisms both experimentally and computationally.45,46

Previous work has identified two limiting mechanisms of
coupled folding and binding: “conformational selection” and
“induced fit”. The conformational selection mechanism is
characterized by an IDP which samples the relevant folded
structure (or some fraction of this structure) within the
unbound ensemble. In the induced fit mechanism, the folded
state only arises within the conformational ensemble of the
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IDP through interactions with its binding partner. In practice a
combination of these is typically observed.35,47,48 Thus, a key
step to describing the binding mechanism for a particular IDP/
partner pair, especially in cases where conformational selection
is prominent, is to characterize the unbound ensembles of the
molecules. Previous computational work employing Go̅-type
models has found that the NCBD/ACTR folding process
demonstrates dominant characteristics of the induced fit
mechanism.47 However, a mechanistic shift toward conforma-
tional selection is also possible when NCBD attains a distinct
folded structure after a proline isomerization.49 Computational
investigations of coupled folding and binding typically employ
models that are not explicitly constructed to accurately
represent the unbound ensembles of the individual binding
partners. While the unbound ensemble of NCBD has been
analyzed using both AA and CG simulations,35,36,50 the
unbound conformational behavior of ACTR has not, to our
knowledge, been investigated in detail. Instead, ACTR is
usually taken to be a fully disordered ensemble, as
characterized by simple polymer models.15,51

The present investigation employs an intermediate reso-
lution physics-based model to characterize the ensemble of
ACTR in the absence of a binding partner. This model enables
systematic analysis of the impact of distinct interactions and
sequence specificity on the randomness of the resulting
conformational ensemble. In particular, starting with a model
akin to a bead−spring (BS) model and then adding more
detailed interactions one by one, we construct a hierarchical set
of models and perform a detailed comparison of their
properties. Our analysis shows the following: (i) The
incorporation of generic attractions between amino acid side
chains significantly expands the diversity of the conformational
ensemble, without severely perturbing the distribution of the
radius of gyration. (ii) Electrostatic interactions can increase
the ruggedness of the conformational landscape, reducing the

overall conformational heterogeneity, but can simultaneously
introduce additional routes for stabilizing particular secondary
structures. (iii) Side chain sterics play a crucial role in
determining the overall shape of the free-energy landscape
through stabilization of particular structural motifs.
The rest of the paper is organized as follows. In section 2,

the hierarchical set of models, associated simulation protocol,
and relevant analysis tools are described in detail. Section 3
presents a detailed characterization of the hierarchy of CG
models describing the unbound conformational ensemble of
ACTR. Two additional polypeptides are also considered to
investigate the effect of side chain excluded volume on the
conformational ensembles of IDPs. Then, the transferability to
the unbound ensemble of NCBD using the more detailed
models is assessed. Finally, section 4 provides a brief discussion
and conclusions from the investigation.

2. METHODS
2.1. Protein Sequences. This work considers the

activation domain, ACTR, of the SRC-3 protein and the
nuclear-coactivator binding domain (NCBD) of the transcrip-
tional coactivator CREB-binding protein (CBP). The amino
acid sequences of ACTR and NCBD are given by:

where eqs 1 and 2 are the sequences for ACTR and NCBD
with 71 and 59 residues, respectively. The spacing in the
equations separate the sequences into groups of 10 residues.
Hydrophobic residues are labeled in red font, while the
positively and negatively charged residues are denoted by “+”
and “−”, respectively. Upon interaction, NCBD and ACTR
form a stable folded complex (Protein Databank (PDB) ID:
1KBH, see Figure 1).

2.2. A Simple Physics-Based Model for Describing
Disordered Ensembles. ACTR and NCBD were modeled
using a physics-based approach that represents the protein in
near-atomic detail while treating the solvent implicitly through
effective interactions between protein atoms.33,34 The total
potential energy function of the model can be written as a sum
of three terms:

U U U Utot loc exc att= + + (3)

Uloc represents local interactions contributing to chain
connectivity and stiffness and employs the standard functional
forms and parameters for bond, angle, dihedral, and 1−4
interactions given by the Amber99SB-ILDN force field52,53

(see Figure S1). For reasons that will become clear below, we
write Uloc as a sum of two contributions:

U U Uloc bond stiff= + (4)

where Ubond represents the bond interactions between pairs of
covalently bonded atoms and Ustiff represents the remaining
local interactions listed above. Uexc represents excluded volume
interactions at a united-atom resolution (i.e., an explicit
representation of all heavy atoms, without hydrogens). The
excluded volume interaction for each heavy atom pair was
determined by transforming the Lennard-Jones interactions
between the pair (again given by the Amber99SB-ILDN force
field) to a Weeks−Chandler−Andersen (WCA) potential (i.e.,

Figure 1. Visualization of the NCBD/ACTR folded complex (PDB
ID: 1KBH). The number labels correspond to residue numbers at the
beginning and ends of helices formed by NCBD (red) and ACTR
(blue).
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a purely repulsive potential). Uatt represents the attractive
interactions employed between Cα, Cβ, and representative side-
chain atoms and can contain several distinct contributions. In
this work, we consider a hierarchy of eight different models
which systematically build upon each other (see Table 1). The

first model employs only bond and excluded volume
interactions similar to the self-avoiding random walk model
from polymer theory: U(1) = Ubond + Uexc.

12 The second model
adds stiffness to the chain by incorporating the other local
interactions: U(2) = Uloc + Uexc. The remaining models employ
the full Utot potential with varying representations of Uatt: U

(id)

= Uloc + Uexc + Uatt
(id), for id ∈ {3a, 3b, 4, 5a, 5b, 6}. Model 3

employs attractive interactions between Cβ atoms, Uhp, to
model the hydrophobic attraction between side chains:

U U
r r
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with σij = 0.5 nm. We consider two variants of model 3: (i) x =
a, where the same parameter is employed for all amino acids
(denoted homo), ϵhp,ij

(a) = ϵhp, and (ii) x = b, where the
parameter depends on the identity of the pair of residues

(denoted hetero), ij i jhp,
(b)

hp, hp,ε ε ε= , where εhp,i is determined

according to the Miyazawa−Jernigan interaction matrix54 (see
Figure S2 and Table S1). More specifically, to set the absolute
scale of these interactions, we followed the work of Bereau and
Deserno.55 Briefly, the 20 × 20 Miyazawa−Jernigan interaction
matrix is reduced to 20 residue-specific energy values, which
approximately generate the full matrix through geometric
averages between pairs of residue types. These energy values
are then normalized to be between 0 (most hydrophilic) and 1
(most hydrophobic). Finally, a single overall interaction scale,
εhp, is chosen to determine all values of εhp,i simultaneously.
Model 4 builds upon model 3 by incorporating electrostatic
interactions, UDH, between charged residues: Uatt

(4) = Uhp
(b) +

UDH. These interactions are described at a coarse-grained level
of resolution (see Figure S3), using the Debye−Hückel
formalism,56 where the full point charge is placed on the last
side chain carbon (i.e., furthest from the backbone) for each
charged residue: arginine (R), lysine (K), aspartic acid (D),
and glutamic acid (E). In particular, the electrostatic energy is
given by

U
fq q

r

e

i j i

i j
r

ij
DH

,

ij

∑
ε

=
κ

>

−

(5)

where f 138.9354581
4 0

= =
πε

kJ mol−1 nm e−2 and ε = 80 at

room temperature for monovalent salt; κ−1 is the Debye

screening length; qi and qj are the point charges of the ith and
jth charged sites; and rij is the distance between these sites.
κ−1 = 0.313 I−1/2 nm mol1/2 L−1/2, where I c q0.5 i

n
i i1

2i= ∑ = is
the ionic concentration of the solution, ni is the number of
unique ionic species, and ci is the molar concentration of the
ion type i with charge qi.

57 Employing physiological
concentrations, ci = 0.1 mol/L for all ions, we obtain
κ−1 = 1 nm.
Model 5 builds upon model 3 by incorporating “local”

hydrogen-bonding interactions, Uhb, between Cα atoms that
are separated by three residues along the peptide backbone:
Uatt

(5x) = Uhp
(x) + Uhb. This interaction ensures that the proteins

are capable of forming α-helical conformations. The
incorporation of 1−4 hydrogen bonds independently from
hydrogen bonds occurring between residues farther apart along
the peptide chain allows the independent investigation of the
driving forces for helical versus β-sheet conformations. The
latter are not considered in the present study since ACTR does
not have a substantial propensity toward β-sheet formation. In
a way, the local hydrogen bonds represent a “nativelike”
interaction for peptides that fold into a single helix. For this
reason, the model was originally designated as a “hybrid Go̅”
model, indicating the combination of atomically detailed
physics-based interactions with simplistic (possibly natively
biased) attractive interactions at a coarser level of resolution.
Note that in previous work the hydrogen-bonding interaction
was denoted nc for “native contact”. Following previous work
employing native-biased CG models, we employ a hydrogen-
bonding interaction with a Lennard-Jones form along with a
desolvation barrier using the following functional form:24

Uhb = ∑i,j=i+3Udb,ij, where

U
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In eq 6, rcm = 0.5 nm is the position of the first potential
minimum with a corresponding depth of εhb, and rdb = 0.65 nm
is the position of the desolvation barrier maximum with a
corresponding height of εdb = 0.4εhb. Z(rij) = (rcm/rij)

k, Y(rij) =

(rij − rdb)
2, C n

r r
4 ( )
( ) n

hb db

db cm
2= ε ε+

−
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2(m−1) with
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m
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2
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=

ε ε
− −

+ . The parameters k = 6, m = 3, and

n = 2 control the shape of Uhb (see ref 33 for a plot of the
potential). Again, two variants of Uhp

(x) are considered, with
homo- and heterotype interactions for x = a and x = b,
respectively, as described above. Finally, model 6 also
incorporates electrostatic interactions: Uatt

(6) = Uhp
(b) + Uhb + UDH.

The hierarchy of models employed in this work is summarized
in Table 1.
Previous work using model 4 performed an extensive search

in parameter space to characterize the behavior of the model in
the context of helix−coil transitions of short peptides.33,34

Here, we tune the parameters of the model in an attempt to
accurately describe the conformational ensemble of ACTR.
There are no adjustable parameters for the local, excluded
volume, and electrostatic interactions. Moreover, as described

Table 1. Overview of Interactions for Model Hierarchy

model id Ubond Ustiff Uexc Uhp
(x) hp type Uhb UDH

1 yes no yes no N/A no no
2 yes yes yes no N/A no no
3a yes yes yes yes homo no no
3b yes yes yes yes hetero no no
4 yes yes yes yes hetero no yes
5a yes yes yes yes homo yes no
5b yes yes yes yes hetero yes no
6 yes yes yes yes hetero yes yes
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above, several of the parameters for the hydrogen-bonding
interactions have been fixed based on previous work.33,34 Thus,
the models are left with just two free parameters: εhp and εhb.
εhp was initially determined by simulating model 3a with
various parameter values and then comparing the generated Rg
distribution with that determined from experimental measure-
ments.6 For model 3b (hetero hp type), the residue-specific
hydrophobic attractions were applied such that the average
hydrophobic interaction energy (i.e., the average value of εhp,i
along the chain) was identical to that of model 3a (homo hp
type). εhp,ij

(b) for ACTR is presented in Figure S3. After fixing εhp,
εhb was determined by simulating model 4 with various
parameter values and then comparing the generated average
fraction of helical segments per residue, h(i), to experiments.6

With the exception of the difference in εhp used for the homo
and hetero variants described above, identical εhp and εhb
parameters were employed for the entire hierarchy of models,
wherever applicable. We hypothesize that the very accurate
representation of sterics in the model will result in energetic
parameters that are quite sequence-transferable for sequences
that exhibit largely disordered ensembles. A challenging test of
transferability is assessed toward the end of this work by
considering the molten globule NCBD.
When comparing models with fundamentally different

interactions, there is no unique procedure for calibrating the
energy scales of the models. When the interaction sets are not
entirely different (as is the case for the hierarchy of models
considered here), one option is to evaluate the models on the
same absolute temperature scale, as dictated by the simulation
protocol. This would lead to different ensemble properties at
the relevant temperature, due to changes in the incorporated
interactions. Alternatively, one can work with a reduced
temperature scale, defined with respect to a reference
temperature, T*, at which a particular ensemble property is
reproduced. We follow this latter approach in the present work,
and define T* as the temperature at which the average
experimental radius of gyration is reproduced. In terms of the
absolute temperatures employed in the simulation protocol, T*
corresponds to 300 K for ACTR for models 3a, 3b, 5a, and 5b
and 270 K for models 4 and 6. For NCBD, T* corresponds to
330 K for the two considered models, 5b and 6.
2.3. Simulations. All simulations of the hierarchical set of

physics-based models were performed with the GROMACS
4.5.5 simulation suite58 in the constant NVT ensemble while
employing the stochastic dynamics algorithm with a friction
coefficient γ = (2.0 τ)−1 and a time step of 1 × 10−3 τ. The CG
unit of time, τ, can be determined from the fundamental units
of length, mass, and energy of the simulation model.
Employing any one of the Lennard-Jones radii and energies
from the Amber99SB-ILDN force field yields a time unit on
the order of 1 ps. We report the connection to physical units
since the models are simulated using these units within the
GROMACS suite. For simplicity, we define τ = 1 ps, and
report the simulation protocol in units of τ. This relationship
to physical units does not provide any meaningful description
of the absolute time scale of characteristic dynamical processes
generated by the model, due to a lost connection to the true
dynamics.59 The present study focuses on ensemble-averaged
properties of the generated ensembles and does not attempt to
calibrate or interpret the generated dynamics, although
previous studies with this model have demonstrated the
faithful reproduction of kinetic processes for secondary-
structure formation.33,34 For each peptide, a single chain was

placed in a cubic box with a volume of (20 nm)3 and simulated
without periodic boundary conditions. Thus, no explicit cutoffs
were used for the interaction functions described in the
previous section. Replica exchange simulations60 were
performed to enhance the sampling of the system. In total,
16 temperatures ranging from 225 to 450 K were scanned with
an average acceptance ratio of 0.4. These represent absolute
simulation temperatures, which were transformed to reduced
temperatures for comparison of different models (as described
above). The exchange of replicas was attempted every 500 or
1000 τ, and each simulation was run for at least 500 000 τ. The
convergence of the simulations were assessed by randomly
dividing each trajectory into two groups and then checking for
consistency of various observables, including the average radius
of gyration and the average fraction of helical segments, as well
as autocorrelation functions of the radius of gyration and of the
end-to-end distance. Representative examples of the con-
vergence tests are presented in Figures S4 and S5.
For comparison with more generic polymer ensembles, we

considered a BS model (often referred to as the Kremer−Grest
model),61 which represents each monomer (i.e., residue) with
a single CG site. Connections between monomers are
represented with the finite extensible nonlinear elastic
(FENE) potential. We considered two variations of the BS
model, which differed in the treatment of nonbonded
interactions. The first (denoted “BS”) employed a purely
repulsive WCA potential to represent interactions between
monomers, while the second (denoted “BS-LJ”) employed a
standard Lennard-Jones (LJ) potential with a cutoff rc = 2.5σ.
The properties of the BS models are determined in reduced
units in terms of the LJ interaction radius, σ, the well depth, ε,
and the mass, m, of a monomer. The corresponding time unit
is m/τ σ ε= . The BS models were simulated at a
temperature of T* = 2.0 ε/kB. Simulations of the BS models
were performed with the ESPResSo++ package.62 Each
simulation employed a time step of 0.005 τ and was run for
3.2 × 109 τ, while using the Langevin thermostat with a
damping coefficient of 1.0 τ−1.

2.4. Analysis. 2.4.1. Polymeric Behavior. Because IDPs
possess some properties similar to those of more generic
polymer systems, such as long-range fluctuations and structural
heterogeneity, traditional polymer physics analysis can be
useful for providing an overarching description of the
conformational ensembles of IDPs.15 The single-chain back-
bone structure factor, which characterizes the overall shape of a
molecule, is given by63,64

S q
N

iq r( )
1

exp
i

N

i
1

∑= ·
= (7)

where N is the number of residues (N = 71 for ACTR and
N = 59 for NCBD) and q is the wave vector. ri corresponds to
the position of the Cα atom of the ith residue for the physics-
based models and the position of the ith bead for
the BS models. S(q) is widely used to characterize polymer
systems.64 We also calculated the shape parameters
R r r( )

N ij i jg
2 1

2
2

2= ∑ − (radius of gyration), Re
2 = (rN−r1)2

(end-to-end distance), and d i j r r( , ) ( )j iC
2 2= −

α
(inter-residue

distance between the Cα atoms). We will use the notation

X X2⟨ ⟩ ≡ ⟨ ⟩ , where X = {Rg, Re, dCα
(i, j)}. The average

(real space) distance between two residues separated by
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m residues along the chain is calculated as d m( )C⟨ ⟩=
α

d i j( , )
N i j
1

, C
2

ij
∑* ⟨ ⟩* α

, where i j,∑* is a sum over all ij pairs with

|j − i| = m and Nij* is the number of such pairs. Note that

j ir r( )j i
2⟨ − ⟩ ∝ | − |ν, where ν is the Flory scaling

exponent. Thus, it is useful to consider the normalized quantity

d m
N

d i j j i( )
1

( , ) /
ij i j

C
0

,
C
2∑⟨ ⟩ = *

* ⟨ ⟩ | − |
α α

such that d m( )C
0⟨ ⟩

α
is constant for a random walk and

proportional to m0.1 for a self-avoiding random walk.13,64

For a slightly more detailed view of the ensemble, we also
calculated contact probability maps, which are obtained by
determining the probability that a pair of Cα atoms are within a
given cutoff distance, rc, from one another. In this case, we
have chosen rc = 1.0 nm. Additionally, we calculated the
gyration tensor:

S
N

m m n n
1

2
( )( )mn

i

N

j

N

i j i j2 ∑ ∑= − −

where m, n ∈ {x, y, z}. Note that only the Cα atoms were taken
into account in the calculation of the gyration tensor, for
consistency with the BS models. The eigenvalues of Smn are
calculated and ordered as λ1 ≤ λ2 ≤ λ3. The asphericity of the
chain can be characterized in terms of these eigenvalues:
b ( )3

1
2 2 1λ λ λ= − + . The asphericity values reported

throughout the text are normalized by Rg
2 = λ3 + λ2 + λ1:

b̃ = b/Rg
2. For a self-avoiding random walk, the ratios of

eigenvalues are λ3:λ2:λ1 ≅ 12:3:1 (i.e., λ3/λ1 = 12 and λ3/λ2 =
4).65

2.4.2. Helical Propensity. The helical propensity of the
peptide is characterized by the average fraction of helical
segments, h(i), for each residue i. h(i) is calculated within the
context of the Lifson−Roig formulation,66 which represents
the state of each residue as being in either a helical, h, or coil, c,
state.67 More specifically, h(i) is defined as the average
propensity of sequential triplets of h states along the peptide
chain. Following previous work,68 we define the helical region
of the Ramachandran (ϕ, ψ) map as ϕ ∈ [−160°, −20°] and ψ
∈ [−120°, 50°], although the precise definition has little
impact on h(i).
2.4.3. Dimensionality Reduction and Clustering. The

conformational landscape of disordered proteins is difficult
to characterize within a low-dimensional representation. Linear
dimensionality reduction methods typically fail to provide
meaningful representations, due to the high level of structural
heterogeneity and subtle distinctions between different sub-
ensembles. Nonlinear manifold learning methods overcome
the limited ability of linear methods to capture nonlinear
relationships in the data and can determine the low-
dimensional embedding based on a wide variety of criteria.
These methods have been more successful in finding low-
dimensional embeddings which provide a clear picture of
distinct structures in disordered landscapes.69,70 Here we
employed the Uniform Manifold Approximation and Projec-
tion (UMAP) method, a type of multidimensional-scaling
algorithm that attempts to find a balance between resolving
global and local properties of the conformational landscape.71

More specifically, given a set of N input features (e.g.,

intramolecular coordinates), the conformation of the peptide is
defined within an N-dimensional space. UMAP obtains the
optimal (nonlinear) projection into an n-dimensional space (n
< N) using a cost function which simultaneously incorporates
pairwise distances between conformations at the largest
(global) and smallest (local) scales. In other words, the
projection attempts to preserve these two sets of high-
dimensional pairwise distances in the low-dimensional space,
which results in the preservation of certain features of the
conformational landscape. As input features, we employed
pairwise distances between Cα atoms and angles between
triplets of Cα atoms. To reduce the dimension of the input, we
applied the following coarse-graining procedure. We divided
the peptide into four-residue segments and computed the
minimum distance between atoms belonging to pairs of
segments. Pairs of segments separated by less than 3 other
segments were excluded. Thus, a total of 28 pairwise distances
were included in the input features. We then applied the same
segment representation to calculate the average angles between
triplets of segments, again excluding any combinations where
any pair of segments is separated by less than 3 other segments.
This yields a total of 84 angles.
We performed UMAP with an embedding dimension of 2,

using the standard Euclidean distance as the metric for
evaluating similarity of structures (according to their input
features). UMAP requires the choice of two other hyper-
parameters: the number of neighbors and the minimum
distance. Over the range of hyperparameters considered, the
resulting embedding space appeared to be relatively robust, but
displayed a noticeable change in the “clustering” of data points
as a function of either of the hyperparameters. We chose
parameter values which resulted in “reasonable” clustering (i.e.,
a balance between a single cluster and a very diffuse landscape
of points): 819 neighbors and 0.01 minimum distance. Since
the conclusions made from this analysis are largely qualitative,
we do not believe that the hyperparameter choice plays a
significant role in our analysis. The UMAP projection was
determined using the conformational ensemble generated by
model 4. Subsequently, this projection was applied to the
ensembles from each of the other models for consistent
comparisons. This projection involves a “small” statistical
component which has been shown to be normally distributed.
Thus, we performed the projection 10 times for each
configuration while randomly shuffling the input features.
The average of the resulting UMAP coordinates were taken as
the “true” projection and used to generate the free-energy
landscapes presented below.
While nonlinear dimensionality reduction is necessary for

providing a clear description of the overall conformational
ensemble, linear methods are very effective if one is only
interested in distinguishing between different helical states.
Thus, we also applied principal component analysis (PCA) on
the conformation space characterized by the ϕ/ψ dihedral
angles of each residue along the peptide backbone.72 We then
performed a k-means clustering73 along the largest three
principal components in order to partition the conformation
space into 50 states. We subsequently grouped these 50
microstates into 8 coarser states by applying the PCCA+
dynamical coarse-graining method.74

3. RESULTS AND DISCUSSION
In this work, we characterize the role of distinct interactions in
determining the disordered ensembles of IDPs. The focus of
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the study is the “fully disordered” peptide ACTR, which
displays only transient helical structures. ACTR has 71 residues
consisting of 26 hydrophobic residues, 18 charged residues,
and a net charge of −8 (eq 1). The average radius of gyration
of ACTR, R Rgg

2 1/2⟨ ⟩ ≡ ⟨ ⟩ , determined from small-angle X-ray
scattering experiments, is 26.5 Å at 5 °C and 23.9 Å at 45 °C.6

Note that the average size of ACTR decreases when the
temperature is increased from 5 to 45 °C. It has been argued
that many disordered proteins undergo such a collapse with
increasing temperature due to the unfavorable solvation free
energy of individual residues.75 The temperature-dependent
collapse of IDPs can be captured by atomistic simulations with
explicit solvent, while temperature-dependent force field
parameters are required for implicit solvent CG models.76

For this reason, the present study focuses on the ensemble of
conformations sampled at a single temperature. In particular,
we focus on the higher temperature ensemble of ACTR and
investigate models which approximately reproduce

Rg
(expt)

45 C⟨ ⟩ ° . We employ an intermediate-resolution physics-
based CG model, which represents the excluded volume of the
peptide with united-atom resolution, while treating the
attractive interactions which stabilize secondary and tertiary
structure in a much coarser manner. The model also represents
the solvent implicitly through these attractive interactions. We
consider eight distinct models with different interaction sets, as
summarized in Table 1 and described in detail in the Methods.
The models are separated into three groups: (i) models 1 and
2, without explicit attractive interactions, (ii) models 3a, 3b,
and 4, without hydrogen-bonding-like interactions, and (iii)
models 5a, 5b, and 6, with hydrogen-bonding-like interactions.
3.1. ACTR as a Sequence-Specific Self-Avoiding

Random Walk. By employing only bond and excluded
volume interactions, model 1 treats ACTR as a self-avoiding
polymer, similar to standard BS polymer models. The main
difference here is that the excluded volume interactions are
highly specific (represented at a united-atom level of
resolution), such that they induce some amount of sequence
specificity into the model. Figure 2a shows the distribution of
Rg values for ACTR generated by simulations of model 1 (blue
curve) at a reduced temperature 0.87T*. T* is defined as the

temperature at which the model reproduces Rg
(expt)

45 C⟨ ⟩ ° . For
model 1, ⟨Rg⟩ is approximately independent of temperature, as
expected for a self-avoiding random walk under athermal
solvent conditions.12 For this reason, and since there is no free

interaction parameter in model 1 for reproducing Rg
(expt)

45 C⟨ ⟩ ° ,
we cannot directly define T* in this case. However, the value of
the temperature-independent ⟨Rg⟩ for model 1 is 26.4 Å
(dashed blue line in Figure 2a), which is nearly the same as the

experimentally measured Rg
(expt)

5 C⟨ ⟩ ° . Therefore, we can
interpret this model as representing an ensemble at 0.87T*
([5 °C + 273 °C]/[45 °C + 273 °C] ≃ 0.87).
Figure 2b−d presents various ensemble-averaged properties

of model 1 at 0.87T* (blue curves). The average fraction of
helical segments per residue is negligible in this model, due to
the lack of interactions that stabilize helices (see Figure S6).
Figure 2b presents the structure factor, S(q), which describes
the overall shape of the protein at three characteristic length
scales.64 For small q (q

R
2

g
≪ π

⟨ ⟩), S(q) ≈ N (N = 71 for

ACTR). For q
R l
2 2

g k
< <π π

⟨ ⟩ , a power law of S(q) ∼ q−1/ν

occurs, where ν describes the quality of the solvent according
to standard polymer theory.12,63 The so-called Kuhn length, lk,
is model-dependent. For q

l
2

k
> π , S(q) ∼ q−1 corresponding to

a rigid rod. For model 1, lk ≈ 2.2 nm, since the crossover to
rigid rod scaling occurs at approximately q ∼ 2.9 nm−1 (filled
arrow in Figure 2b). Additionally, ν ≈ 3/5 in the region

q
R l
2 2

g k
< <π π

⟨ ⟩ , indicating that the conformational ensemble

generated by model 1 is comparable to a polymer in
good solvent (i.e., extended conformations are prominent).
Figure 2c presents the root-mean-square (normalized)
distance between Cα atoms for two residues separated by
| j − i | res idues a long the cha in , d j i( )C

0⟨ | − | ⟩
α

.

d m d i j j i( ) ( , ) /C N i j C
0 1

,
2

ij
⟨ ⟩ = ∑* ⟨ ⟩ | − |*α α

where i j,∑* is a sum

over all ij pairs with |j − i| = m, Nij* is the number of such pairs,
and d i j r r( , ) ( )j iC

2 2= −
α

. Note that the normalization by |j − i|
is in contrast to other related work77 (see Methods for further
details and Figures S7 and S8 for plots of the unnormalized
root-mean-square distances and additional analysis of
d j i( )C

0⟨ | − | ⟩
α

, respectively). d j i( )C
0⟨ | − | ⟩

α
characterizes the

local concentration of peptide segments for short separation
distances ( j i N

2
| − | ∼ ) and the global behavior of the chain

for larger separation distances (|j − i| ∼ N). For model 1,
d j i( )C

0⟨ | − | ⟩
α

increases monotonically as a function of |j − i|,
reaching a value of approximately 0.82 nm at |j − i| = N. This

Figure 2. (a) Distribution of the radius of gyration, Rg, (b) single-
chain backbone structure factor, S(q), (c) root-mean-square
normalized distance between pairs of residues separated by |j − i|
residues along the chain, d j i( )C

0⟨ | − | ⟩
α

, and (d) the probability of
pairs of Cα atoms to be within a cutoff of 1.0 nm. In panel (a) the
dashed black line indicates the experimental result of ⟨Rg⟩ at 45 °C. In
panels (a)−(c), the blue, red and magenta curves correspond to
results from model 1, model 2 and the BS model, respectively. The
arrows in panel (b) indicate the value of q at which the scaling law of
S(q) changes for model 1 (filled arrow) and for the BS model (empty
arrow). In panel (d), the top and bottom triangles correspond to
results from model 1 and the BS model, respectively.
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behavior is very similar to that of a self-avoiding random walk
(magenta curve, discussed further below) and is thus
consistent with the analysis of S(q). Figure 2d presents the
probability that a particular pair of residues, i and j, are in
contact (i.e., their Cα atoms are within 1 nm of one another).
The top left triangle of the plot corresponds to the
conformational ensemble generated by model 1, displaying a
very low probability of two residues being in contact if they are
situated more than a few residues from one another along the
chain. In other words, the chain is very extended, in further
support of the results from the shape parameters.
For a more direct comparison with a standard polymer

model, we also simulated a BS polymer model, commonly
referred to as the Kremer−Grest model.61 Figure S9
demonstrates the temperature-independent distribution of Rg
values for this model. We aligned the length scale of the
models by applying a rescaling factor (0.45 nm) to the BS
model such that ⟨Rg

(BS)⟩ = ⟨Rg
(1)⟩. The temperature of the BS

model (T* = 2.0 ε/kB) was chosen such that the width of the
distribution of Rg values approximately reproduced that of
model 1. In the BS model, residues interact according to a
purely repulsive (i.e., WCA) potential and the bonds between
neighboring beads are represented with a FENE potential.
Thus, the main difference between the models is the accuracy
with which model 1 describes the excluded volume of both the
backbone and the side chains. Figure 2 demonstrates that, with
the exception of a broader distribution of Rg values (Figure
2a), a shorter Kuhn length (lk ≈ 0.66 nm, indicated by the
empty arrow in Figure 2b), and a modest change in the
probabilities of contact for neighboring residues (Figure 2d),
the conformational ensemble of the BS model is very similar to
the ensemble generated by model 1. We also compared the
gyration tensors from the BS model and from model 1. The
gyration tensor eigenvalues and normalized asphericity values,
b̃, are given in Table 2. As shown in Figure 3, the ratios of the

gyration tensor eigenvalues are λ3:λ2:λ1 = 12.20:3.13:1 for the
BS model compared with λ3:λ2:λ1 = 11.81:3.12:1 for model 1,
further confirming the self-avoiding random walk behavior
generated by model 1. Additionally, the ensembles generated
by these models yield similar asphericity values: b̃(BS) = 0.62;
b̃(1) = 0.61.
Figure 2 also presents properties generated from simulations

of model 2 (red curves). In contrast to model 1, model 2
introduces an effective backbone stiffness into the set of
interactions which results in an overall expansion of the

peptide for comparable absolute temperatures. In fact, for this
particular model, ⟨Rg

(expt)⟩45°C is too low to reproduce at any
temperature due to the fixed nature of the effective stiffness of
the backbone, as determined by the Amber99SB-ILDN force
field. Nevertheless, to illustrate the overall properties of the
model, Figure 2 presents results from 0.4T*, with ⟨Rg

(2)⟩0.4T* =
30.9 Å (dashed red line in Figure 2a). In this case, T* was
approximated via a linear extrapolation of ln Rg(T) (i.e.,
assuming Arrhenius behavior). Figure 2b demonstrates that
model 2 has properties similar to those of model 1 (i.e., the
peptide behaves approximately as a polymer in good solvent).
However, the crossover to S(q) ∼ q−1 occurs at a smaller q
compared with model 1, indicating that the addition of
backbone stiffness results in a larger approximate lk, as
expected. The contact probability maps of the two models
are also quite similar (Figure S10). However, Figure 2c
demonstrates more clearly the effect of local backbone
stiffness. In particular, d j i( )C

0⟨ | − | ⟩
α

grows more quickly for
|j − i| ≤ 40, compared with model 1, and then drops slowly to
a value of about 0.92 nm at |j − i| = N. The peak at |j − i| ≈ 40
indicates that the chain is locally more rigid in model 2, while
the larger distance at |j − i| = N is indicative of more extended
conformations overall, as seen in Figure 2a. We also compared
the gyration tensor for these models (Figure 3). The ratios of
the gyration tensor eigenvalues for model 2 is λ3:λ2:λ1 =
11.76:3.20:1, again demonstrating behavior similar to that of
model 1. The ensemble generated by model 2 also has
asphericity comparable to that of the ensemble generated by
model 1 (see Table 2).
To obtain a more detailed picture of the conformational

landscapes of these models, we performed a dimensionality
reduction using the UMAP nonlinear manifold learning
algorithm71 to determine a two-dimensional embedding
upon which to view the ensembles. UMAP attempts to retain
both the local pairwise connectivity as well as the overall global
structure of the high-dimensional input space, within a lower-
dimensional (e.g., two-dimensional) projection. As input

Table 2. Eigenvalues of the Gyration Tensor and
Normalized Asphericity Values

model id λ3 [nm
2] λ2 [nm

2] λ1 [nm
2] b̃

BS 4.88 1.25 0.40 0.62
1 5.08 1.34 0.43 0.61
2 6.47 1.76 0.55 0.61

BS-LJ 3.58 1.41 0.57 0.47
3a 3.54 1.20 0.41 0.53
3b 3.80 1.19 0.42 0.55
4 3.56 1.14 0.39 0.55

5a 3.55 1.15 0.40 0.54
5b 3.51 1.12 0.39 0.55
6 3.38 1.04 0.36 0.56

Figure 3. Ratio of eigenvalues of the gyration tensor: (a) λ3/λ1; (b)
λ2/λ1.
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features for this procedure, we employed distances between
pairs of segments along the peptide and angles between triplets
of segments, as described in the Methods. For consistent
comparison, the two-dimensional UMAP embedding was
determined from simulations of model 4 and subsequently
applied to the other conformational ensembles. Figure 4a,b

demonstrates an approximate physical interpretation of each of
the embedding dimensions. Figure 4bi presents a scatter plot
of points sampled along the embedding, with colors
corresponding to the Rg of each conformation. There is a
significant correlation between UMAP-1 and Rg, although this
relationship is notably nonlinear. Additionally, the distribution
of conformations is significantly broader along UMAP-1
compared with Rg. The second dimension is more difficult to
directly interpret. Figure 4bii presents a scatter plot with colors
corresponding to the average angle formed between segments
1, 7, and 11, when the peptide is partitioned into segments of
four residues. Figure 4a presents an illustration of this angle for
two representative conformations. As one moves from the
lower left to the upper right of the embedding space,
conformations display an overall transition from extended
structures to more hairpin-like structures. The UMAP
landscape provides a clearer view of the heterogeneous
ensemble of structures sampled by ACTR, compared with,
for example, free-energy landscapes plotted as a function of Rg
and Re (Figure S11). The nonlinear nature of this embedding
results in structured free-energy landscapes, which are often
not possible for disordered ensembles using linear techni-
ques.69,70 Figure 4c presents the free-energy landscapes along
the embedding for model 1 and for the BS model. Both models
appear to sample very similar conformational ensembles (of
primarily extended, larger Rg, structures), consistent with the
analysis of the shape parameters above.

3.2. Effect of Hydrophobic Attraction between Side-
Chains. Models 3a, 3b, and 4 go beyond the simple self-
avoiding walk picture by incorporating attractive interactions
between Cβ atoms to represent the solvent-induced hydro-
phobic attraction between amino acid side chains. While
models 3b and 4 take into account the relative hydrophobicity
of each residue and scale this hydrophobic attraction
accordingly, model 3a employs a uniform hydrophobic
attraction which reproduces the average hydrophobicity of
the peptide chain. In addition to hydrophobic attractions,
model 4 incorporates explicit electrostatic interactions between
charged residues via the Debye−Hückel formalism. Figure 5

presents a comparison of the properties generated by these
models at T*. Figure 5a presents the distribution of Rg values
for models 3a, 3b, and 4 as the blue, red, and orange curves,
respectively. The distributions are nearly identical, although
model 4 has a slight tendency toward more collapsed
structures. This demonstrates an insensitivity in the overall
dimensions of the peptide to changes in specific interactions
between residues (given the constraints enforced by the
excluded volume interactions). Similar to models 1 and 2, the
formation of helices is negligible for these models (Figure S6).
However, these models no longer demonstrate properties of a
polymer in good solvent (Figure 5b,c). In particular, S(q)
displays ν = 1/2 dependence, representing a polymer in Θ
solvent. In other words, the attractive hydrophobic interactions
approximately counteract the effect of excluded volume and
chain stiffness, resulting in random walk behavior.

Figure 4. (a) Illustrations of the angle θ, formed between segments 1,
7, and 11, when the peptide is partitioned into segments of four
consecutive residues along the backbone. (b) Heat maps of (i) Rg and
(ii) θ along the coordinates determined from the UMAP manifold
learning algorithm. (c) Free-energy landscapes generated by (i) model
1 and (ii) the BS model along the UMAP coordinates.

Figure 5. (a) Distribution of the radius of gyration, Rg, (b) single-
chain backbone structure factor, S(q), (c) root-mean-square
normalized distance between pairs of residues separated by |j − i|
residues along the chain, d j i( )C

0⟨ | − | ⟩
α

, and (d) the probability of
pairs of Cα atoms to be within a cutoff of 1.0 nm. In panel (a) the
dashed black line indicates the experimental result of ⟨Rg⟩ at 45 °C. In
panels (a)−(c), blue, red, orange, and magenta curves correspond to
results from model 3a, model 3b, model 4, and the BS-LJ model,
respectively. In panel (d), the top and bottom triangles correspond to
results from model 3a and the BS-LJ model, respectively.
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Figure 5c also demonstrates notable differences of these
conformational ensembles, relative to the self-avoiding random
walks. In particular, d j i( )C

0⟨ | − | ⟩
α

displays a maximum at
|j − i| ≈ 15, which reflects the local rigidity of the chain due to
the backbone stiffness (as seen for model 2). As |j − i| increases
beyond 15, d j i( )C

0⟨ | − | ⟩
α

decreases until a minimum is
reached at |j − i| ≈ 55, due to the attractive hydrophobic
interactions between side chains which promote more
collapsed structures. Finally, the slight increase of
d j i( )C

0⟨ | − | ⟩
α

for larger |j − i| values demonstrates persistent
conformational heterogeneity (i.e., the ensemble is not
completely collapsed). Models 3a and 3b demonstrate very
similar behavior, although a slight expansion of distances is
observed in model 3b over the entire range of |j − i|
separations. The inclusion of electrostatics in model 4 results
in noticeable compaction of the ensemble for larger |j − i|
separations. This result may seem surprising, since ACTR has a
−8 net charge. However, recall that we have calibrated the
energy scale of each model by adjusting the absolute
simulation temperature to match ⟨Rg⟩ with the experimental
value. In this case, the direct effect of adding electrostatics to
the model does indeed result in a shift in the Rg distribution to
larger values if the absolute simulation temperature remains
fixed, as expected from the net charge on the chain. By
considering the models at T* we demonstrate that, given
ensembles with f ixed ⟨Rg⟩, the ensemble generated by the model
with electrostatics samples somewhat more compact structures.
We again compare these ensembles with a standard polymer

model (BS-LJ) but incorporate attractive interactions between
monomers, as described in the Methods. The obtained
distribution of Rg values as a function of temperature can be
seen in Figure S9. We again aligned the length scale of the
models by applying a rescaling factor (0.73 nm) to the BS-LJ
model such that ⟨Rg

(BS‑LJ)⟩ = ⟨Rg
(expt)⟩45°C. The distribution of Rg

generated by the BS-LJ model is presented in Figure 5a
(magenta curve), showing a narrower distribution and fewer
very compact structures compared with model 3a. This may be
partially due to the fact that we have not reoptimized the
temperature for the BS-LJ model (T* = 2.0 ε/kB) to fit the
width of the distribution of Rg values. Significant differences
are also observed in S(q) (Figure 5b), which demonstrates ν =
1/4 behavior, indicating that the chain behaves more like a
polymer under poor solvent conditions in the BS-LJ model
(i.e., samples overall more compact conformations). This result
is consistent with previous work with this model, which
identified the Theta temperature as approximately T* = 3.0 ε/
kB.

78 The S(q) behavior appears to be in conflict with the
distribution of Rg (Figure 5a), which is narrower than the
distribution generated by model 3a, without sampling the
compact tail of the distribution from model 3a. However,
Figure 5c demonstrates that although a maximum in
d j i( )C

0⟨ | − | ⟩
α

occurs at short residue separations in the BS-
LJ model, due to a lack of interactions governing local stiffness
of the chain, larger d j i( )C

0⟨ | − | ⟩
α

values are also attained in
this region. These larger average distances between residues at
short separation along the chain likely prevent the sampling of
structures with the smallest Rg values. At the same time, the
lack of chain rigidity along with the presence of attractive
interactions between monomers together promote an
increased sampling of compact structures, leading to
apparently compact behavior at intermediate length scales.

Additional distinctions between the two ensembles can be seen
by examining the ratios of the gyration tensor eigenvalues,
which are λ3:λ2:λ1 = 6.28:2.47:1 for the BS-LJ model and
λ3:λ2:λ1 = 8.63:2.93:1 for model 3a (Figure 3). Moreover, the
ensemble generated by the BS-LJ model (b̃(BS‑LJ) = 0.47) is
slightly more spherical than the ensemble generated by model
(b̃(3a) = 0.53). Figure 5d presents the contact probability maps
generated by model 3a (upper left) and the BS-LJ model
(lower right). While both models display increased probability
of long-separation (along the chain) contacts, relative to the
models without attractive interactions, the comparison high-
lights the simplicity of the BS-LJ ensemble relative to the
ensemble generated by model 3a. In contrast to the slightly
more expanded ensembles generated by models 1 and 2,
sequence-specific excluded volume interactions (along with the
details of local protein chain stiffness) appear to play a more
significant role in determining the finer details of these more
collapsed conformational ensembles. However, the contact
probability maps of models 3a, 3b, and 4 display relatively
smaller deviations from one another (Figure S10). Overall, the
inclusion of attractive interactions results in a structured
contact probability map, but remains largely independent of
the precise distribution of hydrophobic attractions.
Column (i) of Figure 6 presents the free-energy landscapes

for models 3a, 3b, and 4, plotted along the UMAP embedding

introduced above. The most striking difference between these
landscapes compared to those generated by the self-avoiding
walk models is the expanded diversity of structures sampled
despite rather similar distributions of Rg. The addition of
attractive interactions results in sampling both more collapsed
and more expanded structures compared with model 1. There
are also more subtle differences between the conformational
ensembles generated by models 3a, 3b, and 4. The

Figure 6. Free-energy landscapes generated by models 3a, 3b, and 4
[column (i)] and models 5a, 5b, and 6 [column (ii)] along the
coordinates determined from the UMAP manifold learning algorithm.
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redistribution of hydrophobicity in model 3b, compared with
model 3a, leads to only a slight shift in the conformational
ensemble, as indicated by the analysis above. The most
prominent difference is perhaps the increased sampling of the
smallest UMAP-1 (largest Rg) values, although this difference
manifests itself as only a minor change in the overall
distribution of Rg. There is also an increase of structures
corresponding to the largest values of UMAP-1. Overall, the
differences between the ensembles generated by models 3a and
3b appear to be distributed throughout the entire embedding
space, resulting in “averaging out” and little difference in the
overarching features of the disordered ensembles. However,
the introduction of electrostatics (model 4) leads to more
significant differences in the ensemble of structures and, in
particular, a more rugged free-energy landscape (i.e., a larger
number of clearly separated local minima), as seen in Figure
6ci. ACTR has 18 charged residues: 5 are positive charges and
13 are negatively charged (see eq 1). Overall, the electrostatic
interactions lead to increased sampling of compact structures
(positive values of UMAP-1) and a slight increase in structures
with the smallest UMAP-1 (largest Rg) values. The
conformations along UMAP-2 (i.e., with different θ values)
appear to more uniformly affected by the addition of
electrostatic interactions. It should be noted that the
calibration of the energy scales through the use of reduced
temperatures, as discussed above, results in a distinct balance
of stiffness versus attractive interactions in the different
models. In the case of model 4 (and for model 6 below), a
lower absolute simulation temperature is required for this
model to reproduce the appropriate ⟨Rg⟩ value, resulting in
larger stiffness energies relative to kBT*. This difference in
absolute simulation temperatures might be interpreted as the
reason for the larger difference in the free-energy landscape for
model 4, compared with models 3a and 3b. Alternatively, one
can say that given the fixed model details (e.g., chain stiffness,
hydrophobicity, etc.), the ensemble which incorporates

electrostatics and reproduces Rg
(expt)

45 C⟨ ⟩ ° does so through an
increase in the ensemble ruggedness.
3.3. Transient Helices. In addition to hydrophobic

attractions between side chains, models 5a, 5b, and 6 employ
attractive interactions between Cα atoms separated by three
peptide bonds along the protein backbone in order to
represent hydrogen-bonding interactions. The parameter for
this interaction was chosen to approximately reproduce the
overall propensity for helices in ACTR, as measured in
experiments (described further in the Methods). The current
models do not include hydrogen-bonding-like interactions
between residues farther apart along the peptide chain, since
propensity toward β-sheet-like secondary structures has not
been observed in ACTR. Similar to the previous set of models,
model 5a employs uniform hydrophobic interactions, while
models 5b and 6 use residue-specific hydrophobicity
parameters. Additionally, model 6 incorporates electrostatic
interactions between charged residues. Figure 7a presents the
distribution of Rg values at T* for models 5a, 5b, and 6 as the
red, blue, and orange curves, respectively. We find that the
distributions are rather insensitive to the addition of hydrogen-
bonding interactions. These models generate SAXS profiles
and corresponding Kratky plots in good agreement with
experimental measurements (see Figure S12 compared with
Figure 2b of ref 7).

Figure 7b,c presents S(q) and d j i( )C
0⟨ | − | ⟩

α
, respectively,

for models 5a, 5b, and 6. No significant differences are
observed in the behavior of S(q), which can be fit to q−2 (i.e., a
polymer in Θ solvent). Figure 7c demonstrates that the
behavior of d j i( )C

0⟨ | − | ⟩
α

is insensitive to the inclusion of

hydrogen-bonding interactions (i.e., d j i( )C
0⟨ | − | ⟩

α
follows the

same trend as for models 3a, 3b, and 4). However, similar to
the case of model 4, d j i( )C

0⟨ | − | ⟩
α

for model 6, which includes
electrostatics, is smaller than for models 5a and 5b for all
separation distances |j − i|. Additional differences in the
ensembles generated by these three models can be seen by
examining the gyration tensor. As shown in Figure 3, the ratios
of the gyration tensor eigenvalues are λ3:λ2:λ1 = 8.87:2.87:1 for
model 5a, 9.00:2.87:1 for model 5b, and 9.39:2.89:1 for model
6. Overall, these results indicate that incorporating hydrogen-
bonding interactions causes a slight shift in the ensembles
toward self-avoiding walk behavior, although the conforma-
tional ensemble as a whole still behaves like a random walk
(per S(q)). Additionally, the addition of electrostatics amplifies
this effect through increased stabilization of helices, as
examined in more detail below. At the same time, the
ensembles remain largely spherical (see Table 2). The contact
probability maps for these models are presented in Figure S10,
but they exhibit differences similar to those between the
models without hydrogen-bonding interactions. We character-
ize the formation of helices by the propensity of each residue
to form a helical segment, h(i), as described in the Methods.
Figure 7d presents h(i) for models 5a, 5b, and 6 (blue, red, and
orange curves, respectively). All three models demonstrate
similar behavior in terms of the position of helix formation

Figure 7. (a) Distribution of the radius of gyration, Rg, (b) single-
chain backbone structure factor, S(q), (c) root-mean-square
normalized distance between pairs of residues separated by |j − i|
residues along the chain, d j i( )C

0⟨ | − | ⟩
α

, and (d) the average fraction
of helical segments, h(i). In panel (a) the dashed black line indicates
the experimental result of ⟨Rg⟩ at 45 °C. In panels (a)−(d), blue, red,
and orange curves correspond to results from models 5a, 5b, and 6,
respectively.
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along the chain, due to the accurate treatment of side-chain
excluded volume. For example, there is dip in the region with
residue indices from 28 to 30, likely due to the presence of
arginine with residue index 29, which is hydrophilic and
contains a rather bulky side chain. The helical regions at
residue positions [9:14], [29:40], [48:54], and [58:62] are in
agreement with experimental observations.6,79 The helical
content of models 5a and 5b appears to be somewhat
insensitive to the distribution of hydrophobic interactions,
indicating that the precise hydrophobic contacts play a limited
role in the formation of helices (given the fixed representation
of sterics). However, model 6 demonstrates significantly larger
helicity. This may be due to either (i) the generic stabilization
of helices from the increased compaction of the ensemble or
(ii) the increased contact of specific residues which then
promote the formation of helices, which we discuss further
below.
The free-energy landscapes for models 5a, 5b, and 6, plotted

along the UMAP embedding introduced above, are presented
in Figure 6. Similar to the results for models 3a and 3b, the
UMAP projections for models 5a and 5b are quite comparable.
In contrast to the previous set of models, while model 6 does
slightly focus the sampling toward particular regions of the
landscape, the ensemble does not appear as rugged as for
model 4. However, a clear view of the ensemble is perhaps
clouded by the helical conformations, since the UMAP
coordinates were determined based on an ensemble without
helical conformations. To obtain a more detailed picture of the
formation of helices, we performed a dimensionality reduction
using PCA while employing the backbone dihedral angles as
input features (i.e., dihedral PCA).72 Although the ensembles
are largely disordered, linear dimensionality reduction can
effectively characterize the formation of transient helices within
these ensembles. Figure 8b−d presents the free-energy surfaces

generated by models 5a, 5b, and 6, respectively, along the first
two PCs. A clustering was performed along the first three PCs,
in order to partition the conformational space into 50
microstates. Here, we present a coarse-grained view of this
clustering, attained by grouping together sets of microstates.
The coarse cluster definitions are presented in Figure 8a as a

function of the first two PCs. Figure 9 characterizes each
cluster with the intracluster h(i) distributions. Cluster A (blue

curve) represents structures with a small helix formed from
residues 25−40, while cluster E (gray curve) contains
structures with negligible helical conformations. There are
two pathways from the cluster A to E which sample either
negative (a) or positive (b) values of PC-2. Figure 9
demonstrates that pathway (a) corresponds to unraveling the
helix from the N-terminus (Figure 9a), while pathway (b)
corresponds to unraveling the helix from the C-terminus
(Figure 9b). The free-energy surfaces in Figure 8 show that
models 5a and 5b sample a single dominant pathway for helix
formation, while the introduction of electrostatics in model 6
allows for helix formation from either end. This additional
pathway leads to a significant increase in the sampling of
helical conformations (Figure 7d).

3.4. Clarifying the Role of Excluded Volume in the
Formation of Helical Structures. We have considered the
impact that both generic and specific attractive interactions
have on the resulting conformational ensembles of peptides
with the length and approximate excluded volume of ACTR.
To explicitly demonstrate the role that the steric interactions
play, we consider models for the uncharged polypeptides
(Alanine)71 and (Glycine)71, denoted as polyA and polyG,
respectively, which have the same parameters εhp and εhb as
model 5a but lack the sequence-specific side-chain sterics of
ACTR. Because the resulting ensembles are dramatically
different from one another, it is not feasible to match

Rg
(expt)

45 C⟨ ⟩ ° by adjusting the temperature, as performed for
the other models in this study. Instead, we employ the same

Figure 8. (a) Conformational clusters of ACTR presented along the
two dominant principal components (PCs). (b)−(d) Free-energy
surfaces of ACTR generated using models 5a, 5b, and 6, plotted along
the two dominant PCs.

Figure 9. Intracluster fraction of helical segments, h(i), for (a) N-
terminus and (b) C-terminus folding pathways, as characterized on
the PCA landscape (Figure 8) using model 6.
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absolute simulation temperature as for model 5a, allowing ⟨Rg⟩
to deviate from the experimental value.
Figure 10 presents the average fraction of helical segments,

h(i), for ACTR, polyA, and polyG. In going from the ACTR

model to the polyA model, all side-chain atoms except the Cβ

atoms are removed. The removal of excluded volume
interactions reduces the entropy loss upon helix formation,
significantly promoting the sampling of helical conformations.
By further removing the Cβ atoms, from polyA to polyG, the
attractive interactions which stabilize compact structures
(including helices) are removed, resulting in a complete
absence of helical conformations. Despite the uniformity of the
sequence, the helicity of polyA demonstrates sequence-
dependent behavior. The two regions of smaller helicity at
[25:30] and [47:52] (black lines in Figure 10) arise due to the
likelihood of the chain bending at positions corresponding to
1/3 and 2/3 of the total chain length, in order to maximize
hydrophobic contact in compact structures (see Figure S13).
Thus, even if one were to reparametrize the model to
reproduce the appropriate ⟨Rg⟩ value and overall h(i)
magnitude, the formation of helices in the models that do
not accurately represent the side-chain sterics would be
qualitatively incorrect. Furthermore, in contrast to the small
differences in the overall “shape” of the protein for the various
models with differing energetics considered above, there is a
dramatic change in the conformational ensemble associated
with the amendment of excluded volume interactions (Figure
10b). This motivates the use of models that accurately

represent the protein sterics for the investigation of disordered
conformational ensembles.

3.5. Conformational Ensemble of NCBD. To investigate
the applicability of the considered models for investigating
distinct disordered ensembles, we consider NCBD, the binding
partner of ACTR. NCBD has 59 residues, with 27 hydrophobic
residues and 8 charged residues (see eq 1). Its unbound
conformer (PDB ID: 2KKJ) is a molten globule that has three
helices at residue positions [6:19], [23:36], and [36:47] (see
Figure 1 for helix positions in the bound state).35,50 Thus, the
unbound NCBD protein generates a very distinct conforma-
tional ensemble compared with that of ACTR. In fact, NCBD
and ACTR are representative examples of two different classes
of IDPs77 (see Figure S2b). The ⟨Rg⟩ for NCBD was measured
from SAXS experiments to be approximately 18.8 Å under
nativelike conditions.6 We consider here only models 5b and 6,
to investigate whether electrostatics play a significant role in
shaping the unbound conformational ensemble of NCBD.
Because initial simulations of these models resulted in a lack of
helix stabilization, we increased the energy of the hydrogen-
bonding-like interaction, εhb, from 13 to 16.9 (30% larger than
that of ACTR), which lead to good agreement of both ⟨Rg⟩
and h(i) with respect to the experimental values. We have
again calibrated the energy scale of the model by finding the
simulation temperature at which the experimental values of
⟨Rg⟩ and h(i) are reproduced, independent from ACTR,
although the resulting T* is only 10% larger (in absolute
temperature units, i.e., K) than the value for ACTR. The
adjustment of parameters to reproduce the properties of
NCBD was expected, since these quantities are free-energy
functions which rigorously depend on the system identity and
thermodynamic state point.80 In fact, the relative insensitivity
of the model parameters indicates a certain level of
transferability of the model, further motivating the use of
simple energetic functions for representing disordered
ensembles.
Figure 11a presents the distribution of Rg for models 5b (red

curve) and 6 (orange curve), which are nearly identical (⟨Rg⟩ =
18.7 and 18.3 Å, respectively). Similarly, S(q) (Figure 11b)
demonstrates ν = 1/2 behavior for both models, indicating that
electrostatics play a relatively small role in the overall shape of
NCBD. However, Figure 11c demonstrates that d j i( )C

0⟨ | − | ⟩
α

is significantly different for models 5b and 6 for |j − i| > 15,
qualitatively similar to the comparison of models 5b and 6 for
ACTR. Without electrostatics (model 5b), NCBD demon-
strates less compaction in the intermediate regime due to the
onset of attractive interactions, compared with ACTR. The
inclusion of electrostatics (model 6) leads to a greater degree
of compaction for NCBD in this regime and a significant
difference in d j i( )C

0⟨ | − | ⟩
α

generated by the two models. The

eventual increase of d j i( )C
0⟨ | − | ⟩

α
demonstrates that NCBD

retains significant conformational heterogeneity within its
molten globule ensemble, despite the presence of largely
formed helices. The difference in the behavior of
d j i( )C

0⟨ | − | ⟩
α

for the two models in the case of NCBD is
striking, considering the similarity of the ensemble in terms of
⟨Rg⟩, S(q), and h(i). This may be a result of the slightly lower
propensity for middle helices in model 6 (Figure 11d), which
can allow for the sampling of more compact structures through
stacking of the outer helices. However, the gyration tensor
provides further evidence of the similarity of the ensembles

Figure 10. (a) Average fraction of helical segments, h(i), and (b)
distribution of the radius of gyration, Rg, for ACTR (blue), polyA
(red) and polyG (orange), determined from simulations of model 5a.
The two regions marked by the black lines in panel (a) include the
residues ranges [25:30] and [47:52].
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generated by models 5b and 6. The ratios of the gyration
tensor eigenvalues are 9.75:3.35:1 and 9.78:3.04:1 for models
5b and 6, respectively, while the normalized asphericity values
are 0.53 and 0.56. Overall, it appears that the conformational
ensembles of IDPs with large fractions of secondary structure
motifs may be more robust to perturbations in the interactions,
assuming a fixed representation of sterics.

4. CONCLUSIONS
We have studied the ensembles of two intrinsically disordered
peptides, ACTR and NCBD, using a simple physics-based
model, which accurately represents peptide sterics and allows
an adjustable parametrization to match experimental quantities
(e.g., ⟨Rg⟩ and h(i)). A hierarchy of models was considered,
which systematically incorporated an increasing number and
complexity of interactions, in order to clarify the impact of
these interactions on the features of the resulting ensembles.
Our analysis demonstrates that the differences between these
distinct ensembles are difficult to fully characterize using only
traditional shape parameters, such as the distribution of radius
of gyration values and the single-chain backbone structure
factor. However, the root-mean-square normalized inter-
residue distances between Cα atoms, the ratios of gyration
tensor eigenvalues, and the contact probability map assist in
further distinguishing the overarching features of the
ensembles. Additionally, we have employed a manifold
learning algorithm in this work, to determine an optimal
two-dimensional representation for viewing the ensemble of
conformations, which provides an effective way to further
clarify the differences between distinct disordered ensembles.
Our investigation found that, with respect to a self-avoiding

random walk, disordered ensembles that incorporate hydro-

phobic interactions lead to a significant increase in conforma-
tional heterogeneity. However, given the presence of attractive
interactions, the precise identity of these interactions (e.g., the
distribution of hydrophobic interactions along the chain or the
presence of electrostatics) appear to play a relatively small role
in determining the major features of the disordered free-energy
landscapes. At the same time, specific interactions can stabilize
particular structures which may be relevant for processes under
a perturbation of the system (e.g., when a disordered peptide
comes into contact with its binding partner). For example,
electrostatic interactions increase the ruggedness of the free-
energy landscape and stabilize multiple routes to secondary
structure formation. These effects appear to be more significant
for more disordered, flexible IDPs (e.g., ACTR) than for
molten globules (e.g., NCBD). While electrostatics are thought
to play an important role in the formation of encounter
complexes in IDPs,38,39 the present work suggests that specific
contacts between charged residues can promote the presence
of transient helices within the ensemble of conformations
sampled in solution, which may be relevant for coupled folding
and binding processes.
The flexible physics-based model employed in this work

facilitated the reproduction of experimental ⟨Rg⟩ and h(i)
values for both ACTR and NCBD. These two peptides are
representative examples of two different classes of IDPs: “fully
disordered” (ACTR) and molten globule (NCBD). Although
the (free-energy) parameters of this simple model should be, in
principle, highly sequence-specific, we find that only relatively
small adjustments were necessary to reproduce the exper-
imental measurements for both systems. This indicates a
certain level of transferability in terms of the essential features
shaping the free-energy landscape for these disordered systems,
motivating the continued use of CG models. Moreover, in
conjunction with previous investigations of helix−coil
transitions,33,34 our results indicate that excluded volume
interactions play a key role in determining the overarching
characteristics of heterogeneous landscapes. This further
motivates the development of models that can accurately
model protein sterics while efficiently sampling conformational
space.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c01949.

Additional model and simulation details as well as
further analysis (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Joseph F. Rudzinski − Max Planck Institute for Polymer
Research, 55128 Mainz, Germany; orcid.org/0000-0003-
3403-640X; Email: rudzinski@mpip-mainz.mpg.de

Authors
Yani Zhao − Max Planck Institute for Polymer Research, 55128
Mainz, Germany; orcid.org/0000-0003-1430-4518

Robinson Cortes-Huerto − Max Planck Institute for Polymer
Research, 55128 Mainz, Germany; orcid.org/0000-0002-
4318-970X

Kurt Kremer − Max Planck Institute for Polymer Research,
55128 Mainz, Germany; orcid.org/0000-0003-1842-9369

Figure 11. (a) Distribution of the radius of gyration, Rg, (b) single-
chain backbone structure factor, S(q), (c) root-mean-square
normalized distance between pairs of residues separated by |j − i|
residues along the chain, d j i( )C

0⟨ | − | ⟩
α

, and (d) the average fraction
of helical segments, h(i). In panel (a), the dashed black line indicates
the experimental result of ⟨Rg⟩. In panels (a)−-(d), red and orange
curves correspond to results from models 5b and 6, respectively.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.0c01949
J. Phys. Chem. B 2020, 124, 4097−4113

4110

https://pubs.acs.org/doi/10.1021/acs.jpcb.0c01949?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.0c01949/suppl_file/jp0c01949_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joseph+F.+Rudzinski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-3403-640X
http://orcid.org/0000-0003-3403-640X
mailto:rudzinski@mpip-mainz.mpg.de
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yani+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-1430-4518
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robinson+Cortes-Huerto"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-4318-970X
http://orcid.org/0000-0002-4318-970X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kurt+Kremer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-1842-9369
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c01949?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c01949?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c01949?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c01949?fig=fig11&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.0c01949?ref=pdf


Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcb.0c01949

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Hsiao-Ping Hsu and Govardhan Reddy for
critical reading of the manuscript. Y.Z. and J.F.R. thank Tristan
Bereau and Hsiao-Ping Hsu for fruitful discussions. J.F.R.
thanks Yasemin Bozkurt Varolgünes ̧ for assistance with the
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