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Abstract

Neuroimaging studies of subjects with ADHD typically show altered functional connectivity

in prefrontal, striatal, and several temporal brain regions. While the majority of studies have

focused on connectivity that is averaged over time, we investigated the temporal dynamics

of brain network changes in resting-state fMRI. Using the ADHD-200 consortium, we char-

acterized the time course of latent state changes using Hidden Markov Modeling, and com-

pared state changes between boys and girls with ADHD along with typically developing

controls. Sex differences were found in latent state switching, with boys dwelling longer in a

given state than girls, and concurrently having fewer overall state transitions. These sex dif-

ferences were found in children with ADHD and in typically developing controls. Children

with ADHD were also found to be more variable in terms of state transitions than controls.

These findings add to the growing literature on neural sex differences and may be related to

the sex difference in focal versus diffuse attention.

Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) affects at least 5% of children and adoles-

cents [1–4]. Its primary symptoms include inattention, impulsivity, and hyperactivity, with

associated deficits in self-regulation, executive function, and working memory [1, 5]. Children

diagnosed with ADHD often continue to experience these symptoms into adulthood, with

about one in seven continuing to meet full diagnostic criteria as adults [6–7]. The practical

consequences of ADHD are reflected in social and academic difficulties for children [8–10], as

well as social and employment issues for adults [11].

There are two- to three boys for every girl diagnosed with ADHD [12], as well as sex differ-

ences in how the symptoms manifest. For instance, boys with ADHD show more impulsive

behaviors and larger deficits in executive function, achievement, and sociality, whereas girls

with ADHD on average have lower intelligence and exhibit more internalizing (e.g., depres-

sion) symptoms and fewer disruptive behaviors [13–15]. Neuroimaging studies, including

magnetic resonance imaging (MRI) have revealed both structural and functional differences

between children with ADHD and their typically developing peers, as well as sex differences

among children with and without ADHD.
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Here, we first review the neuroimaging literature on both ADHD and sex differences, (also

see [16–17]), and then describe how we utilized resting-state functional MRI (or rs-fMRI) to

investigate sex differences in brain network dynamics in children with ADHD and their typi-

cally developing peers. Resting-state functional MRI is often used to assess the temporal coher-

ence (correlation) of activity between multiple brain regions, and we extend this approach by

using Hidden Markov Modeling (HMM) to identify latent state changes across sex and for

children with and without an ADHD diagnosis.

Prior neuroimaging studies

Neurological deficits have long been thought to contribute to ADHD [2], and the results from

brain imaging studies are consistent with this view. In terms of brain structure, children with

ADHD have been found on average to have a smaller caudate [18], cerebellum [19–20], pre-

frontal cortex [19], and overall white matter volumes [21] compared to their typically develop-

ing peers. Aberrant functional connectivity has also been found in children with ADHD,

including greater connectivity among multiple brain regions. These include the cerebellum,

left fusiform, right inferior temporal gyrus, left supplementary motor cortex [22], as well as

areas in the prefrontal cortex (PFC) and the default mode network (DMN) [23]. At the same

time, there appear to be other regions with lower levels of connectivity in children with

ADHD relative to other children, including the superior parietal cortex [24], left precuneus

[21, 24], and thalamus [21], as well as overall reductions in temporal coherence.

In typically developing children, temporal coherence generally increases with age, and the

relatively poor temporal coherence in children with ADHD might reflect a developmental

delay. Either way, decreased temporal coherence between the DMN and other cortical regions

is often found for children with ADHD [25–28]. Indeed, abnormal DMN functional connec-

tivity is a frequently studied aspect of ADHD [25, 27–28].

Moreover, children with ADHD often differ from other children in terms of functional

connectivity involving regions of the prefrontal cortex. In a resting-state study, Bos et al. found

increased but more diffuse connectivity patterns in the medial PFC and the inferior frontal

gyrus in children with ADHD relative to typically developing children [29]. Other studies have

reported similar levels of hyperfrontality [30–31], but still others have indicated hypofrontality

[32–36]. Lower connectivity between the precuneus and ventromedial PFC has also been iden-

tified in adults with ADHD [37–39], as well as other general decreases in prefrontal activity

with children with ADHD [22], and in the ventrolateral [40] and lateral [21] PFC.

These neuroimaging findings are consistent with differences in multiple brain networks of

children with ADHD relative to their typically developing peers. Differences in the DMN sug-

gest that children with ADHD may not engage in the same forms of mind wandering as typi-

cally developing children, and differences in the frontal-striatal, frontoparietal control, and

attention (dorsal and ventral) networks are consistent with deficits in executive functioning

and cognitive control. The relation between the DMN and attentional networks is also impor-

tant: specifically, for shifting from self-referential cognition associated with episodic memory

to the attentional focus needed to address specific, non-self-referential demands [41]. In other

words, many children with ADHD likely have deficits in ease of shifting between networks

that might be of functional importance [28, 42]. A recent study used whole-brain functional

connectivity to find a neuromarker of sustained attention [43]. This neuromarker was able to

successfully predict measures of sustained attention (symptom of ADHD), showing that

whole-brain resting-state network activity holds informational content related to measures of

attention, potentially relating to subjects with ADHD as well.

Latent resting-state dynamics
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It is currently unclear whether the sex difference in the prevalence of ADHD is an exaggera-

tion of more general sex differences in verbal, motor, or brain function or reflects something

unique to ADHD. Generally, many sex differences are similar to those found in ADHD. For

instance, sex differences have been found in functional connectivity within both the DMN and

the sensorimotor cortices [44–45]. Apart from average differences in activation or connectiv-

ity, men tend to be more variable in many cognitive and behavioral domains [46], and more

variable in neural patterns. As a potentially relevant example, Johnson and Bouchard found a

large sex difference (d = .9) on a composite measure of diffuse versus focused attention, after

controlling for general intelligence [47]. Men on average were better able to maintain atten-

tional focus, but were also more variable than women as a group. Whether this would manifest

as greater variability in boys than girls in switching between networks among typically devel-

oping children or children with ADHD is unknown and merits investigation.

Current study

Although many potentially important ADHD-related and sex differences in brain structure

and functions have been identified, relatively little is known about the temporal dynamic

changes of brain activity in these individuals. In one study, Alba et al. observed no significant

group differences in averaged connectivity between subjects with ADHD and controls,

although ADHD subjects showed more variability in connectivity over time in frontal and par-

ieto-occipital regions relative to controls [48]. However, to our knowledge, no other study has

modeled dynamic changes without averaging over time in fMRI, as is commonly done in static

functional connectivity analyses. Given sex differences in ADHD symptomatology, the over-

representation of males among individuals with ADHD, and the sex difference in focused-dif-

fuse attention, the study of sex and diagnostic differences in temporal dynamics of state, or

network, changes in resting-state fMRI could provide unique insights into ADHD and sex dif-

ferences linked to ADHD more specifically. Here, we use computational modeling to estimate

latent, or hidden, brain states and to quantify whole-brain changes in state dynamics as a func-

tion of ADHD diagnosis and sex.

Results

Subject characteristics including sample size, age, and basis for ADHD diagnosis can be found

in Table 1. Age was initially utilized as a covariate in the main analyses, but the independence

assumption between the covariate and treatment effects was violated, rendering the use of age

as a covariate inappropriate. Therefore, the presented analyses do not include age as a covari-

ate. When age was included, the main conclusions did not change, and details of this analysis

can be found in the supplementary materials.

Table 1. Subject characteristics.

ADHD�

Sex Diagnosis N Age Hyperactive/Impulsive Inattentive Combined

Girl ADHD 99 10.64 (2.71) 3.70% 46.30% 50.00%

Boy ADHD 347 11.92 (2.98) 4.02% 37.95% 58.04%

Girl Control 251 11.39 (2.98) - - -

Boy Control 257 11.81 (2.77) - - -

N = number of analyzed scans.

�Percentage of each type of diagnosis is shown for participants with ADHD. The combined diagnosis lists children showing both hyperactive/impulsive as well as

inattentive behaviors.

https://doi.org/10.1371/journal.pone.0218891.t001
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Latent states from the rs-fMRI time series data were estimated using Hidden Markov

Modeling (HMM) for each group separately. To resolve potential differences in the nature of

each state for the four groups (e.g., one latent state for girls with ADHD might differ from

another latent state for boy controls), and to combine similar states across the groups, k-means

clustering was performed. A five-cluster model was chosen, using the mean activation maps

for each of the 20 estimated states (i.e. five states for each of the four groups). Results from the

cluster analysis showed that each cluster appropriately contained only one mean activation

map from each experimental group (sex × diagnosis). In other words, the HMM identified five

states that were similar across the four groups. Thus, mean activation maps were calculated for

each of the five states by averaging maps across all four groups. These were then transformed

into brain space and are plotted in Fig 1. Un-averaged maps for each of the four groups are

listed in the supplementary materials, and show minimal variation from the averaged maps.

The notion of latent states is loosely similar to networks derived from intrinsic functional con-

nectivity. However, characterizations and estimations between HMM and other clustering

algorithms of functional connectivity are qualitatively different. That being said, the five latent

states are similar to aspects of the 1) dorsal attention (DAN) and frontoparietal control net-

works (FPC), 2) ventral attention network (VAN), 3) default mode network (DMN), 4) soma-

tomotor network (SMN), and 5) visual network (VIS), respectively.

Next, fractional occupancy was calculated separately for each group, which provided the

overall proportion of time each state was visited throughout the time series. These estimates

averaged across subjects can be found in Table 2. Girls and boys with and without ADHD

appeared to spend the majority of their time in different states. This was confirmed by a signifi-

cant three-way interaction in FO estimates (sex × diagnosis × state), F(4, 2460) = 666.32, p<
.001, ηp

2 = .52. In particular, typically developing boys and girls had the highest fractional occu-

pancy in the fourth latent state, whereas fractional occupancy for girls and boys with ADHD

was the highest in states five and three, respectively. Transition probability matrices (TPMs)

were estimated for each group to detail the probability of switching from one particular state to

another. As is apparent in Fig 2, the TPMs for every group show a general tendency to stay

within the same state (On-diagonal: M = .53, SD = .04) compared to switching to other specific

states (Off-diagonal: M = .12, SD = .04). Apart from a higher tendency to remain in the same

state as the preceding time point, transition probabilities appear to be nonspecific, such that

there are similar probabilities for switches across states (i.e. similar Off-diagonal values). While

there are subtle asymmetries in transition directionality (i.e. more likely to switch from state 1

to 3 than 3 to 1 in girls with ADHD, yet the opposite pattern in boys with ADHD), no consistent

pattern is evident that would explain overall differences between sex or diagnosis. State switch-

ing differences are thus more prevalent in terms of their general duration and frequency.

Inter-transition interval (ITI)

Fig 3 displays the group means and variability for the inter-transition interval (ITI), which

reflects the number of consecutive time points associated with a particular state before switch-

ing to a new state. Across the whole data set, the measures for eleven resting-state runs were

identified as outliers (three absolute standard deviations of the scaled data [49]) and were thus

removed from subsequent testing. A two-way between-subjects ANOVA revealed that boys

(M = 1.17, SD = 0.33) dwelled longer on average than girls (M = 1.10, SD = 0.33) in any given

state, F(1, 939) = 8.63, p = .003, ηp
2 = .01. There were no differences for mean ITI estimates

across diagnostic category; children with ADHD (M = 1.15, SD = 0.34), control children

(M = 1.14, SD = 0.33), F(1, 939) < 0.01, p = .95, ηp
2< .001. Additionally, there was no interac-

tion between sex and diagnostic category, F(1, 939) = 0.02, p = .90, ηp
2< .001.

Latent resting-state dynamics
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To further explore which states were driving sex differences, ITI’s for each individual state

were similarly calculated as the average number of consecutive time points in each state before

a switch to a new state. As can be seen in the left side of Table 3, boys dwelled longer than girls

in the majority of states, with the exception of state five, where the trend in means was reversed

(Girls> Boys; p> .05). This pattern of longer dwelling times was primarily driven by states

two, three, and four (p’s< .001, average d of 0.31). These relate to networks similar to the

VAN, DMN, and SMN, respectively.

The standard deviation of ITI was used as an indicator of variability. Children with ADHD

were more variable as a group (M = 1.70, SD = 0.55) than control children (M = 1.60,

SD = 0.52), F(1, 939) = 4.69, p = .03, ηp
2 = .005. There was slightly greater variability in ITI

Fig 1. Latent state mean activation maps. From left to right, mean activation maps for each of the five latent states are shown from the right

lateral, left lateral, left medial, and right medial positions.

https://doi.org/10.1371/journal.pone.0218891.g001
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among boys (M = 1.68, SD = 0.50) than girls (M = 1.59, SD = 0.59) in state switching, albeit the

difference was not statistically significant, F(1, 939) = 3.32, p = .07, ηp
2 = .004. The interaction

between sex and diagnosis was also not significant, F(1, 939) = 0.001, p = .98, ηp
2< .001. Anal-

ogous to ITI means, to further explore which individual states were driving diagnosis differ-

ences in ITI variability, state-specific estimates were calculated. As can be seen on the right

side of Table 3, differences in ITI variability were mainly driven by higher variability in

ADHD than control children in state three (DMN; p = .002, d = 0.28).

Number of transitions (NT)

The number of transitions (NTs) indexes the frequency of state changes across the time series,

divided by the overall length of the time series for each subject. Data were again screened for

outliers, and eight runs were identified and removed from the analysis. Fig 4 shows the group

means and variability for NT. A between-subjects ANOVA revealed that girls (M = 0.48,

SD = 0.07) had more NTs than boys (M = 0.46, SD = 0.07), F(1, 942) = 11.25, p = .001, ηp
2 =

.01. This result is consistent with the numerical sex difference in ITI, which was to be expected,

as the ITI and NT measures are highly correlated (r = -.94, p< .001). Neither the main effect

of diagnosis, F(1, 942) = 0.06, p = .80, nor the interaction between diagnosis and sex, F(1, 942)

= 0.18, p = .67, were significant.

Conclusions

There is now ample evidence for structural and functional connectivity differences across the

sexes and for children with ADHD relative to their typically developing peers. Studies have

shown functional connectivity differences, where women exhibited more coherent connectiv-

ity in regions overlapping with the DMN, and men generally having stronger connectivity in

sensorimotor areas [45]. In a similar study, whole-brain functional connectivity was used to

successfully predict participant sex using multivariate pattern classification methods [50]. In

line with the findings of Ritchie et al. [45], some of the most important features that were pre-

dictive of participant sex were functional connections in the DMN as well as SMN areas.

Neuroimaging studies of children with ADHD show structural and functional differences

compared to their typically-developing peers. Atypical functional connectivity in ADHD has

been identified in prefrontal, striatal, cerebellar, and temporal regions, along with regions

commonly found in the DMN [21–24]. The majority of the associated studies have examined

static connectivity (averaged over time), and we moved one step beyond this with the use of

HMM to examine temporal dynamic changes of brain activity and to identify latent states

using resting-state fMRI. While HMM characterizes data as a series of latent states, the use of

Table 2. Fractional occupancy.

Girl Boy

State ADHD Control ADHD Control

1 .08 .24 .24 .09

2 .24 .16 .17 .17

3 .16 .20 .32 .21

4 .19 .30 .07 .29

5 .32 .10 .20 .24

Fractional occupancy, the proportion of time spent in each state are shown for each experimental group and for all

states, such that each column sums to one.

https://doi.org/10.1371/journal.pone.0218891.t002
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HMMs assume that the system under scrutiny is in one state at any given point in time (states

are mutually exclusive). While the inferred state at time t is the reflection of the highest proba-

bility over other potential states, it could be the case that two states at time t have relatively sim-

ilar probabilities. Thus, there can be some uncertainty in the model at equivocal time points as

to which states are truly reflected in neural data.

Sex differences

Our results contribute to this growing body of research on sex differences in the brain. Along

with differences in static functional connectivity [45], we revealed dynamic state changes

between boys and girls with and without an ADHD diagnosis. The two metrics of state switch-

ing (ITI and NT) suggested that boys dwell longer than girls in a given state before switching

to a new one, independent of whether or not they were diagnosed with ADHD. The functional

implications are not clear at this time but one possibility is that boys do not switch between

Fig 2. Transition probability matrix (TPM) heat maps. TPMs are shown for each group. Each cell lists the estimated

probability of switching from one particular state (rows), to another state (columns).

https://doi.org/10.1371/journal.pone.0218891.g002
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functional networks as fluidly as girls, and may especially involve dwelling in states relating to

the VAN, DMN, and SMN.

We cannot be certain because Johnson and Bouchard [47] assessed adults, but our findings

are consistent with more focused attention in males and diffuse attention in females. As noted,

the men in their study were also more variable as a group, indicating that many men were able

to maintain task-specific attention (during psychometric testing) but others had frequent

lapses in attention. A similar pattern of greater variability in ITI and NT (Figs 3 and 4)

emerged for our control children, but the differences were not statistically significant, perhaps

Fig 3. Inter-transition intervals (ITI) by group. Violin plots showing A) mean estimates and B) variability estimates for the ITIs, a measure depicting how long

subjects dwell in a particular state before switching to another. ITI is plotted on the x-axis by Diagnosis, grouped by females (pink) and males (blue).

https://doi.org/10.1371/journal.pone.0218891.g003

Table 3. State specific ITI means and variability.

ITI Averages ITI Variability

State Girls M(SD) Boys M(SD) p value (d) ADHD M(SD) Controls M(SD) p value (d)

1 1.16 (0.46) 1.17 (0.52) .482 (0.02) 1.40 (0.55) 1.45 (0.51) .054 (0.09)

2 1.08 (0.41) 1.23 (0.51) < .001 (0.31) 1.48 (0.53) 1.43 (0.53) .545 (0.10)

3 1.04 (0.59) 1.21 (0.55) < .001 (0.31) 1.45 (0.60) 1.29 (0.54) .002 (0.28)

4 0.96 (0.52) 1.15 (0.54) < .001 (0.34) 1.33 (0.60) 1.34 (0.52) .100 (0.01)

5 1.03 (0.61) 0.92 (0.64) .052 (0.18) 1.07 (0.64) 1.17 (0.62) .055 (0.15)

Sex differences in ITI averages (left), and diagnosis differences in ITI variability (right). Means, standard deviations, p values, and Cohen’s d values are presented for

each state.

https://doi.org/10.1371/journal.pone.0218891.t003
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because resting-state conditions do not require focused attention. While consistent with previ-

ous research, whether the observed differences in brain activity are innate or reflect societal

gender roles remain empirically unanswered, an important note that merits further

investigation.

In any case, sex differences in attentional focus might result from slow switching to or from

attention networks to frontoparietal control and/or DMN networks. Dwelling in the DAN or

VAN would facilitate performance in attention-demanding tasks, whereas dwelling in another

state and delaying the switch to attention networks would hamper performance. One result

would be greater variability among males. State switching deficits might also contribute to

some of the impulsivity and executive function symptoms commonly seen in boys with

ADHD. However, many of the control boys showed the same pattern and thus ITI and NT did

not interact with diagnosis. Again, the resting-state condition, with few if any external distrac-

tors, might have obscured any underlying differences.

ADHD

No sex differences were observed in the variability of state switching. However, children (both

boys and girls) with ADHD were found to be more variable in state switching than were typi-

cally developing controls. The children with ADHD also tended to dwell in different states than

typically developing children. The functional significance of dwelling in one state or another

cannot be determined at this time, but suggests that even during rest the patterns of global brain

activity and change in the distribution of this activity differ in children with ADHD relative to

typically developing children. This result adds to the vast literature detailing aberrant static

functional connectivity in ADHD. Along with general connectivity strength differences, we

found that typical dynamic state switching may be altered in children with ADHD, showing

greater variability than controls that in turn might be specific to regions within the DMN. Fur-

thering research in areas related to the classification of various neurological and psychiatric

Fig 4. Number of transitions (NT) by group. Violin plot showing the NTs, a measure of how often subjects switch from one state to another across the time series. NT

is plotted on the x-axis by Diagnosis, grouped by females (pink) and males (blue).

https://doi.org/10.1371/journal.pone.0218891.g004
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disorders should begin to address the degree of non-stationarity in neural signals that may be

dissociable at the individual level. By using dynamic modeling approaches such as HMM, we

can begin to study the structure of intraindividual variation in cases where latent categorical

processes may be present [51]. Many neural and psychological behaviors occur in real time at

the level of individuals [52].

Further research that continually utilizes larger samples will be beneficial. The sample in

the current analysis was asymmetric (smallest sample in girls with ADHD). However, in a sub-

sample analysis, where subjects were randomly sampled from the other three groups to match

the size of the smallest group, results remained unchanged. For ITI, the main effect of sex was

still present, F(1, 388) = 9.09, p = .003, ηp
2 = .02, as well as the main effect of diagnosis in ITI

variability estimates, F(1, 388) = 6.79, p = .01, ηp
2 = .02. For NT, the main effect of sex also

remained unchanged, F(1, 388) = 4.31, p = .04, ηp
2 = .01. More details as well as visualizations

from the sub-sample analysis can be found in the supplementary materials. Another important

consideration is that whereas concatenating data from multiple individuals (as in the current

analysis) may not fully reveal individual-specific dynamic changes, analysis based on intraindi-

vidual variation seems like an appealing future direction.

Developmental studies tracking changes in behavior and neural function across the lifespan

may also elucidate dynamic shifts in activity as a function of time. Along with resting-state

fMRI, experiments using task-based paradigms can also show dynamic changes in response to

various stimuli (i.e. attention tasks). The current study elucidated sex and ADHD differences

in neural state switching, and while we may hypothesize how this might relate to behavioral

deficits between males and females with and without ADHD, directly relating this to behav-

ioral performance in future research seems crucial. Overall, we found that resting-state fMRI

carries dynamic information pertaining to subject sex and ADHD diagnosis.

Materials and methods

Subjects

Data from subjects recruited for the ADHD-200 consortium (http://fcon_1000.projects.nitrc.

org/indi/adhd200/) were selected for the current study, as shown in Table 1. The consortium

involved multiple sites that tested both ADHD and typically developing control subjects. The

sites were the Kennedy Krieger Institute, New York University Child Study Center, Peking

University, Oregon Health and Science University, and the NeuroIMAGE sample. Fifty-four

girls with ADHD (160 controls), and 225 boys with ADHD (179 controls) were included in

the current study. As many subjects had multiple resting-state scans, this resulted in 99 scans

for girls with ADHD (251 scans for controls) and 347 scans for boys with ADHD (257 for

controls).

MRI acquisition and preprocessing

Across the multiple sites, different models of scanners (all at 3T strength) and scanning param-

eters were employed. See [53] for full details, as well as http://fcon_1000.projects.nitrc.org/

indi/adhd200/. Some of the notable differences in data acquisition included the total scan

duration (from three minutes and 32 seconds to eight minutes and 47 seconds), repetition

time (TR; from 1960 to 2500 ms), and voxel size (3-3.8 mm in-plane resolution and 3-4 mm

slice thickness).

Publicly available versions of the pre-processed imaging data were used for the current

study [53]. Preprocessing was implemented by the NeuroBureau on the Athena computer clus-

ter at Virginia Tech’s Advanced Research Computing center (http://www.arc.vt.edu). The pre-

processing pipeline, also known as the ‘Athena processing pipeline’, was based on a
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combination of functions from the AFNI [54] and FSL [55] toolboxes. The pipeline is briefly

described here for convenience. The structural images were skull-stripped, segmented into cer-

ebro-spinal fluid (CSF), white matter (WM), and gray matter (GM) probability maps, non-lin-

early warped to an age-specific MNI template [56], resampled to 1-mm isotropic voxels, and

blurred using a 6-mm FWHM Gaussian filter. Preprocessing of the rs-fMRI included discard-

ing the first four volumes of each run, slice-timing correction, realignment to the first volume,

and linear co-registration with the structural data. Warping parameters determined for the

structural data were then applied to the functional data and the images were resampled into

4-mm isotropic voxels. Mean WM and CSF time courses were included along with the six

motion parameters and a third-order polynomial as nuisance regressors in a GLM. The result-

ing time series were then band-pass filtered (0.009 – 0.08 Hz) [44, 57] and spatially smoothed

with a 6-mm FWHM Gaussian filter. Time courses for each subject were then extracted from

the processed functional data using the CC-200 brain parcellation scheme [53, 58].

Data analysis

Data analysis was performed using Python v. 3.6.4 and R v. 3.5.0. Code and supplementary

materials can be found online at https://osf.io/xqewf/. Analysis of the rs-fMRI data first

employed Bayesian Hidden Markov Modelling (HMM). The method was recently adapted for

use with rs-fMRI to assess how network-related activity exhibits stability versus change across

time [59–60]. In-depth descriptions of HMM can be found elsewhere [59, 61–63]. For our pur-

poses, it is used to describe time series measurements as a series of hidden, or latent, model

states that correspond to networks of functionally-connected brain regions. HMM has been

shown to be superior to alternative techniques of modelling dynamic connectivity, such as the

sliding window approach, [64], as these alternatives may lead to unstable results when scan

times are relatively short (for further discussion, see [59, 65]). While advantageous in various

ways, HMM also may share the limitations of these other methods, depending on the quality

and amount of data available in terms of true state estimations and ensuing metric

characterizations.

Our analysis of HMM parameter estimates was based on the work from Hutchison and

Morton [66]. A model consisting of five such states was used for the current analyses. To

choose the optimal number of network states, the following steps were performed. First, the

time series data were individually z-scored and separately concatenated across subjects in their

respective group (ADHD/control × boy/girl) [67]. Next, the resulting time series were sub-

jected to multiple HMMs, with the number of states ranging from 1 to 10. Finally, when all

models were fitted, the log probability scores for each were compared visually based on dimin-

ishing improvements in fit with additional states (i.e., the elbow method). These comparisons

suggested that for each of the four groups, five states captured most of time-related variation.

Thus, these analyses suggested a five-state model was optimal for all groups (see supplementary

materials).

After the final HMM was estimated for each group, the latent state properties for each

group were inspected in three ways. First, mean activation maps for each latent state were

extracted and plotted as whole-brain maps. Second, transition probability matrices (TPMs)

were extracted from the model, which for each group details the probability of switching from

one particular state to another. Third, fractional occupancy (FO) which is the proportion of all

time points (TRs) that correspond to a particular state, and which indicates the states that were

most prevalent across subjects, was calculated and inspected for each group. A note to consider

is that FO values might be minimally influenced by inter-group differences in mean activation

maps for various states. While the majority of variance agrees across groups for each state,
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there are subtle differences in the spatial extent between groups. Thus, differences between

groups in FO values might be partly attributable to these differences. However, in the absence

of any clear pattern distinguishing between sex or ADHD diagnosis, differences in FO values

should be interpreted with caution.

Additionally, two critical measures were used in analyses to estimate state change dynamics.

Inter-transition interval (ITI) is the number of consecutive time points that subjects dwell in

any one state before switching to another, and was averaged across all states for each individual

subject. Finally, the number of transitions (NT) was calculated as the number of times a change

between any two states was detected. This measure was averaged across the number of time

points in each individual time series and thus indicates the frequency of state switching. Using

these measures, the primary analyses focused on changes in mean and standard deviation esti-

mates for the inter-transition interval, as well as the average number of transitions across the

four groups of subjects (Girl ADHD, Girl control, Boy ADHD, and Boy control).
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