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Patatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipid

droplet-associated protein that has been shown to have hydrolase activity toward

triglycerides and retinyl esters. The first evidence of PNPLA3 being associated with

fatty liver disease was revealed by a genome-wide association study (GWAS) of

Hispanic, African American, and European American individuals in the Dallas Heart

Study back in 2008. Since then, numerous GWAS reports have shown that PNPLA3

rs738409[G] (148M) variant is associated with hepatic triglyceride accumulation

(steatosis), inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma

regardless of etiologies including alcohol- or obesity-related and others. The frequency

of PNPLA3(148M) variant ranges from 17% in African Americans, 23% in European

Americans, to 49% in Hispanics in the Dallas Heart Study. Due to high prevalence

of obesity and alcohol consumption in modern societies, the PNPLA3(148M) gene

variant and environment interaction poses a serious concern for public health, especially

chronic liver diseases including alcohol-related liver disease (ALD) and nonalcoholic fatty

liver disease (NAFLD). Therefore, PNPLA3(148M) variant is a potential therapeutic target

for chronic liver disease in the rs738409 allele carriers. Currently, there is no approved

drug specifically targeting the PNPLA3(148M) variant yet. With additional mechanistic

studies, novel therapeutic strategies are expected to be developed for the treatment of

the PNPLA3(148M) variant-associated chronic liver diseases in the near future.

Keywords: PNPLA3, rs738409, nonalcoholic steatohepatitis, alcoholic liver disease, fibrosis, cirrhosis,

hepatocellular carcinoma

Alcoholic and non-alcoholic fatty liver diseases (ALD and NAFLD) have become serious public
health burdens in the modern societies (1). ALD and NAFLD are chronic liver disorders that
begin with hepatic triglyceride accumulation (steatosis) and progress to hepatic inflammation and
fibrosis, cirrhosis and even liver cancer (2, 3). The causes of these liver diseases are multifactorial,
including genetic, and environmental factors. Excess alcohol consumption, over nutrition, and
physical inactivity are significant environmental risk factors (4, 5). It is believed that hepatic
steatosis sets a stage for elevated susceptibility to acute and chronic inflammation in the liver.
Multiple cytokines and chemokines including transforming growth factor-β (TGF-β) secreted from
inflammatory immune cells trigger an activation of hepatic stellate cells (HSCs) and subsequently
hepatic fibrogenesis (6).

In addition to those environmental factors, numerous genetic variants have been shown to be
associated with ALD andNAFLD, including patatin-like phospholipase domain-containing protein
3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), glucokinase regulator (GCKR),
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membrane bound O-acyltransferase domain-containing 7
(MBOAT7), and hydroxysteriod 17-beta dehydrogenase 13
(HSD17B13) (7, 8). TM6SF2 is involved in the VLDL secretion
(9–15). The rs58542926 C>T variant of TM6SF2 decreases
the VLDL secretion and increases hepatic triglycerides (16–
25). GCKR regulates the glucokinase activity in the liver
(26). The rs780094 A>G and rs1260326 C>T variants of
GCKR lead to the loss of control of hepatic glucose influx
and therefore increase hepatic lipogenesis (27–38). MBOAT7
catalyzes the acyl chain remodeling of phosphatidylinositol
and decreases free arachidonic acid levels (39, 40). The
rs641738 C>T variant of MBOAT7 increases arachidonic
acid levels and hepatic inflammation (41–54). HSD17B13
has been shown to have retinol dehydrogenase activity (55).
The rs72613567:TA variant of HSD17B13 is associated with
increased steatosis and decreased inflammation and fibrosis
(56–64). PNPLA3 has drawn a remarkable attention in the liver
field since the first genome-wide association study (GWAS)
revealed that a single nucleotide polymorphism (SNP) in
the human PNPLA3 gene—rs738409[G] (148M) is the only
non-synonymous sequence variant significantly associated
with hepatic fat content in the Dallas Heart Study cohort (65).

FIGURE 1 | PNPLA family members. Nine PNPLA family members are depicted by the size and localization of the conserved patatin (PAT) domains.

Multiple genetic studies have since validated the association
of PNPLA3(148M) with a broad spectrum of liver diseases
ranging from ALD and NAFLD, non-alcoholic steatohepatitis
(NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC)
(33, 66–117). However, the underlying pathogenic mechanisms
remain elusive. This review aims to briefly summarize the
PNPLA3 biology, clinical implications, and therapeutic
development strategies.

PNPLA3 GENE FUNCTION

PNPLA3 has multiple names in the literature including
adiponutrin (ADPN), calcium-independent phospholipase A2-
epsilon (IPLA2epsilon, and chromosome 22 open reading frame
20 (C22orf20). In 2001, PNPLA3 was initially cloned from
mouse 3T3 preadipocytes as a feeding-inducible gene, therefore
named adiponutrin (118). In 2004, PNPLA3 was rediscovered as
IPLA2epsilon by nucleotide sequence similarity search (119). In
2006, human patatin-like phospholipases including adiponutrin
were grouped to the PNPLA family (120), which has 9 members
(PNPLA1-9). The common feature of the PNPLA family
members is the patatin-like phospholipase domain (Figure 1).
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Protein sequence alignments show that the overall sequence
conservation is low except a few conserved regions including
the glycine-rich region and the aspartate-glycine residues of the
catalytic site (120).

PNPLA3 GENE CHARACTERIZATION

Human PNPLA3 gene is localized on chromosome 22
(22q13.31). It has 9 exons that encode a 481-amino acid
protein. In contrast, mouse Pnpla3 (384 amino acids) is much
smaller than human PNPLA3 protein (Figure 2), as both
proteins share high homology in the N-terminal half of the
amino acid sequences. But the mouse Pnpla3 lacks the middle 17
residues and the C-terminal 75 residues in the human PNPLA3
protein. Therefore, it should be cautioned when implying the
mouse Pnpla3 function to human PNPLA3. Another major
difference between mouse and human PNPLA3 genes is the
tissue-wise gene expression profiles. The human PNPLA3 gene
is expressed highly in the liver and moderately in the adipose
tissue, brain, kidney, and skin (120, 121); however, the mouse
Pnpla3 gene is expressed at very high levels in both white and

brown adipose tissues but at low levels in other tissues (118, 122).
PNPLA3 is regulated by carbohydrate-response element binding
protein (ChREBP) and sterol regulatory element binding protein
1c (SREBP1c) in mouse and human hepatocytes (123–125).
Surprisingly, Pnpla3 gene knockout mice have normal levels
of plasma and hepatic triglyceride contents and they do not
develop fatty liver disease (126, 127). Interestingly, human
PNPLA3(148M) transgenic mice develop hepatic steatosis on
chow or high-sucrose diet (128). Pnpla3(148M) knockin mice
also develop hepatic steatosis on the high-sucrose diet (129, 130)
and hepatic inflammation and fibrosis on a NASH diet (131).

PNPLA3 ENZYMATIC ACTIVITIES

PNPLA3 has been shown to possess triacylglycerol lipase and
acylglycerol transacylase activities using recombinant human
PNPLA3 protein purified from Sf9 insect cells and triolein
and mono-olein as substrates, respectively (119). However,
when Huang et al. used similar recombinant human PNPLA3
protein from Sf9 cells to analyze lipase and transacylase
activities, they only detected the lipase activity against major

FIGURE 2 | Human and mouse Pnpla3 protein sequence alignments. The protein sequences were aligned using the NCBI BLAST program. The identical residues are

in red. The PAT domain is underlined. The 148I residue is marked by asterisk.

Frontiers in Medicine | www.frontiersin.org 3 December 2019 | Volume 6 | Article 304

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Dong PNPLA3 and Chronic Liver Disease

glycerolipids including triacylglyceride, diacylglyceride, and
monoacylglyceride but not transacylase activity (132). In another
study, human PNPLA3 was overexpressed and purified from
HEK293 cells and showed to have a lipase activity on 1,2-
o-dilauryl-rac-glycerol-3-glutaric acid-(6’-methylresorufin) ester
(122). Mutation of the active-site serine within the Ser47-
Asp166 catalytic dyad motif abolished the lipase activity; however,
overexpression of human PNPLA3 in HEK293 cells did not
decrease the cellular triglyceride levels (122). The recombinant
human PNPLA3(148M) mutant from Sf9 cells was shown to
lose the triglyceride hydrolase activity using triolein as substrate
(133). Human wildtype PNPLA3 but not the 148M mutant
recombinant protein from yeast cells also showed triglyceride
hydrolase activity (134). In addition, wildtype recombinant
human PNPLA3 protein purified from yeast cells also showed
retinyl esterase activity using retinyl-palmitate as substrate
whereas the 148M mutant protein had diminished activity
(135). Retinoic acids (all-trans) have been shown to activate
retinoic acid receptor (RAR) and retinoid X receptor (RXR) and
subsequently downregulate fibrotic genes in HSCs (136–138).
PNPLA3(148M) mutant causes an decrease in retinol levels and
downregulation of RAR/RXR target genes in the LX-2 hepatic
stellate cell line (139).

PNPLA3 IN LIPID DROPLET
HOMEOSTASIS

PNPLA3 is mostly bound to lipid droplets in mammalian
cells (133, 140–142), but how this protein functions on lipid
droplet remains elusive (Figure 3). Several lines of evidence
suggest that PNPLA3(148M) abnormally accumulating on lipid
droplets links to the impairment of lipid droplet metabolism.
Wildtype PNPLA3 turns over according to fasting/feeding cycles;
however, the 148M mutant PNPLA3 is resistant to ubiquitin- or
autophagy-mediated protein degradation (129, 143, 144). Excess
PNPLA3 on the lipid droplets seems to impair the activity of
PNPLA2, also called adipose triglyceride lipase (ATGL), likely
through competing with the ATGL activator —comparative
gene identification 58 (CGI-58) or officially abhydrolase domain
containing 5 (ABHD5) (140, 142, 145). Some data suggest that
PNPLA3(148M) tends to interact with CGI-58 more strongly
than the wildtype counterpart does (145). CGI-58 is also required
for the targeting of PNPLA3 to lipid droplet since PNPLA3
cannot localize onto lipid droplet in the CGI-58 knockout liver
cells (140).

PNPLA3 IN HEPATIC FIBROSIS

In addition to hepatocytes, human PNPLA3 gene is also
abundantly expressed in HSCs (121, 139). PNPLA3 can be
induced by TGF-β but not platelet-derived growth factor
(PDGF) in human HSCs (146). The same report also shows
that overexpression of the wildtype PNPLA3 but not the
PNPLA3(148M) mutant reduces the intracellular retinyl esters in
HSCs. Interestingly, after incubation with retinol and palmitate,
wildtype, but not mutant PNPLA3 decreases the secretion

FIGURE 3 | A working model for the PNPLA3 function on lipid droplet. ATGL

and ABHD5 normally interact to promote triglyceride breakdown from lipid

droplets. The 148M mutation impairs the turnover of PNPLA3 protein by

ubiquitin or autophagy mediated degradation. When PNPLA3(148M) variant

proteins accumulate on lipid droplets, PNPLA3(148M) competes with ATGL for

the interaction with ABHD5. As a result, the ATGL activity is reduced and lipid

droplets are accumulated.

of matrix metallopeptidase 2 (MMP2), tissue inhibitor of
metalloproteinase 1 (TIMP1), and TIMP2 from HSCs (146).
Another report shows that the PNPLA3 gene expression
is induced during the primary human HSC activation and
knockdown of PNPLA3 by siRNA attenuates the HSC activation
(139). Human HSCs with the PNPLA3(148M) variant have
higher expression of inflammatory cytokines and chemokines
including granulocyte-macrophage colony-stimulating factor
(GM-CSF), chemokine (C-X-C motif) ligand 8 (CXCL8), and
TGF-β. Overexpression of the PNPLA3(148M) variant enhances
the HSC proliferation and chemotaxis (139). In contrast to
the previous report regarding the retinyl palmitate lipase
activity of PNPLA3 (135), Bruschi et al. have found that
total retinol content and RXR and RAR signaling are both
lower in the PNPLA3(148M) mutant HSCs than that in the
PNPLA3 wildtype HSCs (139). Further signaling analysis has
revealed that c-Jun N-terminal kinase (JNK) is highly activated
in the PNPLA3(148M) HSCs. As a consequence, peroxisome
proliferator-activated receptor gamma (PPARγ), a key HSC
quiescence regulator, is inhibited, whereas activator protein 1
(AP-1), a proinflammatory transcription factor, is activated (139).
Collectively, these dysregulations contribute to the fibrogenic
phenotype in the PNPLA3(148M) HSCs. The inhibition of
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TABLE 1 | Human PNPLA3 genetic association studies in liver diseases.

PNPLA3 SNP Study population Associated phenotype and significance References

rs738409[G] Hispanics, African Americans, European

Americans, N = 9,229

Positive association with hepatic fat content (P = 5.9 × 10−10), serum

ALT (P = 1.3 × 10−5 in Hispanics)

(65)

rs2281135[A],

rs738409[G]

Europeans, N = 12,419 Positive association with ALT (P = 8.4 × 10−16, P = 3.7 × 10−10) (110)

rs738409[G] West-Eurasian populations, N = 23,274 Negative association with total cholesterol (P = 8.87 × 10−7), non-HDL

cholesterol (P = 2.27 × 10−6), LDL cholesterol (P = 7.99 × 10−4)

(148)

rs738409[G] Mestizo (mixed European and Native American

ancestry), N = 1,221

Positive association with ALD (OR = 1.45, P =8.4 × 10−4) and alcoholic

liver cirrhosis (OR = 2.25, P = 1.7 × 10−10)

(89)

rs738409[G] Caucasian (82.1%), African American (2.3%),

Asian (5.4%), American Indian (3.2%), other

(7%), N = 1,117

Positive association with hepatic steatosis (OR = 1.46, P = 0.03), portal

inflammation (OR = 1.57, P = 2.5 × 10−4), lobular inflammation (OR =

1.84, P = 0.005), Mallory-Denk bodies (OR = 1.6, P = 0.015), NAFLD

activity score (P = 0.004), hepatic fibrosis (OR = 1.5, P = 7.7 × 10−6)

(68)

rs738409[G] Japanese, N = 831 Positive association with NAFLD (OR = 1.73, P = 9.4 × 10−10) (149)

rs738409[G] German, N = 1,419 Positive association with alcoholic liver cirrhosis (OR = 2.79, P = 1.6 ×

10−6)

(84)

rs738409[G] Americans and Europeans, N = 1,997 Positive association with NAFLD (OR = 3.26, P = 3.6 × 10−43) (83)

rs738409[G] European Caucasians, N = 537 Positive association with chronic hepatitis C related hepatic steatosis (OR

= 2.55, P = 0.034), fibrosis (OR = 3.13, P = 0.002)

(94)

rs738409[G] German, N = 899 Positive association with liver cirrhosis (OR = 1.56, P = 0.005) (150)

rs738409[G] European Caucasians, N = 658 Positive association with liver cirrhosis (OR = 2.08, P = 0.02) (91)

rs738409[G] Japanese, N = 1,326 Positive association with NAFLD (OR = 2.05, P = 6.8 × 10−14) (151)

rs738409[G] American Caucasians, African Americans,

Mexican Americans, N = 4,804

Positive association with hepatic steatosis and high ALT (OR = 1.36, P =

0.01)

(152)

rs738409[G] American Caucasians, N = 751 Positive association with HCC (OR = 3.21, P = 0.02) (153)

rs738409[G] European Caucasians, N = 2,138 Positive association with alcoholic liver cirrhosis (OR = 2.19, P = 1.54 ×

10−48)

(42)

rs738409[G] Chinese Han, N = 768 Positive association with NAFLD (OR = 1.52, P = 8.7 × 10−4) (102)

rs738409[G] Eastern European, N = 969 Positive association with liver fibrosis (OR = 1.65, P = 0.001), liver

cirrhosis (OR = 1.92, P = 5.57 × 10−7)

(154)

rs738409[G] European Caucasians, N = 183 Positive association with alcoholic hepatitis (OR = 1.9, P = 0.01) (155)

rs738409[G] Korean, N = 4,409 Positive association with NAFLD (OR = 1.54, P = 1.74 × 10−15) (156)

rs738409[G] Chinese Han, N = 1,152 Positive association with ALD (OR = 1.93, P = 6.25 × 10−14) (115)

rs738409[G] Europeans, N = 5,525 Positive association with HCC (OR = 1.67, P = 0.005), HCC in ALD

patients (OR = 3.91, P = 1.14 × 10−9), HCC in non-fibrotic patients (OR

= 2.19, P = 0.007)

(106)

rs738409[G] American Caucasians, N = 9,677 Positive association with NAFLD (OR = 1.79, P = 1.7 × 10−20) (157)

rs4823173[A],

rs2896019[G],

rs2281135[A]

Mexican Americans, N = 3,757 Positive association with AST (P = 3.44 × 10−10, P = 7.29 × 10−9, P =

8.73 × 10−9)

(109)

PPARγ in the PNPLA3(148M) HSCs also negatively affects the
liver X receptor alpha (LXRα) activity. As a result, cholesterol
is accumulated in those mutant HSCs, and this also contributes
to the inflammation and fibrogenesis in the PNPLA3(148M)
HSCs (147).

PNPLA3 GENE POLYMORPHISM AND
CHRONIC LIVER DISEASE

Alcoholic and non-alcoholic liver diseases often begin with
simple steatosis and progress to hepatitis, fibrosis/cirrhosis,
and even liver cancer. Both environmental and genetic
factors contribute to the development of these chronic liver
diseases. Among the well documented genes, PNPLA3 has

the broad impact on ALD and NAFLD. The involvement of
PNPLA3 variant rs738409 (148M) in the broad spectrum of
chronic liver disease has been shown by numerous GWAS
(see Table 1). In 2008, Romeo et al. identified a strong
association between the PNPLA3(148M) variant and hepatic
fat concentration in a GWAS on Hispanic, African American,
and European American individuals (65). The 148M variant
frequencies are concordant with the prevalence of NAFLD
in these three ancestry groups, and their allele frequencies
are: Hispanics (0.49), European Americans (0.23), and African
Americans (0.17). Since then, multiple GWASs have reported
a strong association of PNPLA3(148M) variant with both
ALD and NAFLD (Table 1 and Figure 4). Several studies
have documented a strong association of the 148M variant
with liver cirrhosis (42, 76, 154, 158–160). A number of
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FIGURE 4 | PNPLA3(148M) is associated with a wide-spectrum of chronic

liver diseases. Hepatic accumulation of PNPLA3(148M) protein leads to

triglyceride accumulation, liver injury, and fibrosis. With different etiologies, this

may lead to the development of various liver disorders including NAFLD,

NASH, ALD, alcoholic hepatitis (AH), cirrhosis, and HCC.

reports have also shown that the 148M variant is also
associated with higher risk for HCC (77, 85, 92, 93, 106,
108, 153, 160–169). In addition, the PNPLA3 variant rs738409
could lead to differential gene regulation via microRNAs. An
in silico analysis has identified hsa-miR-769-3p and hsa-miR-
516a-3p as potential microRNAs targeting the 3’ UTR of
the human PNPLA3 mRNA (170). Experimental validations
are needed to demonstrate their functional relevance to the
PNPLA3(148M) variant.

THERAPEUTIC STRATEGIES FOR
TARGETING PNPLA3 FOR PERSONIZED
TREATMENT OF CHRONIC LIVER DISEASE

As the PNPLA3(148M) variant is quite prevalent in most
populations, especially among Hispanics (65), it is very
significant to develop therapeutics targeting this genetic
polymorphism. According to the PNPLA3(148M) biology,
there are several potential ways of targeting the 148M variant.
First, the PNPLA3(148M) variant can be targeted at the RNA
levels by small interfering RNA (siRNA), small hairpin RNA
(shRNA), or antisense RNA oligonucleotide. A recent report
has shown that triantennary N-acetylgalactosamine (GalNAC3)
conjugated antisense oligonucleotides (ASO) targeting Pnpla3
in a 148M knockin mouse model significantly reduce hepatic

steatosis, inflammation, and fibrosis (131), suggesting the utility
of the ASO strategy. In another report, targeting Pnpla3 in the

148M knockin mice by AAV-mediated shRNA has also showed
effective reduction of hepatic triglyceride contents (143). For
the translational perspective, PNPLA3(148M)-allele-specific
RNAi is preferred for human patients in order to avoid affecting
the PNPLA3 wildtype allele as we do not fully understand
the PNPLA3 biology. With the encouraging phase III clinical
trial data on proprotein convertase subtilisin/kexin type 9
(PCSK9) RNAi (171), targeting the PNPLA3(148M) variant
by RNAi can be an attractive strategy. Second, PNPLA3 can
be targeted at the protein level. Recent data suggested that an
accumulation of PNPLA3(148M) on lipid droplets is very critical
for the pathogenesis of fatty liver disease (129, 130, 140, 143).
Therefore, targeting PNPLA3(148M) for degradation can be
a useful strategy. Recently, a proof-of-concept study using
proteolysis-targeting chimera (PROTAC)-mediated degradation
of Halo-tagged PNPLA3(148M) has shown a significant effect
on lowering hepatic triglyceride content (143). The question
will be how to degrade endogenous PNPLA3(148M) protein
in a variant-specific manner. To date, there are no effective
ways to specifically target the PNPLA3(148M) mutant protein.
However, targeting PNPLA3 may work from another angle —an
interaction between PNPLA3 and CGI-58, as the interaction can
be regulated by fatty acids or synthetic CGI-58 ligands (145).
Taken together, targeting PNPLA3(148M) has been increasingly
appreciated for therapeutic development for multiple chronic
liver diseases including ALD and NASH.

In summary, PNPLA3 is an enigmatic protein that has broad
implications in metabolic liver diseases from simple steatosis to
cirrhosis and liver cancer. Better understanding the biological
function of PNPLA3 in lipid droplet metabolism should facilitate
the therapeutic development. Targeting the PNPLA3(148M)
variant is expected to be an excellent example of the modern
personalized medicine.
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