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INTRODUCTION 
 
Melanoma is an aggressive form of cutaneous tumours 
and causes 55,500 deaths annually [1]. Sustaining 
proliferation signalling and activating invasion and  

 

metastasis are primary features of melanoma [2]. For 
example, activating mutations in the MAPK pathway, 
which incorporates the enzymes RAS, RAF, MEK and 
ERK, result in constitutive signalling, leading to 
melanoma cell proliferation and apoptosis resistance [3]. 
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ABSTRACT 
 
Background: In our previous study, kindlin-2 promoted skin wound healing and decreased the permeability of 
neovascularization during angiogenesis. Herein, we explored the biological function and underlying mechanism 
of kindlin-2 in cutaneous melanoma. 
Methods and Results: Through a series of in vitro assays, we found that high levels of kindlin-2 promoted 
migration and invasion of melanoma cells without influencing cell proliferation. Quantitative real-time 
polymerase chain reaction (qRT-PCR) and western blot analyses showed that upregulated kindlin-2 promoted 
the cellular epithelial-mesenchymal transition (EMT). Importantly, we found that melanoma cells 
overexpressing kindlin-2 promoted angiogenesis and VEGFA secretion in vitro and facilitated tumour growth 
and lung metastasis in vivo. To unveil the underlying mechanism, we conducted Next-generation sequencing 
(NGS) and differential expression analyses. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed 
that overlapping differentially expressed genes (DEGs) were primarily enriched in the TGF-β, mTOR and VEGF 
signalling pathways. Then, we confirmed that the mTOR/VEGFA pathway was activated during the process of 
kindlin-2-induced melanoma progression and angiogenesis. Moreover, we demonstrated that kindlin-2 was 
significantly overexpressed in clinical melanoma samples and that a high level of kindlin-2 predicted a poor 
prognosis.  
Conclusions: Taken together, these findings showed that kindlin-2 promotes angiogenesis and tumour 
progression via the mTOR/VEGFA pathway. 
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In order to progress, tumour cells require sustained 
nutrients, oxygen and the ability to excrete metabolic 
wastes, and the tumour-associated neovasculature plays a 
crucial role in this process [4]. Multiple factors are 
involved in the promotion and maintenance of 
angiogenesis in melanoma, such as growth factors, 
receptors, cytokines and other cellular components [5]. 
Among them, vascular endothelial growth factor  
A (VEGFA) exerts an important role in endothelial cell 
proliferation and vascular remodelling by activating its 
tyrosine kinase receptor (VEGFR) in melanoma [6].  
In view of this, bevacizumab, a humanized monoclonal 
antibody that neutralizes the VEGFA isoforms, is one of 
the most frequently investigated antiangiogenic molecules 
with a certain curative effect in melanoma [7–8]. 
 
Kindlins are FERM (four-point-one, ezrin, radixin, 
moesin) domain proteins comprising three members 
(kindlin-1, -2 and -3), which are evolutionarily conserved 
[9]. Among them, kindlin-2, encoded by the FERMT2 
gene (chromosome 14q22.1), is the most broadly 
distributed [10]. Kindlin-2 has emerged as a key activator 
of integrin through binding to the cytoplasmic tails of the 
integrin β subunit [11]. Kindlin-2 plays various biological 
functions under physiological conditions, such as cell 
migration, adhesion, spreading and organization of the 
actin cytoskeleton [12]. A deficiency in kindlin-2 results 
in early embryonic lethality of mice, which provides 
powerful evidence of its important role [13–14]. Recently, 
aberrant kindlin-2 has been reported to be involved in a 
variety of malignancies. Shen and colleagues showed that 
kindlin-2 promotes the invasion of gastric cancer cells 
through the phosphorylation of integrin β1 and β3 
cytoplasmic domains [15]. Zhan et al. showed that 
kindlin-2 is upregulated by TGF-β signalling and that 
TGF-β1-induced kindlin-2 in turn upregulates TGFBR1, 
thereby providing positive feedback to drive the 
progression of pancreatic ductal adenocarcinoma (PDAC) 
[16]. In addition, kindlin-2 expression in tumour cells also 
plays an important role in the interaction between host 
cells and the tumour microenvironment (TME), as it 
regulates the expression of CSF-1 and EGF, which is 
required for autocrine and paracrine crosstalk between 
cancer cells and macrophages, and then promotes tumour 
growth [17]. However, whether kindlin-2 plays a role in 
melanoma remains unknown. 
 
In this research, we conducted a series of experiments  
to explore the biological function and underlying 
mechanism of kindlin-2 both in in vivo and in vitro 
assays. Furthermore, the relationship between its 
expression and clinical significance was analyzed via a 
large number of melanoma samples. Our results will help 
further understand the molecular mechanisms underlying 
melanoma progression and identify potential therapeutic 
targets for melanoma. 

RESULTS 
 
Elevated kindlin-2 promotes melanoma invasion and 
migration 
 
The recognized role of kindlin-2 was examined first. 
Through qRT-PCR and western blotting analyses, we 
found that kindlin-2 was differentially expressed in 
different melanoma cell lines, which showed a highly 
heterogeneity of melanoma. Among them, kindlin-2 
was overexpressed in four of six melanoma cell lines 
compared with HaCaT, a normal skin cell line (Figure 
1A). Then, the short hairpin RNA (shRNA) lentivirus 
vector of kindlin-2 was transfected into SK28 cells, and 
the kindlin-2 cDNA vector was transfected into A375 
cells (Figure 1B). Through wound-healing migration 
and Matrigel invasion assays, we found that high levels 
of kindlin-2 promoted migration and invasion, while 
low levels of kindlin-2 inhibited migration and invasion 
of melanoma cells (Figure 1C–1E). However, we found 
that kindlin-2 had no influence on the proliferation of 
melanoma cells analyzed by CCK-8 assays (Figure 1F). 
Together, we found that high levels of kindlin-2 
promote cellular invasion and migration in melanoma.  
 
High levels of kindlin-2 induce the cellular EMT 
 
Kindlin-2 has been reported to induce the tumour cellular 
EMT [18–19]. Through a phase-contrast microscopy,  
we found that SK28-shNC and A375-kindlin-2 cells 
presented spindle-like, fibroblastic morphologies 
compared with SK28-sh-kindlin-2 and A375-Vector cells, 
which joined closely like epithelial cells (Figure 2A). 
Then we performed correlation analyses between the 
expression of kindlin-2 and EMT markers through the 
TCGA database, and found a positive correlation between 
kindlin-2 and N-cadherin (p < 0.001, r = 0.400), β-catenin 
(p < 0.001, r = 0.460), ZEB1 (p < 0.001, r = 0.500), and 
ZEB2 (p < 0.001, r = 0.590) (Figure 2B). Through qRT-
PCR and western blot analyses, we confirmed that high 
levels of kindlin-2 increased, while low levels of kindlin-2 
decreased the mRNA and protein levels of N-cadherin, β-
catenin, ZEB1 and ZEB2 (Figure 2C–1F). These results 
show that elevated kindlin-2 promotes the cellular EMT in 
melanoma. 
 
High levels of kindlin-2 facilitate vascular formation 
and the secretion of VEGFA 
 
Our previous study showed that kindlin-2 affects 
neovascular permeability [20], and here, we detected 
whether its expression in melanoma cells had an effect 
on angiogenesis. We found that kindlin-2 over-
expression in melanoma cells promoted vascular 
formation and that the downregulation of kindlin-2 
inhibited vascular formation (Figure 3A). As the 
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secretory protein VEGFA plays an important role in 
angiogenesis, we examined the relationship between the 
expression of kindlin-2 and VEGFA through TCGA 
database, and a positive correlation was observed (p < 
0.001, r = 0.400, Figure 3B). Through qRT-PCR, 
western blot and ELISA analyses, we further showed 
that high levels of kindlin-2 increased the expression 
and secretion of VEGFA (Figure 3C, 3D). Thus, we 
conclude that high levels of kindlin-2 promote the 
secretion of VEGFA and vascular formation. 
 
Upregulated kindlin-2 induces tumour progression 
in vivo 
 
Since angiogenesis plays an important role in tumour 
progression [21], we constructed subcutaneous tumouri-

 genesis and lung metastasis models to examine the 
role of kindlin-2 in tumour progression. Through the 
subcutaneous tumourigenesis model, we found that 
high levels of kindlin-2 promoted tumour growth, 
while low levels of kindlin-2 inhibited tumour growth 
(Figure 4A). Similarly, kindlin-2 over-expression 
increased, while kindlin-2 knockdown inhibited lung 
metastasis examined by a lung metastasis model 
(Figure 4B). Additionally, IHC staining on the serial 
sections showed that subcutaneous tumours with 
overexpressed kindlin-2 had increased vascular density 
and vice versa, which further confirmed that 
melanoma cells with kindlin-2 upregulation promotes 
tumoural angiogenesis. (Figure 4C). Thus, we showed 
that upregulated kindlin-2 promotes melanoma 
progression in vivo. 

 

 
 

Figure 1. Elevated kindlin-2 promotes melanoma cell invasion and migration. (A) The mRNA and protein levels of kindlin-2 in six 
melanoma cell lines and HaCaT, a normal skin cell line. (B) The efficiencies of kindlin-2 knockdown and overexpression were examined by 
western blotting and qRT-PCR. (C and D) The migration ability of SK28-shNC and SK28-sh-kindlin-2 (C), A375-Vector and A375-kindlin-2 (D) 
cells was measured by wound-healing assays. (E) Invasion ability was measured in the indicated cells by Matrigel invasion assays. (F) The 
effects of kindlin-2 knockdown and overexpression on proliferation ability were measured by CCK-8 assays. *p<0.05, **p<0.01, 
***p<0.001,****p<0.0001.  
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Figure 2. High levels of kindlin-2 induce the cellular EMT in melanoma. (A) The cell morphology of SK28-shNC, SK28-sh-kindlin-2, 
A375-Vector, and A375-kindlin-2 cells was observed by a phase-contrast microscopy. (B) Correlation analyses between the expression of 
kindlin-2 and N-cadherin, β-catenin, ZEB1, ZEB2 were performed with the TCGA database. (C and E) The mRNA levels of N-cadherin, β-
catenin, ZEB1 and ZEB2 in SK28-shNC, SK28-sh-kindlin-2, A375-Vector and A375-kindlin-2 cells were analyzed by qRT-PCR. (D and F) The 
protein levels of N-cadherin, β-catenin, ZEB1 and ZEB2 in the indicated cells were analyzed by western blotting. *p<0.05, **p<0.01, ***p<0.001. 

 

 
 

 
 
 
 

 
 
 

Figure 3. High levels of kindlin-2 promote angiogenesis and VEGFA secretion in melanoma cells. (A) The tube formation assays 
were performed with the conditioned medium of SK28-shNC, SK28-sh-kindlin-2, A375-Vector and A375-kindlin-2 cells. (B) The correlation 
analysis between the expression of kindlin-2 and VEGFA was performed with the TCGA database. (C) The mRNA and protein levels of 
VEGFA in the indicated cells wer analyzed by qRT-PCR and western blotting. (D) The levels of VEGFA secreted by the indicated cells were 
analysed by ELISA. *p<0.05, **p<0.01, ***p<0.001. 
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Next-generation sequencing and bioinformatics 
analyses 
 
To unveil the underlying mechanism of kindlin-2 
induced melanoma progression, we performed the gene 
expression profiles according to the differentially 
expressed kindlin-2 (Figure 5A). There were 2847 up-
regulated DEGs and 1421 downregulated DEGs in 
SK28-shNC cells compared with SK28-sh-kindlin-2 
cells, while there were 1496 upregulated DEGs and 
2017 downregulated DEGs in A375-kindlin-2 cells 
compared with A375-Vector cells. Among them, 824 
DEGs overlapped, including 494 upregulated DEGs and 
330 downregulated DEGs (Figure 5B). According to 
Gene Ontology (GO) analysis, the overlapped DEGs 
were classified into three groups: biological process 
(BP), molecular function (MF), and cellular component 
(CC). The main MF categories that were enriched 
included ATP binding, polyA RNA binding, DNA 
binding, and receptor signalling protein serine/threonine 
kinase activity (Figure 5C). Within the CC group, the 
overlapping DEGs were mainly involved in the 
cytoplasm, nucleus and nucleoplasm (Figure 5D). For 
BP, the overlapping DEGs were enriched in both the 

positive and negative regulation of transcription from 
the RNA polymerase II promoter, the positive 
regulation of I−κB kinase/NF−κB signalling and protein 
autophosphorylation (Figure 5E). Additionally, KEGG 
analysis revealed that the overlapping DEGs were 
involved in pathways in cancer, focal adhesion, 
proteoglycans in cancer, TGF-β signalling pathway and 
so on, all of which are known functions of kindlin-2 
(Figure 5F). Interestingly, we also found that the 
overlapping DEGs were enriched in mTOR and 
VEGFA signalling pathways, which have not been 
reported and deserve further verification. 
 
Kindlin-2 promotes angiogenesis and tumour 
progression via the mTOR pathway 
 
According to the results of KEGG, we performed 
western blotting and found that high levels of kindlin-2 
slightly upregulated, while low levels of kindlin-2 
slightly downregulated the p-Smad2/3 level. The results 
indicated that over-expressed kindlin-2 activates the 
TGF-β pathway, which confirmed the reliability of the 
NGS results. What’s more, we detected that high level 
of kindlin-2 increased the p-mTOR level, and that low 

 

 
 

Figure 4. Kindlin-2 promotes tumour growth and lung metastasis in vivo. (A) SK28-shNC, SK28-sh-kindlin-2, A375-Vector and A375-
kindlin-2 cells were subcutaneously inoculated to examine tumour growth ability (left); tumour growth curves of the subcutaneous 
xenografts were shown (right). (B) Lung metastasis was investigated with the metastasis model in vivo, and the number of metastases was 
examined by H&E staining. (C) Representative images from tumour serial sections stained with H&E and with kindlin-2 and CD31 antibodies 
by IHC. *p<0.05, **p<0.01. 
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level of kindlin-2 decreased its level (Figure 6A). 
Through specific inhibitor, we found that kindlin-2-
induced migration, invasion, and vascular formation 
were reversed by rapamycin (mTOR pathway inhibitor, 
100 nM, 24 h, Figure 6B). Furthermore, we found that 
kindlin-2-induced high levels of p-mTOR and VEGFA 
secretion were also reversed by rapamycin (Figure 6C, 
6D). Together, we conclude that kindlin-2 promotes 
angiogenesis and tumour progression via mTOR 
signalling (Figure 6E). 
 

Kindlin-2 is overexpressed in melanoma, and 
elevated kindlin-2 predicts a poor prognosis 
 
Clinically, we found that kindlin-2 was overexpressed in 
tumour tissues compared with peritumour tissues in 
sixteen melanoma patients at both mRNA and protein 
levels (Figure 7A, 7B). Typical IHC images indicated 
that kindlin-2 was mainly expressed in the cytoplasm but 
partially expressed in the nucleus (Figure 7C). Through 
quantification, we further confirmed that kindlin-2 was   
 

 

 
 

Figure 5. RNA sequencing and bioinformatics analyses. (A) Differentially expressed genes in SK28-shNC/SK28-sh-kindlin-2 and A375-
Vector/A375-kindlin-2 cells were showed by volcano plots. (B) Venn diagrams were constructed to show the overlapping upregulated (red) 
and downregulated (blue) DEGs. (C–F) Gene Ontology (Molecular function, cell component and biological process) and KEGG analyses of the 
overlapping DEGs were performed. 
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overexpressed in melanoma tissues compared with paired 
normal tissues (Figure 7D). Then, patients were divided 
into two groups according to the Clark level and clinical 
stage. We found that high kindlin-2 levels were more 
common in melanoma tissues with advanced Clark levels 
(p=0.027, Figure 7E) and clinical stages (p=0.011, Figure 
7F). Importantly, patients in the kindlin-2High group 
(n=103) had poorer overall survival rates than those in 
the kindlin-2Low group (n=94) (p=0.029, Figure 7G). 
Thus, kindlin-2 is overexpressed in melanoma tissues, 
and high levels of kindlin-2 predict poor prognoses. 
 
DISCUSSION 
 
In this study, we explored the potential role and 
underlying mechanism of kindlin-2 in melanoma. 

Kindlin-2 promotes migration, invasion and the cellular 
EMT, and activates the TGF-β pathway. Kindlin-2 also 
facilitates VEGFA-dependent angiogenesis and tumour 
progression through the mTOR pathway. Clinically, we 
show that kindlin-2 is significantly overexpressed in 
melanoma tissues and predicts a poor prognosis. 
 
Kindlin-2 has been reported to be overexpressed in 
multiple tumours, and aberrant kindlin-2 expression has 
been linked to tumour progression. Guo et al. [22] 
showed that kindlin-2 interacts with and stabilizes EGFR 
and is required for EGF-induced breast cancer migration, 
and Ou et al. [23] showed that kindlin-2 promotes glioma 
cell motility and proliferation both in vivo and in vitro. In 
our study, we further confirmed that the overexpression 
of kindlin-2 as a tumour promoter. Through a series of

 

 
 

Figure 6. Kindlin-2 promotes angiogenesis and tumour progression via the mTOR pathway. (A) The protein levels of kindlin-2, p-
Smad2/3, Smad2/3, p-mTOR and mTOR were detected in SK28-shNC, SK28-sh-kindlin-2, A375-Vector and A375-kindlin-2 cells by western 
blotting. (B) Migration, invasion and tube formation assays were performed in A375-Vector and A375-kindlin-2 cells after incubation with 
rapamycin. (C) Western blotting was used to detect the levels of kindlin-2, p-mTOR, mTOR and VEGFA in A375-Vector and A375-kindlin-2 cells 
after incubation with rapamycin. (D) ELISA was used to detect the secretion of VEGFA in the indicated cells. (E) A schematic model of kindlin-
2-induced melanoma progression. *p<0.05, **p<0.01. 
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experiments, we found that elevated kindlin-2 promotes 
invasion and migration, while there was no influence on 
proliferation in vitro. Furthermore, we found that high 
levels of kindlin-2 promoted the cellular EMT and that 
TGF-β signalling was activated during this process. 
 
Previously, we indicated that neovascular permeability 
was increased and blood vessels were shorter and thinner 
in kindlin-2 gene knockdown mice [20]. Liao et al. [24] 
showed that kindlin-2 is necessary for angiogenic 
sprouting in vitro and for tumour angiogenic development 

in vivo. However, these results were based on knocking 
down kindlin-2 expression in vascular endothelial cells. 
We were the first to demonstrate the role of tumour-
expressed kindlin-2 in the interaction between tumour 
cells and vascular endothelial cells. We showed that 
elevated kindlin-2 promoted angiogenesis both in vivo 
and in vitro, which well explained that kindlin-2 
promoted tumour growth in vivo (there was no influence 
on the proliferation ability in vitro). Mechanistically, 
melanoma cells with high levels of kindlin-2 promoted 
the secretion of VEGFA, a predominant inducer of 

 

 
 

Figure 7. Kindlin-2 is overexpressed in melanoma, and elevated kindlin-2 predicts a poor prognosis. (A) The protein levels of 
kindlin-2 in 16 pairs of melanoma and matched peri-tumour tissues. (B) The mRNA levels of kindlin-2 in 16 pairs of melanoma and matched 
peri-tumour tissues. (C) Representative images of the TMA after H&E staining and IHC staining with the kindlin-2 antibody. (D) The kindlin-2 
expression levels in melanoma and peritumoural tissues were analysed by average densitometry. (E and F) The kindlin-2 levels in different 
groups were analyzed according to the Clark level and clinical stage. (G) Overall survival analysis of 197 melanoma patients according to the 
expression of kindlin-2. *p<0.05, ****p<0.0001. T, tumour; P, peritumour. 
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both normal and pathophysiological angiogenesis. 
Furthermore, we analysed the gene expression profiles 
induced by differentially expressed kindlin-2. KEGG 
analysis revealed that overlapping DEGs were enriched 
in the mTOR and VEGFA signalling pathways. A 
central role of mTOR in the regulation of VEGF 
expression has previously been shown in multiple 
cancers [25]. We suggest that elevated kindlin-2 
promotes VEGFA-dependent angiogenesis and tumour 
progression via the mTOR pathway. This is the first 
report to show that kindlin-2 could promote VEGFA 
secretion through the mTOR pathway and that this 
signalling pathway connects tumour cells with vascular 
endothelial cells. 
 
CONCLUSIONS 
 
Taken together, our findings confirmed the important 
role of kindlin-2 in tumour progression and TGF-β 
pathway activation. Additionally, we provide a new 
pathway of tumour-expressed kindlin-2 in the 
communication between tumour cells and vascular 
endothelial cells. Our study offers novel evidence that 
kindlin-2 may serve as a potential therapeutic target for 
melanoma patients. 
 
MATERIALS AND METHODS 
 
Patients and follow-up 
 
A tissue microarray (TMA) containing 197 melanoma 
tissues and 138 normal tissues was used for immuno-
histochemistry (IHC) analysis. Sixteen melanoma and 
paired normal tissues were consecutively collected from 
melanoma patients who underwent complete curative 
resection for qRT-PCR and western blot analyses. All 
tissues were collected immediately upon tumour 
resection, transported in liquid nitrogen and then stored at 
−80°C. All patients who underwent curative resection 
were verified by pathological examination at 
Zhongshan Hospital of Fudan University (Shanghai, 
China). Clinicopathological information was collected 
from January 1, 2008, to December 31, 2017. Ethical 
approval for human subjects was obtained from the 
Research Ethics Committee of Zhongshan Hospital. 
Informed consent for collecting and preserving samples 
and details was obtained from each patient. The overall 
survival (OS) rate was defined as the interval between 
surgery and death or the last observation point. 
 
Cell culture and transfection 
 
HUVECs, HaCaT cells and six melanoma cell lines, 
namely, A2058, A375, A875, MV3, M14 and sk-mel-28 
(shown as SK28), were purchased from a cell bank at 
the Chinese Academy of Sciences (Shanghai, China). 

These cells were cultured in Dulbecco’s Modified Eagle 
Medium (DMEM) or RPMI-1640 medium (HyClone, 
USA) containing 10% foetal bovine serum (FBS, 
Invitrogen, USA). The pLKD-CMV-G&PR-U6-shRNA 
vector and the pLenti-EF1a-mcherry-P2A-Puro-CMV-
MCS-3Flag vector were purchased from Obio 
Technology Corp. (Shanghai, China). The pLKD-CMV-
G&PR-U6-shRNA lentiviral vector was transfected into 
SK28 cells (target sequence GCCTCAAGCTCTTCTT 
GAT), and the pLKD-CMV-G&PR-U6 vector was used 
as a negative control. The pLenti-EF1a-mcherry-P2A-
Puro-CMV-FERMT2-3Flag vector was transfected into 
A375 cells, and the pLenti-EF1a-mcherry-P2A-Puro-
CMV-MCS-3Flag vector was used as a negative 
control. The transfection efficiency was examined by 
western blotting and qRT-PCR. 
 
Immunohistochemistry 
 
IHC staining was performed as described previously 
[26]. Briefly, sections that adhered to slides were 
deparaffinized with xylene and rehydrated with alcohol. 
After submerging into EDTA antigenic retrieval buffer, 
diluted hydrogen peroxide (0.3%) was used to inactivate 
endogenous peroxidase activity, followed by incubation 
with 5% bovine serum albumin (BSA) and the primary 
antibody (listed in Supplementary Table 2) overnight at 
4°C. Then, the sections were stained with a horseradish 
peroxidase (HRP)-labelled secondary antibody (Gene 
Tech, Shanghai, China) and diaminobenzidine (DAB, 
Gene Tech). Finally, the slide was counterstained with 
haematoxylin, dehydrated in ethanol, cleared in xylene, 
and coverslipped. IHC scoring was performed by 
Image-Pro Plus v6.0 software (Media Cybernetics, Inc., 
Bethesda, MD). 
 
qRT-PCR and western blot analyses 
 
Total RNA was extracted from both tissues and cultured 
cells using TRIzol reagent (Invitrogen, Carlsbad, USA) 
and reverse-transcribed into cDNA with a PrimeScript 
RT Reagent Kit (TaKaRa, Japan) according to the 
manufacturer’s instructions. SYBR Green Real-time PCR 
Master Mix (Yeasen, Shanghai, China) was used for 
qRT-PCR analyses carried out in an ABI 7500 Real-
Time PCR system (Applied Biosystems, Foster City, 
USA). The primer sequences for qRT-PCR are shown in 
Supplementary Table 1. Western blot was performed as 
described in a previous study [27], and all the primary 
antibodies are listed in Supplementary Table 2. 
 
Matrigel invasion, wound-healing migration, CCK-8 
and tube formation assays 
 
An invasion assay was performed using a 24-well 
Transwell plate (8 μm pore size, Corning, NY, USA). 
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Cells (1 × 104) in serum-free medium (200 μl) were 
seeded in the upper chamber, which was coated with 
Matrigel (BD Biosciences, USA). Then, 600 μl of 
complete medium was added to the lower chamber as a 
chemoattractant. After incubation for 48 h, the membrane 
was washed briefly with PBS, fixed with 4% 
paraformaldehyde, stained with crystal violet and 
counted under a microscope. For the wound-healing 
migration assay, scratch wounds were produced by a 
sterile 200 μl pipette tip after washing with cold PBS. 
The average distance migrated by the cells was measured 
using a microscope calibrated with an ocular micrometer 
at a suitable time. For the CCK-8 assay, cells were 
inoculated into 96-well plates at a density of 1,000 cells 
per well. Then, 10 μl of CCK-8 reagent (Yeasen, 
Shanghai, China) was added to the well after the 1st, 2nd, 
3rd and 4th days. The plates were incubated for 2 h, and 
the absorbance was determined at 490 nm. For tube 
formation assay, Matrigel was added to a 96-well plate 
and incubated at 37°C for one hour. Then, HUVECs (1.5 
× 104) were seeded into each well with conditioned 
medium for 6 h. Images were recorded with an Olympus 
fluorescence microscope. 
 
Enzyme-linked immunosorbent assay (ELISA) 
 
Cells were plated at 1 × 105 cells per well in a 12-well 
plate in complete medium overnight, washed with PBS 
and cultured for another 24 h in 500 μl of serum-free 
medium. The supernatant was collected and centrifuged to 
remove cell debris. The secreted VEGFA was quantified 
by ELISA using the human VEGFA immunoassay kit 
according to the manufacturer’s protocols (Thermo Fisher 
Scientific, Carlsbad, CA, USA). 
 
In vivo assay 
 
BALB/c-nu/nu athymic nude mice (4-5 weeks old, 18-20 
g) were obtained from the Shanghai Institute of Material 
Medicine and raised in a specific pathogen-free (SPF) 
animal laboratory. For the metastasis model, cells 
(2×106) were injected into the tail veins, and the mice 
were euthanized after four weeks. The lungs were 
obtained and fixed with 4% paraformaldehyde. Then, 
consecutive tissue sections were obtained and stained 
with haematoxylin-eosin (H&E), and the number of 
metastatic nodules was counted under a microscope. For 
the growth model, cells (2×106) were injected into the 
right flank to generate subcutaneous tumours. Tumour 
size was measured every four days, and tumour volume 
was calculated as (length x width2)/2. Thirty-two days 
after injection, the tumour specimens were surgically 
removed, fixed, paraffin-embedded, and sectioned. The 
sections were used for H&E and IHC staining. All 
experimental procedures were approved by the Animal 
Care Committee of Fudan University (Shanghai, China). 

Statistical analysis 
 
All statistical analyses were carried out using the IBM 
SPSS Statistics 21 (IBM Corp., USA) statistical software 
package and GraphPad Prism software V 5.0 (La Jolla, 
CA, USA). All in vitro experiments were repeated at 
least three times, and the values are presented as the 
mean ± standard deviation (SD). Student’s t test or 
Tukey’s multiple comparisons test was used for 
comparisons between two groups, and one-way ANOVA 
was used for multiple group comparisons. The survival 
curve was plotted using the Kaplan-Meier method and 
compared by the log-rank test. All p values were two-
sided, and differences were considered statistically 
significant at p<0.05. 
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SUPPLEMENTARY MATERIALS 
 
 
Supplementary Table 1. Sequences of primers used for real-time polymerase chain reaction. 

kindlin-2  
Forward 5′-CAGACACCCCGAAGAACTTTC-3′ 
Reverse 5′-GCCCCTCTAATTCAAGTGCCT-3′ 
N-cadherin  
Forward 5′-AGCCAACCTTAACTGAGGAGT-3′ 
Reverse 5′-GGCAAGTTGATTGGAGGGATG-3′ 
β-catenin  
Forward 5′-AGCTTCCAGACACGCTATCAT-3′  
Reverse 5′-CGGTACAACGAGCTGTTTCTAC-3′ 
ZEB1  
Forward 5′-TTACACCTTTGCATACAGAACCC-3′ 
Reverse 5′-TTTACGATTACACCCAGACTGC-3′ 
ZEB2  
Forward 5′-GCGATGGTCATGCAGTCAG-3′ 
Reverse 5′-CAGGTGGCAGGTCATTTTCTT-3′ 
GAPDH  
Forward 5′-GGTATGACAACGAATTTGGC-3′ 
Reverse 5′-GAGCACAGGGTACTTTATTG-3′ 

 

Supplementary Table 2. List of primary antibodies used in the study. 

Antibody Applications Company 
kindlin-2 WB, IF, IP Abcam (ab74030) 
GAPDH WB, IF, IHC, Abcam (ab8245) 
N-cadherin WB, IF, IHC, IP CST (13116) 
β-catenin WB, F, IF, IHC, IP, IHC CST (8480) 
ZEB1 WB, F, IF, IHC Abcam (ab203829) 
ZEB2 WB, IHC Abcam (ab138222) 
p-Smad2/3 WB, IHC Abcam (ab38449) 
Smad2/3 WB, IHC, ELISA,  Abcam (ab8805) 
CD31 WB, IHC, IF, F Abcam (ab32457) 
p-mTOR WB, IF, ELISA CST (5536) 
mTOR WB, IHC, IF, F CST (2983) 
VEGFA WB, ELISA Abcam (ab46154) 

Abbreviations: WB: western blot; IHC: immunohistochemistry; IF: immunofluorescence; IP: immunoprecipitation; ELISA: 
enzyme-linked immunosorbent assay; F: flow cytometric analysis. 


