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Abstract: Staphylococcus pseudintermedius, a common commensal canine bacterium, is the main cause
of skin infections in dogs and is a potential zoonotic pathogen. The emergence of methicillin-resistant
S. pseudintermedius (MRSP) has compromised the treatment of infections caused by these bacteria.
In this study, we compared the phenotypic results obtained by minimum inhibitory concentration
(MICs) for 67 S. pseudintermedius isolates from the skin of nine healthy dogs versus the genotypic data
obtained with Nanopore sequencing. A total of 17 antibiotic resistance genes (ARGs) were detected
among the isolates. A good correlation between phenotype and genotype was observed for some
antimicrobial classes, such as ciprofloxacin (fluoroquinolone), macrolides, or tetracycline. However,
for oxacillin (beta-lactam) or aminoglycosides the correlation was low. Two antibiotic resistance
genes were located on plasmids integrated in the chromosome, and a third one was in a circular
plasmid. To our knowledge, this is the first study assessing the correlation between phenotype and
genotype regarding antimicrobial resistance of S. pseudintermedius from healthy dogs using Nanopore
sequencing technology.

Keywords: Staphylococcus pseudintermedius; antibiotic resistance; nanopore sequencing; phenotype-genotype
concordance; healthy dog

1. Introduction

Staphylococcus pseudintermedius is a common bacteria found in the mucous membranes
and skin of dogs. Carriage of S. pseudintermedius in healthy dog populations can range
between 46% and 92% [1–3]. However, it is also the primary pathogen isolated from clinical
canine specimens, especially from pyoderma, otitis externa, and superficial folliculitis.
In recent decades, the emergence of methicillin-resistant S. pseudintermedius (MRSP) has
compromised the treatment of these infections in veterinary medicine. Furthermore, in
recent years, several studies have reported community-acquired infections with S. pseudin-
termedius transmitted from dogs to humans directly or by contamination of the household
environment [4,5], highlighting their zoonotic potential. As a result, S. pseudintermedius
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has been identified among the most relevant antimicrobial-resistant (AMR) bacteria in the
European Union for dogs and cats, and its eligibility to enter the list of animal diseases
within the framework of the Animal Health Law has been recently discussed [6].

To date, the vast majority of studies have focused on S. pseudintermedius isolated
from diseased dogs and have evidenced a high level of resistance to clinically important
antimicrobials, such as beta-lactams, lincosamides, and fluoroquinolones [7]. In many cases,
the presence of the mecA gene, or its homolog, mecC producing a modified penicillin-binding
protein (PBP), provides them with phenotypic resistance to all beta-lactam antimicrobials
registered in veterinary medicine, limiting the therapeutic options. Additionally, the global
distribution of some sequence types (ST) associated with MRSP causing infections, such as
ST71 in Europe and ST68 in North America, have contributed to unravel the epidemiology
of this pathogen and identifying lineages of S. pseudintermedius with pathogenic and
zoonotic potential [8].

However, to have a broader knowledge of the epidemiology of this opportunistic
pathogen and to help veterinarians guide antimicrobial stewardship, it is necessary to study
not only isolates associated with clinical cases but also the commensal population inhabit-
ing the skin of healthy dogs. Furthermore, strain diversity within each individual animal
has been studied by traditional methods, such as phenotypic tests, pulsed-field gel elec-
trophoresis, or PCR, describing high genotypic diversity between different anatomical sites
of the animal [9] but not many differences in antimicrobial resistant profiles. Hence, high-
throughput sequencing technologies have the advantage of studying complete genomes. In
particular, long-read sequencing technologies, such as Oxford Nanopore Technology (ONT),
offer the advantages of closing genomes and plasmids, enabling establishment of the lo-
cation and the genetic context of the different antimicrobial resistance genes [10,11]. This
facilitates the assessment of the risk of transmission being higher when it is plasmid-borne
and has the potential of being horizontally transferred intra and inter-species.

To our knowledge, whole genome sequencing techniques have not been fully applied
to determine the prevalence and antimicrobial resistance determinants within S. pseudinter-
medius of healthy dogs. Therefore, the aim of this study was to characterize genotypically
and phenotypically the population of S. pseudintermedius from the skin of different anatom-
ical areas of healthy dogs and to correlate the phenotype with the genotype. Additionally,
the location of the different antimicrobial resistant genes and their genetic context have
been identified.

2. Results
2.1. Distribution of MRSP and MDR Strains

Sixty-seven S. pseudintermedius were recovered from the skin of nine healthy dogs. The
isolates were obtained from four different anatomical areas (Table 1): 27 from the perioral
(six dogs), 16 from the perianal (six dogs), 13 from the inguinal (four dogs), and 11 from the
nasal region (five dogs).

Table 1. Numbers and distribution of S. pseudintermedius isolates from four different sites in nine dogs.

Dog Inguinal Perianal Perioral Nasal Total

1 2 5 5 1 13
2 0 1 0 0 1
3 0 1 4 0 5
4 0 0 0 2 2
5 0 1 5 0 6
6 4 3 5 5 17
7 5 0 5 1 11
8 2 5 3 0 10
9 0 0 0 2 2

Total 13 16 27 11
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As seen in Figure 1a, minimal inhibitory concentration assays (MIC) described resistance
to penicillin in 82.1% of the isolates, to tetracycline in 71.6%, to ampicillin in 59.7%, to oxacillin
in 50.8%, to erythromycin and clindamycin in 43.3%, to ceftriaxone and ciprofloxacin in 37.3%,
to co-trimoxazole in 32.8%, to gentamicin in 10.5%, to vancomycin in 1.5%, and no isolates
were resistant to rifampicin. Multidrug resistance was described in 43.3% of the isolates.
The most common combination of resistances among multidrug resistant isolates (MDR)
was the resistance to erythromycin, penicillin, ampicillin, ceftriaxone, oxacillin, tetracycline,
ciprofloxacin, and clindamycin in 20.9% of the isolates, followed by those isolates that were
resistant to the same antimicrobials as above plus co-trimoxazole (13.4%).
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Figure 1. Continuation. Clustermaps for the (a) phenotype and (b) genotype results. For both clus-
termaps, the first three columns correspond to Multilocus Sequence type (MLST), dog number, and
body site, respectively. For (a) phenotype clustermap, dark gray represents resistance and light gray
represents intermediate susceptibility. In the (b) genotype clustermap, the absence/presence of antibiotic
resistance determinants (genes and point mutations described in this study) are represented. SCCmec
types are highlighted in the right side of the panel: light red for SCCmec subtype Vc; light green for
SCCmec type Ivg (2B); and light blue for those strains that harbored the mecA gene, but no SCCmec was
detected by https://cge.food.dtu.dk/services/SCCmecFinder/ (accessed on 21 October 2022).

2.2. Genotype and Phenotype Concordance Varied Depending on the Antibiotic Family

A total of 17 antibiotic resistance genes (ARGs) (Figure 1b, see Supplementary Table
S1 to check the MICs) were detected among the isolates, with 43.3% being phenotypically
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and genotypically MDR. The bla operon (blaZ, blaI, blaR1) co-occurred with all the ARGs
retrieved in all isolates except for tetM. Additionally, the presence of the mecA gene was
associated with the presence of aac(6′)-aph(2”), ant(6)-Ia, aph(3′)-IIIa, spw, tetM, tetK, lsaE,
lnuB, ermB and sat-4 (Figure 2).
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Figure 2. Cooccurrences (%) of the antibiotic resistance genes (ARGs). Seventeen genes were detected
within the 67 S. pseudintermedius isolates. blaI and blaR1 are not shown in the figure since they share
the same presence as blaZ. The second column (in gray) indicates the number of isolates harboring
the gene. The % values are calculated by dividing the number of cooccurrences of two given genes
by the number of times a gene is present in our isolates. As an example, all the isolates presenting
mecA (40), also present the gene blaZ (100% of cooccurrence); however, only 40 out of the 62 isolates
presenting blaZ also present the mecA gene (64.5% of cooccurrence). For all the data and how it is
calculated, see Supplementary Table S2.

In general, a good correlation was observed between phenotypic and genotypic
results. The concordance between the genotype and the phenotype was higher than
90% for lincosamides, trimethroprim, tetracyclines, macrolides, fluoroquinolones, and
ampicillin (Supplementary Table S3). Penicillin and oxacillin showed a concordance of
88.8% and 85%, respectively. For ceftriaxon this value was 60%. However, aminoglycosides
showed only 25% concordance. Moreover, when correlating phenotype and genotype,
some inconsistencies were observed (Supplementary Table S3). One isolate (H_SP249, from
Dog 6) was phenotypically resistant to tetracycline, but none of the published genes were
detected. Another isolate (H_SP283, from Dog 8) exhibited resistance to two antimicrobial
families, macrolides and beta-lactams, but in addition to presenting ermB and mecA, some
genes conferring resistance to aminoglycosides were also present (aad(6) and aph(3′)-IIIa).
Finally, six isolates (H_SP255, H_SP258, H_SP260 to H_SP262, and H_SP267) phenotypically
susceptible to methicillin harbored the mecA gene.

2.3. Beta-Lactams and Cephalosporin Resistance

MIC values were evaluated for four beta-lactams, including penicillin, ampicillin, cef-
triaxone, and oxacillin, and resistance was observed in 55, 40, 25 and 34 isolates, respectively
(Supplementary Table S1).



Antibiotics 2022, 11, 1625 6 of 15

Bioinformatic analyses detected the presence of two genes that can explain the resis-
tance to these antibiotics: blaZ and mecA. All isolates resistant to penicillin (n = 55) harbored
blaZ gene. However, seven extra isolates yielded the whole bla operon, including blaZ,
balrR1, and blaI but were phenotypically susceptible to penicillin. The mecA gene was
present in 40 isolates (Supplementary Table S4). All of them were resistant to ampicillin;
34 to oxacillin, and 25 to ceftriaxone. Interestingly, all the isolates showing the mecA gene
and that were susceptible to both ceftriaxone (n = 15) and oxacillin (n = 6) presented the
SCCmec type IVg (2B). When comparing the oxacillin and ceftriaxone MIC values between
different SCCmec types, isolates (n = 17) with the type IVg (2B) exhibited MICs ≤1 mg/L
and ≤8–16 mg/L, respectively, while the strains harboring the subtype Vc (5C2&5) (n = 8)
or with no SCCmec cassette (n = 15) exhibited MIC values for oxacillin and ceftriaxone of
>8 mg/L and >64 mg/L, respectively (Supplementary Table S4).

2.4. Fluoroquinolone Resistance

Phenotypic resistance to ciprofloxacin was observed in 23 isolates (13 from Dog 1 and
10 from Dog 6) and intermediate in two (Dog 2) (Supplementary Table S1). Mutations in
gyrA and parC (also known as grlA) genes have been previously related to fluoroquinolone
resistance [12]. Among the 67 S. pseudintermedius isolates, 38-point mutations in the gyrA
gene were identified (Supplementary Table S5). Within these point mutations, 17 have
been previously described [12], and 21 are described herein. Two of the point mutations
described among our strains were specific for all the phenotypic antibiotic-resistant isolates:
C251T (Ser84Leu) and G2611A (Glu871Lys). For parC gene, 36 point mutations were found
among the 67 isolates, including 11 previously described [12] and 25 that are described
herein (Supplementary Table S6). One mutation was specific for all the phenotypic-resistant
isolates, G239T (Ser80Ile); however, we described six-point mutations present in 15 of the
23 resistant isolates, and three-point mutations present in three of the resistant strains.

2.5. Vancomycin Resistance

One isolate (H_SP204) exhibited resistance to vancomycin (MIC 16 µg/mL), and the MIC
for teicoplanin was 16 µg/mL (Supplementary Table S1). None of the van genes conferring
resistance to vancomycin were detected. However, mutations in rpoB and clpP genes were
also assessed (Supplementary Tables S7 and S8, respectively). Two different mutations were
observed for the rpoB gene, encoding the β subunit of RNA polymerase, G742A (Val248Ile)
and G3094A (Val1032Ile). Additionally, one mutation C17T (Thr6Ile) in the clpP encoding for
an ATP-dependent protease involved in cell wall synthesis was found.

2.6. Macrolide and Lincosamide Resistance

A total of 28 isolates were phenotypically co-resistant to erythromycin and clindamycin.
However, one isolate was resistant only to erythromycin (H_SP283) and another isolate to
clindamycin (H_SP204) (Supplementary Table S1).

All the isolates resistant to erythromycin and clindamycin harbored the ermB gene,
except for the clindamycin susceptible isolate. Additionally, five isolates also yielded
the lsaE gene along with lnuB. lsaE, and lnuB were located next to each other, with one
site-specific recombinase upstream and downstream (Figure 3).

2.7. Tetracycline Resistance

A total of 48 isolates were phenotypically resistant to tetracycline (47 with MICs≥ 16 µg/mL,
and one with MIC 4 µg/mL) (Supplementary Table S1). Genotypically only the isolates with
MIC≥ 16 µg/mL presented a gene related to tetracycline resistance, tetM. Moreover, eight isolates
from the same dog presented tetM together with tetK; this last one located in a potential plasmid
inserted in the chromosome. tetK was accompanied by the other two genes present in the pSP-
G3C4 (MN612109.1) plasmid harboring tetK gene: repC (coverage 71.4% and identity 90.1%) and
repC polypeptide A (coverage 99.5% and identity 99.4%).
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Figure 3. Genomic context of antibiotic resistance genes. In red, the antibiotic resistance genes; in
orange, elements related to recombination, mobility, etc.; in pink, hypothetical proteins.

2.8. Trimethoprim-Sulfamethoxazole (Cotrimoxazole) Resistance

A total of 23 isolates were phenotypically resistant to cotrimoxazole (trimethoprim/sulfa-
methoxazole) (Supplementary Table S1). In agreement, the acquired dfrG gene was present
in 22 of the 23 resistant isolates (Supplementary Table S3). H_SP238 exhibited resistance to
cotrimoxazole, but no related ARG was found.

Mutations in the constitutive gene dhfr were assessed in all isolates (resistant and
susceptible), but no specific mutations were detected (Supplementary Table S9). Addi-
tionally, point mutations in the folP gene were further investigated. Interestingly, all the
resistant strains and half of the susceptible strains (24/44, 54.6%) presented an insertion of
12 nucleotides (AGAGGAAGTCAC, from position 177 to 188), translated into four extra
amino acids in the protein sequence (Arg-Gly-Ser-His) (Supplementary Table S10).

2.9. Aminoglycoside Resistance

For aminoglycosides, it was difficult to establish a clear correlation between geno-
typic and phenotypic results (Supplementary Table S3). Additionally, clinical breakpoints
are only described for gentamicin. However, applying CARD and NCBI databases,
five genes conferring resistance to aminoglycosides were retrieved: aac(6′)-Ie-aph(2”)-
Ia (aac(6′)-aph(2”)), ant(6)-Ia (also known as aad(6)), aph(3′)-IIIa, spw, and str. Within 31
isolates, four different combinations of aminoglycoside resistance genes were identified
(Supplementary Table S2).

The genes aac(6′)-aph(2”), ant(6)-Ia, aph(3′)-IIIa, and spw cooccurred in 96.6% to 100% of
the isolates that also present the bla operon, tetM, ermB, and sat-4 (Figure 2). The spw gene
was also present in 100% of the isolates with lsaE, lnuB, and dfrG. str gene only cooccured
with the bla operon and tetM.
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Isolates H_SP285 and H_SP286 (both from the same dog) presented the str gene in a
small contig independent from the chromosomal contig. The contig size was 4329 bp for
H_SP285 and 4336 bp H_SP286; both were circular, with similar gene content (replicon,
mobilization, and hypothetical proteins), and yielded a replicon rep7a_4_repD(pK214),
indicating they were potential plasmids (Figure 4).

Antibiotics 2022, 11, x FOR PEER REVIEW 9 of 17 
 

2.9. Aminoglycoside Resistance 

For aminoglycosides, it was difficult to establish a clear correlation between geno-

typic and phenotypic results (Supplementary Table S3). Additionally, clinical breakpoints 

are only described for gentamicin. However, applying CARD and NCBI databases, five 

genes conferring resistance to aminoglycosides were retrieved: aac(6′)-Ie-aph(2″)-Ia 

(aac(6′)-aph(2″)), ant(6)-Ia (also known as aad(6)), aph(3′)-IIIa, spw, and str. Within 31 iso-

lates, four different combinations of aminoglycoside resistance genes were identified 

(Supplementary Table S2). 

The genes aac(6′)-aph(2″), ant(6)-Ia, aph(3′)-IIIa, and spw cooccurred in 96.6% to 100% 

of the isolates that also present the bla operon, tetM, ermB, and sat-4 (Figure 2). The spw 

gene was also present in 100% of the isolates with lsaE, lnuB, and dfrG. str gene only 

cooccured with the bla operon and tetM. 

Isolates H_SP285 and H_SP286 (both from the same dog) presented the str gene in a 

small contig independent from the chromosomal contig. The contig size was 4329 bp for 

H_SP285 and 4336 bp H_SP286; both were circular, with similar gene content (replicon, 

mobilization, and hypothetical proteins), and yielded a replicon rep7a_4_repD(pK214), 

indicating they were potential plasmids (Figure 4). 

 

Figure 4. Visualization of the contig harboring str in H_SP286. The red arrow indicates the antibiotic 

resistance gene str; in pink, hypothetical proteins; in orange, genes related to mobilization and rep-

lication. 

2.10. Genes Not Tested Phenotypically: sat-4 and cat 

As shown in Supplementary Table S2, a total of 24 isolates presented the gene sat-4 

(encoding for a streptothricin acetyltransferase [13]) with coverage and identity values 

equal or higher than 99% However, five isolates from dog 5 only presented a fragment of 

this gene (289 bp of 543 bp) located in the negative strand of the chromosome. Analyzing 

the genetic context of these five isolates (H_SP224 to H_SP228) (Figure 3) and comparing 

it to five isolates that presented the complete gene, we observed that in all cases sat-4 is 

flanked upstream and downstream by aph(3′)-III and ant(6)-I, respectively. 

Sixteen isolates harbored a cat gene encoding for a chloramphenicol o-acetyltransfer-

ase in the chromosome (Supplementary Table S2). The gene was surrounded by several 

elements involved in recombination, mobilization, integration, and replication (Figure 3). 

  

Figure 4. Visualization of the contig harboring str in H_SP286. The red arrow indicates the antibiotic
resistance gene str; in pink, hypothetical proteins; in orange, genes related to mobilization and
replication.

2.10. Genes Not Tested Phenotypically: sat-4 and cat

As shown in Supplementary Table S2, a total of 24 isolates presented the gene sat-4
(encoding for a streptothricin acetyltransferase [13]) with coverage and identity values
equal or higher than 99% However, five isolates from dog 5 only presented a fragment of
this gene (289 bp of 543 bp) located in the negative strand of the chromosome. Analyzing
the genetic context of these five isolates (H_SP224 to H_SP228) (Figure 3) and comparing
it to five isolates that presented the complete gene, we observed that in all cases sat-4 is
flanked upstream and downstream by aph(3′)-III and ant(6)-I, respectively.

Sixteen isolates harbored a cat gene encoding for a chloramphenicol o-acetyltransferase
in the chromosome (Supplementary Table S2). The gene was surrounded by several
elements involved in recombination, mobilization, integration, and replication (Figure 3).

3. Discussion

In this study, we carried out a comprehensive correlation study between the genotypic
and the phenotypic data of 67 S. pseudintermedius isolates obtained from four anatomical
regions of nine healthy dogs [14]. Long-read Oxford Nanopore whole genome sequencing
was performed with the MinION Mk1C followed by de novo assembling and polishing
steps. Different authors have previously studied phenotype and genotype correlations in S.
pseudintermedius using Illumina sequencing, [15,16] describing difficulties with regards to
assembling the genetic context of the antibiotic resistance genes [15]. Here, we demonstrate
that this avantgarde sequencing technology is an excellent tool not only to study the
presence of resistance genes but also their genetic context, including insertion sequences
(IS) and repeated regions.

The average number of resistances to different antibiotic families varied among the
S. pseudintermedius isolates from one dog compared to the other dogs, but generally, the
same profile was observed for the same sampled area. The nasal region should be consid-
ered a hot spot for the transmission of antibiotic resistance to other specimens since the
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colonization of the nasal region of a dog owner by the same S. pseudintermedius colonizing
its dog’s nose has already been described [17].

In our previous study [18], all the S. pseudintermedius isolated from the skin of six
healthy dogs (n = 22) were methicillin-susceptible S. pseudintermedius (MSSP), and only
two of them were MDR. In contraposition, the present work identified 27 MSSP (40%) and
40 MRSP (60%), 29 of the latter also MDR, identified in five out of the nine healthy dogs.
Although the number of dogs is quite limited for performing any statistical test, it appears
that the presence of the mecA gene in S. pseudintermedius isolates from healthy dogs is more
prevalent than previously thought. Furthermore, a complete mecA gene was confirmed in
isolates susceptible to oxacillin and ceftriaxone, which can hinder the therapeutic outcome
in case of infection. In this regard, isolates that harbored the SCCmec IVg exhibited lower
MIC than those with SCCmec_subtype-Vc(5C2&5) or lacking the cassette, as described
by Worthing et al. [19] Therefore, our results confirmed that oxacillin and ceftriaxone
susceptibility appears to be associated with the type of SCCmec harbored by the bacterium.

The emergence of methicillin-resistant Staphylococcus spp has led to the use of van-
comycin as one of the first line antimicrobials to combat Gram positive infections [20,21].
Fortunately, we could not detect any of the vancomycin resistant genes described in the
literature. However, mutations in rpoB and clpP can cause reduced susceptibility against
vancomycin [15,22–25]. We described herein two possible mutations associated with these
genes that should be confirmed by more precise sequencing technology. Further analysis,
including morphometric studies using electron microscopy and doubling time assays,
should be performed as described by Cui et al. [26] to check the cell wall thickness and
multiplication rate among this resistant isolate.

One hundred percent concordance between phenotype and genotype was observed for
ciprofloxacin. While C251T (Ser84Leu) has been consistently described as a characteristic
mutation in the gyrA gene conferring resistance to fluoroquinolones in different Staphylo-
coccus species [12,27–30], here we report a novel second mutation that was only present in
resistant isolates, G2611A (Glu871Lys). For parC gene, the G239T (Ser80Ile) mutation was
only present in resistant isolates.

For erythromycin, 100% concordance was observed between phenotype and genotype,
with two discrepancies for clindamycin resistance. Isolate H_SP204 was clindamycin
resistant and erythromycin susceptible, and no antibiotic resistance gene was described. On
the other hand, isolate H_SP283 presented phenotypic resistance to erythromycin but was
susceptible to clindamycin. It is possible that this isolate presented an inducible clindamycin
resistance, unlike all the other strains that presented the ermB gene and that were resistant
to both erythromycin and clindamycin. It has been described in S. pseudintermedius that the
ermB gene can be constitutively or induced expressed [31]. Thus, further experiments with
a double-disk diffusion testing both antibiotics should be performed to ensure clindamycin
resistance, since clindamycin is one of the predilected antibiotics to use in treatment when
resistance to methicillin is present. Interestingly, lsaE and lnuB genes were flanked by one
site-specific recombinase (Figure 3), which could denote a previous event of mobilization
and integration in the chromosome. In fact, Yan et al. described these genes in a conjugative
plasmid in Enterococcus faecium, potentially transmissible to Staphylococcus aureus [32]. These
analyses also identified that both genes, lsaE and lnuB were located next to an antibiotic
resistance region with ant(6)-I-sat-4-aph(3′)-III clusters [33], as described herein.

As Tyson et al. reported in their study [15] as a limitation, no concordance between
phenotype and the presence of resistance genes was observed for aminoglycosides in
this study. Moreover, Wegener et al. [16] described that the most usual discrepancies
relied on the aac(6′)-Ie-aph(2”)-Ia gene. Additionally, the lack of breakpoints for some of
the drugs belonging to this antimicrobial family also hampered any possible correlations
between genotype and phenotype. Furthermore, several discrepancies between CARD
and NCBI databases regarding coverage and gene nomenclature for this antimicrobial
class made it very difficult to compare genotypic results between isolates. Still, a cluster
of aminoglycoside resistance genes was detected in our isolates, comprising ant(6)-I (also
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known as aadE), sat-4, and aph(3′)-III with the presence of other genes such as ermB and
dfrG and cat [34–36]. These clusters are known as Tn5405-like elements and can be found
in Enterococcus faecalis plasmid pRE25 [37]. Loeffler and Lloyd [38] showed the rapid
evolution of S. pseudintermedius to multidrug resistance through the acquisition of mecA
on a staphylococcal cassette chromosome (SCC), a large transposon (Tn5405-like element)
carrying up to five resistance genes, and genome point mutations for fluoroquinolones
(gyrA/grlA) and sulfonamide resistance.

Genotypically, only the isolates exhibiting MIC ≥ 16 µg/mL for tetracycline harbored
tetM or tetK. On the other hand, isolates with MIC 4 µg/mL (also categorized as resis-
tant) did not present any known genes, although the presence of efflux pumps cannot be
disregarded. In previous studies, tetK has been described in small size plasmids [18,39]
in contraposition to our isolates that present this gene in the chromosome. According to
the genetic context, it is plausible that a pSP-G3C4-like plasmid has been integrated into
the chromosome, as previously described for tetK bearing S. aureus pT181 plasmid [40,41].
Similarly, we observed that the cat gene was surrounded by elements associated to plas-
mids, including a recombinase, a replication initiation protein, and a toxin-antitoxin system
(zeta, ζ, and epsilon, ε, respectively). Therefore, it appears that this plasmid has also been
integrated into the chromosome. The presence of plasmids carrying a cat gene integrated
into the chromosome of methicillin-resistant S. aureus MRSA isolated from both dogs and
humans has been previously reported [34].

Finally, the genetic background encoding resistance for trimethoprim or sulfonamides
could not be determined since no correlation could be detected between mutations in the
constitutive dihydrofolate reductase (dhfr) conferring resistance to trimethoprim [42,43] or
dihydropteroate synthase (folP) target of sulfonamides [44].

4. Materials and Methods
4.1. Bacterial Cultures

The dogs came to the Hospital Clínic Veterinari (Universitat Autònoma de Barcelona,
UAB, Spain) for routine preventive medical interventions (vaccinations, deworming). Prior
to vaccination, they were subjected to a general physical examination by a veterinary
surgeon, in which no clinical signs or lesions were detected. A total of nine healthy dogs,
belonging to different breeds, and without previous records of antimicrobial treatment
were selected during a period spanning one month. Samples were obtained by rubbing
sterile swabs on four different skin anatomical areas: perinasal, perioral, inguinal, and
perianal. These four different skin anatomical sites were chosen to represent different types
of microbial habitat within the dog: from a region with fur and mostly dry like the groin
(inguinal samples) to mucocutaneous areas like the muzzle (nasal and perioral samples),
and the perianal region, close to the gastrointestinal tract [45,46]. Swabs were cultured
in blood agar at 37 ◦C for 24 h. Up to five colonies morphologically compatible with
S. pseudintermedius (small silver colonies) were selected and sub-cultured in 3 mL of Brain
Heart Infusion (BHI) media at 37 ◦C for 16 h. A total of 67 S. pseudintermedius isolates were
included in this study, as shown in Table 1.

4.2. Antibiotic Susceptibility

Minimal inhibitory concentration (MIC) assays were carried out for 18 antimicrobial
compounds, using Sensititre plates (Sensititre, Trek diagnostic Systems Inc., East Grinstead,
UK) (Supplementary Table S1). For confirmation of the vancomycin resistant profile, a dif-
ferent Sensititre MIC plate containing vancomycin and teicoplanin was used. Antimicrobial
breakpoints were those recommended by the Clinical and Laboratory Standards Institute
(CLSI) for the Staphylococcus species [47,48]. Multidrug resistant (MDR) isolates were de-
fined for those isolates showing phenotypic resistance to at least three antimicrobials from
different classes [49].



Antibiotics 2022, 11, 1625 11 of 15

4.3. DNA Extraction and Nanopore Sequencing Library Preparation

DNA was extracted with ZymoBIOMICSTM DNA Miniprep Kit (Zymo Research,
Irvine, CA, USA). DNA quality and quantity were determined using NanoDrop 2000 Spec-
trophotometer and QubitTM dsDNA BR Assay Kit (Fisher Scientific SL, Madrid, Spain). The
sequencing libraries prepared approximately 200 to 400ng of DNA, which were subjected
to transposase fragmentation using the Rapid Barcoding Sequencing kit (SQK-RBK004;
Oxford Nanopore Technologies, ONT, Oxford, UK). Up to twelve barcoded samples were
loaded in a MinION FLO-MIN106 v9.4.1 flow cell (ONT, Oxford, UK) and sequenced in a
MinION Mk1B or Mk1C (ONT, Oxford, UK).

4.4. Bioinformatic Genome Sequencing Analysis

The fast5 files were basecalled, demultiplexed, and adapters trimmed with Guppy
(v5.0.11) [50] (--dna_r9.4.1_450bps_sup.cfg) (--config configuration.cfg --barcode_kits SQK-
RBK004 --trim_barcodes; min_score threshold default 60). Reads with a quality score lower
than 10 were discarded. Run summary statistics were obtained with Nanoplot (v1.38.1) [51]
(--N50 --fastq).

Isolates were confirmed as S. pseudintermedius by taxonomy assignment using the
EPI2ME What’s in my pot (WIMP) workflow [52]. Genomes were de novo assembled using
Flye (v2.8.3) [53] (--nano-raw --plasmids --trestle), except for HSP279 and HSP281 samples,
which were de novo assembled using Flye (v2.9) (--nano-hq). Contigs were polished with
Medaka (v1.4.3) [54] (medaka_consensus; -m r941_min_sup_g507). Genome completeness
and contamination were assessed with CheckM (v1.1.3) (lineage_wf) [55]. Circlator (v1.5.5)
was used to rotate the genomes fixing the start with the dnaA gene [56] (fixstart --min_id
70), when possible.

Multilocus sequence types (MLSTs) were determined on the basis of the S. pseudintermedius
PubMLST database (https://pubmlst.org/organisms/staphylococcus-pseudintermedius, ac-
cessed on 21 October 2022) [57] and the MLST (v2.0) software (https://cge.cbs.dtu.dk/services/
MLST/, accessed on 21 October 2022) [58].

Cluster maps were plotted using the seaborn [59] library in Python. The input files were
the presence/absence matrix of antimicrobial resistant genes and antimicrobial resistance.

4.5. Antibiotic Resistance Bioinformatic Analysis

Genomes were analysed with Abricate [60] (v1.0.1) using the Comprehensive Antibi-
otic Resistance Database (CARD) and the National Center for Biotechnology Information
(NCBI) databases (both updated on 21 December 2021) to determine the presence of an-
tibiotic resistance genes (ARGs), applying a threshold of identity and coverage ≥95%.
Antibiotic resistance associated with point mutations of some specific genes were iden-
tified by analyzing individual files, extracting the sequences, and aligning them with
BioEdit’s [61] (v7.2.5) ClustalW Multiple Alignment tool.

To determine the genetic context of some ARGs, genome sequences were uploaded
to the PAThosystems Resource Integration Center (PATRIC) [62] (v3.6.12) and genome
annotation was performed online with Rapid Annotation using the Subsystem Technology
tool kit (RASTtk) [63] tool. SnapGene Viewer (v5.2.4) (from Insightful Science; available
at https://www.snapgene.com/, accessed on 21 October 2022) was used to visualize the
annotated GenBank file and to customize the output. MDR isolates were defined as those
isolates showing the presence of ARG from at least three different antimicrobial families.

When the mecA gene was present, the Staphylococcal chromosome cassette mec
(SCCmec) was described using SCCmecFinder (v1.2) (from the Center for Genomic Epi-
demiology of the Technical University of Denmark; available at https://cge.cbs.dtu.dk/
services/SCCmecFinder/, accessed on 21 October 2022).

5. Conclusions

To our knowledge, this is the first study assessing the correlation between phenotype
and genotype regarding antimicrobial resistance of S. pseudintermedius from healthy dogs

https://pubmlst.org/organisms/staphylococcus-pseudintermedius
https://cge.cbs.dtu.dk/services/MLST/
https://cge.cbs.dtu.dk/services/MLST/
https://www.snapgene.com/
https://cge.cbs.dtu.dk/services/SCCmecFinder/
https://cge.cbs.dtu.dk/services/SCCmecFinder/
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using Nanopore long-read whole genome sequencing technology. Even though we were
limited by the antimicrobial cutoffs for our species, a good correlation was observed for
some antimicrobials, such as ciprofloxacin (fluoroquinolone), macrolides, or tetracycline.
However, for oxacillin (beta-lactam) or aminoglycosides the correlation was quite low.
It is noteworthy that some isolates harbored the mecA gene and were susceptible to
oxacillin and/or ceftriaxone, highlighting the importance of using sequencing technology
for confirmation of phenotypic results. The presence of the mecA gene and the number of
MDR isolates with integrated plasmids in their chromosome emphasizes the importance of
monitoring S. pseudintermedius for its zoonotic potential. Since we enrolled nine dogs in our
study, future projects will include a broader number of individuals and a broader number
of antimicrobials tested. Moreover, we will not only focus on S. pseudintermedius, but also
on other Staphylococcus species isolated by culture that were discarded during the isolation
steps. Finally, more analyses of the origin of the discrepancies between the phenotype and
the genotype will be included.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11111625/s1, Supplementary Table S1: Minimum
inhibitory concentration (MIC) values for the 18 antibiotics tested. There are also represented the
MIC values applied in this paper. The numeric values represent the mg/L. Co-trimoxazole is
the combination of trimethoprim and sulfamethoxazole. We could not apply MIC values for six
antibiotics: SYN, DAP, LEVO, LZD, STR, GAT. S, susceptible; I, intermediate susceptibility; R, resistant;
IN, inguinal; PA, perianal; PO, perioral; NA, nasal. Supplementary Table S2: Cooccurrence of the
antibiotic resistance genes retrieved by Abricate. Antibiotic resistance genes described by Abricate
with CARD and NCBI databases. aac(6’)-ah(2”), aac(6’)-Ie-aph(2”)-Ia; IN, inguinal; PA, perianal; PO,
perioral; NA, nasal; spw gene belongs to the ant(9) family of aminoglycoside resistance genes. Twenty-
four isolates presented a full-length copy of the sat-4 gene, but we also included five isolates from Dog
5 (in red) that did harbor half of the gene in the same context as the isolates with the full-length gene.
In the las row there are the percentages of presence of each gene among the 67 isolates. Supplementary
Table S3: Congruences and discrepancies between the genotype and the phenotype. In the last row
are calculated the concordances in percentages. * C251T and G2611A described in gyrA gene and
G239T in parC gene; ** from all the antibiotic resistance genes for aminoglycosides described only
aac(6)-aph(2) confers resistance to gentamicin. Supplementary Table S4: All the strains that presented
de mecA gene. Here we describe which SCCmec are presented and their MICs for oxacillin (OXA) and
ceftriaxone (AXO). The SCCmec percentage is given by the tool we used to determine the presence of
SCCmec, the SCCmecFinder. Supplementary Table S5: Mutations found in gyrA gene. Mutations in
this gene are related to fluoroquinolone resistance. The sequences were aligned with BioEdit. R/S,
resistant/susceptible. The numbers in bold correspond to the nucleotide position. Supplementary
Table S6: Mutations found in parC gene (also known as grlA). Mutations in this gene are related to
fluoroquinolone resistance. The sequences were aligned with BioEdit. R/S, resistant/susceptible.
The numbers in bold correspond to the nucleotide position. Supplementary Table S7: Mutations
found in rpoB gene. Mutations in this gene are related to vancomycin resistance. The sequences were
aligned with BioEdit. R/S, resistant/susceptible. The numbers in bold correspond to the nucleotide
position. Supplementary Table S8: Mutations found in clpP gene. Mutations in this gene are related
to vancomycin resistance. The sequences were aligned with BioEdit. R/S, resistant/susceptible. The
numbers in bold correspond to the nucleotide position. Supplementary Table S9: Mutations found
in dhfr gene. Mutations in this gene are related to co-trimoxazole resistance. The sequences were
aligned with BioEdit. R/S, resistant/susceptible. The numbers in bold correspond to the nucleotide
position. Supplementary Table S10: Mutations found in folP gene. Mutations in this gene are related
to co-trimoxazole resistance. The sequences were aligned with BioEdit. R/S, resistant/susceptible.
The numbers in bold correspond to the nucleotide position.
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