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Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood
vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothe-
sized to result from a loss of VEGF-A-mediated neuroprotection. Themultiple vegf-a gene products consist of two
alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of
which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-
angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform.
We showhere that in rats andmice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking
the proximal splicing event – leading to the preferential expression of VEGF-A165b over VEGF165a – prevents pain
in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-
dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a.
After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa
compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicingmechanism. Pharmacological inhibi-
tion of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated
neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain.
We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation
under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting
alternative RNA splicing may be a new analgesic strategy.
© 2014 University of Nottingham. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
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Introduction

Neutralization of VEGF-A with anti-VEGF-A therapies, such as
bevacizumab or VEGF-A receptor inhibitors (e.g., vandetanib) can result
in pain, when given alone (Burger et al., 2007; Cohen and Hochster,
2007) or in combination with chemotherapies (Cohen et al., 2007;
Garcia et al., 2008; Langenberg et al., 2011; Miller et al., 2007). The
clinical findings that VEGF-A contributes to pain are supported by
observations that inhibition of VEGF receptor 2 (VEGFR2) exacerbates
peripheral neuronal damage, which is often associated with pain
(Beazley-Long et al., 2013; Verheyen et al., 2012), and enhances pain be-
haviors in normal, nerve-injured and diabetic animals (Hulse et al.,
2010a; Verheyen et al., 2012).
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The vegf-a gene encodes two families of isoforms typified by VEGF-
A165 a and VEGF-A165b (Harper and Bates, 2008). Both families have sis-
ter isoformsof the same length so they are referred collectively asVEGF-
Axxxa andVEGF-Axxxbwhere xxx represents the number of amino acids.
The isoform families differ only in their six C terminal amino acids
(Harper and Bates, 2008), and they are both capable of binding to
VEGFR2 with similar affinities, but the functional results of receptor ac-
tivation are multivariate (Table 1) (Ballmer-Hofer et al., 2011). Control
of relative isoform expression occurs by alternative pre-mRNA splicing
of either proximal or distal splice sites in exon 8 (Fig. 1).

VEGF-Axxxa is the principal target of anti-VEGF and VEGFR therapies
as these isoforms are upregulated and predominate in many patholo-
gies. However, VEGF-Axxxb forms a significant proportion of total
(pan-)VEGF-A protein in many normal tissues (Harper and Bates,
2008) so the therapeutic effects of VEGF-A sequestration with many
current antibody therapies, or VEGFR2 inhibition are a net result of si-
multaneous blockade of the actions of both families. The impact of the
neutralization of the VEGF-Axxxb family on treatment outcomes has
only recently been exemplified, in terms of its ability to predict colorec-
tal cancer patients that do not respond to bevacizumab (Bates et al.,
2012).

rhVEGF-A165a exacerbated spinal cord contusion-associated pain
and damage (Benton and Whittemore, 2003; Herrera et al., 2009;
Nesic et al., 2010; Sundberg et al., 2011), and referred mechanical
abdominal pain (Malykhina et al., 2012), but local VEGF-A delivery
(presumed VEGF-Axxxa) partially reversed diabetic neuropathic me-
chanical hyperalgesia (Verheyen et al., 2013). Neutralization of all en-
dogenous VEGF-A isoforms or VEGF receptor 2 inhibition increased
pain sensitivity in chemotherapy-induced neuropathy (Verheyen
et al., 2012), but conversely reversed neuropathic (Lin et al., 2010),
and acute inflammatory hyperalgesia (Grosios et al., 2004).

These conflicting observations might be explained by different
actions of the distinct isoforms, which have not been studied indepen-
dently, and their differing actions on VEGFR2 (Ballmer-Hofer et al.,
2011).We therefore tested the hypothesis that the alternatively spliced
VEGF-A isoform families have different effects on pain.We investigated:
a) the effects of specific VEGF-A isoforms on pain/nociception; b) the
neuronal mechanisms through which effects on pain might occur;
c) whether using control of alternative RNA splicing of VEGF-A could
modulate nociception/pain, and d) whether either VEGF-A proteins or
alternative splicing control may be potential novel analgesic targets.
Table 1
Overview of the C-terminal sequences, binding domains and interactions with VEGFR2 of
the different VEGF-A splice variant isoforms.

C terminal
sequence

Binding
domains
present

Consequences of receptor binding

VEGF-A165a CDKPRR VEGFR1,
VEGFR2,
NP-1

Full agonist.
Binds and stabilizes VEGFR + NP-1
interaction.
Complete phosphorylation at Y1175.
PIP2 hydrolysis, PKC activation.

VEGF-A165b SLTRKD VEGFR1,
VEGFR2

Partial VEGFR2 agonist/competitive
inhibitor of VEGF-A165a binding.
Very weak NP-1 interaction.
Weak/incomplete phosphorylation
at Y1175
No PIP2 hydrolysis, or PKC activation.
Receptor internalization and degradation.
(Ballmer-Hofer et al., 2011; Kisko et al.,
2011)

VEGF-A159 – VEGFR1,
VEGFR2

Binds VEGFR, no activation.
Very weak NP-1 interaction.

VEGF-A121a CDKPRR VEGFR1,
VEGFR2

Binds VEGFR.
Very weak NP-1 interaction.
Complete phosphorylation at Y1175
Materials and methods

All procedures using animals were performed in accordance with
the United Kingdom Animals (Scientific Procedures) Act 1986 and
with University of Bristol and King's College London Ethical Review
Groups approval. Human embryonic and adult tissues were obtained
under ethical approval by University of Leiden and adult human DRG
under ethical approval by Southmead Hospital Local Research Ethics
Committee.

Antibody and pharmacological inhibitors

The following pharmacological interventionswere used: pan-VEGF-A
neutralization with mouse anti-VEGF-A antibody (Liang et al., 2006),
specific VEGF-A165b neutralization using systemic treatment with anti-
VEGF-A165b antibody (clone 56/1, (Woolard et al., 2004)) systemic and
local VEGF receptor inhibition with selective (PTK787; (Wood et al.,
2000)) and/or specific (ZM323881; (Whittles et al., 2002)). VEGFR2 ty-
rosine kinase inhibitors; systemic or local administration of VEGF-A165a
and/or VEGF-A165b; systemic antagonism of TRPV1 with SB366791
(Varga et al., 2005); inhibition of serine-rich protein kinases with
SRPIN340 (Fukuhara et al., 2006), and appropriate vehicles.

Measurement of mechanical and thermal nociceptive behaviors

A total of 64 adult male mice (C57Bl6, 25–30 g), 6 TRPV1 congenic
knockouts and 6 wild-type strain-matched controls and 24 adult male
Wistar rats were used to assess nociceptive behavior. TRPV1 homozy-
gous knockout mice breeding pairs were generated and bred as de-
scribed at King's College London, (Caterina et al., 2000; Fernandes
et al., 2011, 2013) where breeding colonies were regularly backcrossed
according to Jackson Laboratory guidelines to avoid sub-strain selection
(Lambert, n.d.).

All animals were habituated to testing environments and handling
prior to testing, and were allowed to habituate to the environment for
at least 15 min at each test session. Nociceptive testing, as previously
described (Hulse et al., 2008), consisted of measurement of mechanical
allodynia by determination of von Frey hair mechanical withdrawal
threshold and thermal hyperalgesia using the Hargreaves test
(Hargreaves et al., 1988). Behavioral testing groups were randomized,
and all operators were blinded to the drug and surgical treatment
(nerve injury/sham) in each animal in all experiments.

Von Frey hair mechanical thresholds — mechanical allodynia

Animals were habituated to chambers with mesh floors. The plantar
surface of each foot was stimulated with von Frey hairs (Linton, UK) of
increasing gram force breaking points, over a range of 0.07–2 g
(mice), or 1–100 g (rats) (Hulse et al., 2008). Each von Frey hair tested
was applied a total of 5 times to each hind paw and the number of times
an animal removed the paw from each stimulus was counted. The
proportion of times that the animal withdrew from each stimulus was
plotted against the breaking force, and the withdrawal threshold deter-
mined from the resultant stimulus response curve (the gram force at
which paw removal occurred at 50% of the stimulations).

Hargreaves test for thermal hyperalgesia

Thermal hyperalgesia was measured using a radiant heat source di-
rected against the plantar surface of the hind paws, through the Perspex
floor of the testing chamber (Hargreaves et al., 1988), and the latency to
withdrawal was measured. The stimulus intensity was determined at
the beginning of each experimental series, to give a control withdrawal
latency of ~10 s, and this intensity was subsequently used for each sub-
sequent testing session for that experimental group. A maximum laten-
cy duration of 30 s was used to prevent tissue damage/sensitization to



Fig. 1. VEGF-A gene splice variant isoforms. VEGF-A pre-mRNA is alternatively spliced to form two families of mRNAs: VEGF-Axxxa and VEGF-Axxxb. The archetypal forms VEGF-A165a and
VEGF-A165b are shown for illustration. VEGF-Axxxa proteins are translated frommRNAs that use the proximal splice site (PSS) and include all of exon 8, VEGF-Axxxb proteins frommRNAs
that use the distal splice site (DSS) and contain only the b part of exon 8. The neuropilin-1 (NP-1) co-receptor binding site is located at the distal end of exon 7 and proximal exon 8a.
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intense sustained stimulation. Themeanwithdrawal latencywas deter-
mined from three repeated stimulations at an inter-stimulus interval of
at least 5 min.

Model of neuropathic pain — partial saphenous nerve injury

24 mice and 18 rats underwent surgical partial saphenous nerve in-
jury (PSNI) as previously described (Hulse et al., 2008; Walczak et al.,
2005) under isofluorane anesthesia (2–3% in O2). A ~1 cm incision
was made in the inguinal fossa region of the right hind leg. 50% of the
saphenous nerve was tightly ligated using a size 6.0 sterile silk suture
and the wound was closed with size 4.0 sterile silk suture. Sham-
operated animals (n = 5) underwent anesthesia and surgery involving
solely an incision in the inguinal fossa region of the right hind limb.

Electrophysiological recording of identified primary afferents in the
saphenous nerve

Teased fiber electrophysiology from the saphenous nerve was car-
ried out in 44 adult maleWistar rats (250–300 g). Properties of isolated
afferents in terminally anesthetized rats (sodium pentobarbital
~20 mg/kg/h) and the effects of local injection of compounds into the
receptive fields were determined (see section Pharmacological
treatments for further information), as previously described (Dunham
et al., 2008; Hulse et al., 2010b). Fine nerve filaments were dissected
from the main trunk of the nerve cut centrally and differential record-
ings were made using bipolar platinum wire recording electrodes.
Primary afferents were identified in the filaments using mechanical
and/or electrical search stimulation of identified receptive fields located
in the dorsomedial region of the right hind paw, the area innervated by
the saphenous nerve in the rat. Filaments usually contained a single
identified afferent (unit), but up to 3 units could be studied in the
same filament provided the receptive fields were distinguishable.
Action potentials from each fiber could be distinguished individually
by offline action potential recognition and sorting. Data capture was
through a micro 1401-3 (Cambridge Electronic Design) and offline
action potential sorting and analysiswas carriedout on Spike2 version 7
(CED).

Identified unitswere characterized according to their conduction ve-
locity (CV) and response to mechanical stimulation of the receptive
field. Units that could not be activated by peripheral mechanical stimu-
lation were not studied further. Monopolar electrical stimulation was
applied to the receptive field (up to 100V, 0.5ms duration) and 3 repro-
ducible action potential latencieswere required to calculate the conduc-
tion velocity (CV). Following CV measurement, any ongoing activity
(action potential firing) was recorded for 100 s. Note that under normal
conditions, the majority of afferents in the saphenous nerve do not
show significant ongoing activity, as there are no muscle spindles, and
very few cooling afferents in this largely cutaneous sensory nerve. On-
going activity was defined as firing N0.1 impulses/s occurring without
any obvious initiating factor. During the period of recording of ongoing
activity, no further stimulation of the receptive field was applied.

Mechanical thresholds were determined as the lowest von Frey hair
applied that elicited a robust (N3 action potentials) reproducible re-
sponse (Dina et al., 2004; Dunham et al., 2008; Koltzenburg et al.,
1999a; Lynn and Carpenter, 1982). Responses to light brush with a
paintbrush and to a series of von Frey hairswere then recorded. Primary
afferents with a CV less than 1 m·s−1 were classified as C fibers, based
on compound action potentials recorded in the same preparation in
animals of a similarweight, sex and age (Dunhamet al., 2008). Afferents
that were not brush sensitive, with von Frey thresholds N1 g were
classified as nociceptors (Dunham et al., 2008; Lynn and Carpenter,
1982); C fiber nociceptors were those that met these criteria and had
CV b 1m·s−1. Ongoing activity was outlined as those units with greater
than 0.1 Hz (Shim et al., 2005).

Methodological note
It should be noted that hand-held von Frey hairs give an approxima-

tion of the mechanical thresholds of primary afferent units as applica-
tion of a range of hairs exerts incremental, discrete forces rather than
a continuous force on the receptive field. As von Frey hairs were used
for behavioral tests, comparable methods of single neuronal activation
were used. Single afferent mechanical thresholds are typically lower
than behavioral withdrawal thresholds, as withdrawal reflexes require
summation of input from multiple high threshold nociceptive afferents
for activation.

Intracellular calcium measurements in primary dorsal root ganglion cells

DRGwere dissected from adultWistar rats, dissociated, and cultured
as previously described (Wonget al., 2006). For TRPV1 experiments, fol-
lowing overnight pretreatment with VEGF-A isoforms in media or
media alone, primary DRG cultures were pre-incubated with 100 μl of
Ca2+-sensitive dye (Fluo-4 direct) at 37 °C for 1 h during which time
concentrated capsaicin agonist solutions at 6× the final concentrations
used were prepared and preheated to 37 °C. Fluorescence recordings
were performed row by row. First the baseline fluorescence at 488 nm
was read, then 20 μl capsaicin solution was added to the dye to achieve
the final capsaicin concentration, and the fluorescence read within 45 s
and then repeatedly every 10 s for ~4 min on a Wallac 1420 Victor 3™
multi-label reader (PerkinElmer Inc.). The change in fluorescence over
baseline was determined for each recorded time point. Each capsaicin
concentration was tested in multiple replicates (3–7). Some cultures
were fixed, and stained for VEGFR2 (Cell Signaling, rabbit mAb 55B11).

Capsaicin-evoked currents in primary dorsal root ganglion cells

Primary DRG cultures were prepared as above, and grown on glass
coverslips coated with poly-L-lysine and laminin. After 3–5 days cover-
slips were mounted into a recording chamber and visualized using
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Olympus BX50WI microscope (Olympus, UK) using a 60× water im-
mersion objective. Cells were chosen for study based on cell diameter
(all b30 μm diameter). Cells were continually perfused 2–3 ml/min
with an extracellular solution containing (mM): 145 NaCl, 5 KCl, 0.5
CaCl, 2 MgCl2, 10 HEPES, and 10 D-glucose, pH was adjusted to 7.4 at
310–320 mOsm. Low calcium solution was used to reduce any calcium
dependent desensitization of the current. Cells were patch-clamped in
the whole-cell configuration and held at−80mV at room temperature
(18–22 °C). Patch pipettes were pulled from soda glass (Harvard Appa-
ratus, UK) to a resistance of 3–4 mΩ and the tips were coated in surf
wax (Mr Zoggs) to reduce the capacitive transient. The pipette solution
contained (mM): KCl 140, NaCl 5, EGTA 5, MgCl2 2, HEPES 10, adjusted
to pH 7.2 with KOH. Puff pipettes pulled from soda glass with resis-
tances of 3–4 M were filled with 500 μM capsaicin in external solution
(stock solution 10 mM dissolved in 10% DMSO, 10% Tween-80, 80% sa-
line and diluted to working concentration in external solution) and po-
sitioned between 20 and 30 μm from the cell. A Pneumatic Picopump
PV800 (WPI, Hertfordshire, UK) was used to apply a two second puff
at 10 psi. Inward currents in response to the puff application were re-
corded using an axon 200B amplifier and pClamp 9 software (Axon In-
struments, CA, USA) with a sampling rate 20 kHz and filtering at 5 kHz
filter. The peak of the inward currents during puff application were
measured using Clampfit 9 (Axon instruments).

TRPV1 immunoprecipitation and Western blotting

Immortalized rat embryonic DRG cells, that represent largely noci-
ceptive neurons expressing TRPV1 and NGF receptors (50B11) (Chen
et al., 2007) were grown in Neurobasal medium (Invitrogen) supple-
mentedwith B27 (Invitrogen), 10% FBS, 0.5mM L-glutamine and an ad-
ditional 2.2% glucose in 6 well plates. These neurons were used as an
alternative to primary culture, to generate the amounts of protein re-
quired for phospho-immunoprecipitation, as required by the principles
of the ‘3Rs’ (reduction, replacement, refinement) under UK and EU
legislation. Upon reaching 80% confluence cells were differentiated for
24 h with 75 μg/mL forskolin and 0.1 nM NGF-2.5S, and then treated
overnight (~16 h) with VEGF-A proteins (2.5 nM), NGF-2.5S (4 nM) or
vehicle (PBS). Following treatment, cell lysate protein, extracted in the
presence of phenylmethylsulfonyl fluoride and proteinase inhibitors,
was subjected to immunoprecipitation using a TRPV1 antibody
(Abcam, rabbit pAb, ab10296) and Millipore PureProteome™ Protein
A Magnetic Bead System. The manufacturer's direct immunoprecipita-
tionmethodwas followed using 2 μg/mL antibody and 50 μg protein ly-
sate. The eluates were separated on 10% SDS-PAGE gels blotted on PVDF
membrane by wet transfer and incubated overnight with 2 μg/mL
phospho-serine mouse mAb (Millipore, 4A4). After secondary antibody
incubation (goat pAb HRP-anti-mouse IgG) blots were developed using
Pierce ECL SuperSignal Femto reagent. Blots were stripped and re-
probed using the aforementioned TRPV1 rabbit pAb. Cell lysate protein
not subjected to immunoprecipitation was separated and blotted as
above and TRPV1 levels detected. This indicated the TRPV1 input level
into the immunoprecipitation.

VEGF-A isoform and VEGFR2 expression studies — immunofluorescence,
ELISA and qRT-PCR

Total VEGF-A and VEGF-A165b were detected using validated, com-
mercially available antibodies (Santa Cruz A-20, and AbCam MVRL56/1
respectively). The VEGF-A165b antibody detects the unique C-terminal
of the alternatively spliced VEGF-Axxxb family (Woolard et al., 2004).
VEGF-A165a levels were determined by subtraction of VEGF-A165b levels
from total VEGF-A.

For immunofluorescence in rat DRG, animals were terminally anes-
thetized with sodium pentobarbital (60 mg/ml) and perfuse fixed
with 4% paraformaldehyde (PFA). Ipsi- and contralateral lumbar dorsal
root ganglia were removed. DRG were placed into PFA for 4 h and then
cryoprotected in 30% sucrose solution overnight. 8 μM cryosections
were cut from OCT embedded DRG and thaw mounted onto subbed
slides. Sections were blocked in 10% fetal calf serum/5% bovine serum
albumin/0.2% Triton ×100 in PBS for 2 h at room temperature. Primary
antibodies were used at the concentrations below diluted in the
blocking solution and incubated overnight at 4 °C. Prior to secondary
antibody incubations sections were washed extensively with PBS.
Sections were incubated in secondary antibodies diluted in 0.2%
Triton ×100 in PBS for 2 h at room temperature. Streptavidin amplifica-
tion was performed as per manufacturer's instructions (Vector, UK).
Primary antibody concentrations: TrkA, 1 μg/ml; 56/1, 12 μg/ml;
α-phospho-tyr1175VEGFR2 and VEGFR2 (1 in 500 dilution). Secondary
antibodies: biotinylated anti-rabbit (Jackson Immune Research, diluted
1 in 500). Alexa Fluor 488 or 594were used at 1 in 1000 dilution.α-goat
Alexa Fluor 594 (Invitrogen, UK). Hoechst (Sigma Aldrich) and goat
SRSF1 (2 μg/ml, Santa Cruz). Imageswere visualized using a fluorescent
microscope and captured before quantification.

VEGF-A165b splice variant levels were measured as a proportion of
total VEGF-Axxx expression using sandwich ELISA (R&D systems Duoset
VEGF ELISA DY-293) using N-terminal goat anti-human VEGF antibody
against pan-VEGF (i.e. all the isoforms), and mouse anti-human anti-
body against VEGF-A165b (R&D systems), as previously described
(Gammons et al., 2013).

Real-time qRT-PCR. 2 μg of DNase-digested total RNA was reverse
transcribed using oligo (dT15) and random primers (Promega, UK).
Real-time PCR was performed on a ABI 7000 thermocycler using ABso-
lute QPCR SYBR green mix (Thermo Scientific, UK) and 1 μM primers
specific for VEGF-A165a, (forward — exon 7/8a: 5′-GTTCAGAGCGGAGA
AAGCAT-3′; reverse 5′- TCACATCTGCAAGTACGTTCG-3′) and total
VEGF-A (forward— exon 2/3: 5′-GGAGGGCAGAATCATCACGAAG-3′; re-
verse 5′-CACACAGGATGGCTTGAAGATG-3′) (Nowak et al., 2010;
Woolard et al., 2004), and for the housekeeping genes (18S ribosomal,
GAPDH and Microglobulin) (see (Amin et al., 2011) for primer se-
quences). Cycling conditions were: denaturation at 95 °C for 10 min,
then 95 °C for 15 s, and 55 °C for 30 s for 40 cycles. RNA levels were es-
timated by (VEGF-A165a/VEGF-Atotal) = E−(CtVEGF165)/E−(CtVEGFtotal)

where E is the efficiency of the qPCR reaction for the primer pair used,
or for expression relative to housekeeping genes, V = 2−(ΔCt) where
ΔCt is the difference between the cycle thresholds for VEGF-A andhouse-
keeping gene. Values are expressed relative to saline treated tissues.

Experimental note
The presence and function of endogenous VEGF-A165b has been

demonstrated using specific siRNA knockdown, expression in multiple
cells, tissues and pathological conditions using rigorous controlled tech-
niques (Harper and Bates, 2008) and the importance of VEGF-A165b in
pathological conditions has recently been highlighted by its ability
to predict response to bevacizumab in the registration trial in colorectal
cancer (Bates et al., 2012). A recent study highlighted the importance of
using appropriate controls to avoid artifactual detection of VEGF-Axxxb
isoforms (Harris et al., 2012) in rodents. A further study (Bates et al.,
2013) demonstrates clearly the importance of positive and negative
controls, for example for effective PCR amplification, to eliminate non-
specific antibody binding to mouse IgG and to prevent mispriming. To
avoid possibilities of misinterpretation of artifactual amplification of
products we used pro-angiogenic isoform specific primers (against
exon 8a) and total VEGF-A primers to determine the effect of splicing in-
hibitors on VEGF-A splicing.

Pharmacological treatments

A) VEGF neutralization and VEGF receptor block. Mechanical and
thermal nociceptive behaviors were determined in adult mice
before and 2 days after intraperitoneal (i.p.) injection with
6 μg/g bodyweight mouse G6-31 antibody (n = 5, both hind
paws used as replicates) or vehicle (saline, n = 6).



249R.P. Hulse et al. / Neurobiology of Disease 71 (2014) 245–259
VEGFR2 tyrosine kinase inhibitors PTK787 and ZM323881
were given systemically to rats by a single i.p. injection
(PTK787: 30 mg/kg, 30 μg/g) or locally into the hind paw (rats
and mice: ZM323881: 10 μl containing 100 nM). Vehicle
(PTK787, saline; ZM323881, 0.001% DMSO in saline) was
injected by the same route (n = 6/group). ZM323881 was
given under brief isofluorane anesthesia (2–3% in O2). Nocicep-
tive behavior was tested before and after treatment (PTK787
2 h; ZM323881 20–40 min).

B) Effect of exogenous VEGF-A165a and VEGF-A165b in control ani-
mals and after peripheral nerve injury:
i) Nociceptive behaviors — normal. Saline (200 μl), VEGF-A165a

(8 ng/g body weight), VEGF-A165b (8 ng/g), VEGF-A165b
(20 ng/g), VEGF-A121a (8 ng/g) and VEGF-A159 (8 ng/g)
were injected i.p biweekly (n= 5 per group) and nociceptive
behaviors assessed before and after administration for a peri-
od of 5 days (experiments performed in mice).

ii) Nociceptive behaviors — PSNI. After surgery for peripheral
nerve injury, groups of mice received one of the following bi-
weekly: VEGF-A165a (n = 6, 8 ng/g i.p. (Zheng et al., 2007));
VEGF-A165b (n = 6, 20 ng/g) or PBS vehicle (n = 16,
200 μl). Injectionswere given immediately after PSNI surgery,
and after behavioral test sessions on days 3 and 7. Sham-
operated controls (n = 5) received i.p. vehicle at the same
times. Nociceptive testing was performed on days 1, 3, 5, 7
& 10 after PSNI.

iii) Primary afferent properties.Afferentswere isolated and char-
acterized as described above. The effect of rhVEGF-A165a
injected locally into the receptive field (10 μl; 2.5 nM) on af-
ferent activity was determined by a change in ongoing activ-
ity. In these experiments we determined that ~50% of
identified nociceptive cutaneous afferents responded to
VEGF-A165a with an increase in spontaneous action potential
firing over a period of 1 h (Fig. 3E). In subsequent experi-
ments, nociceptive afferents responding to VEGF-A165a
were identified by this ongoing activity. Afferents were
characterized by CV andmechanical threshold, and mechan-
ical stimulus-evoked responses were recorded. VEGF-A was
then injected locally, and these properties were recorded at
set intervals for 60 min. Post-hoc analysis of mechanical
threshold, mechanically evoked and ongoing activity
recorded at 5, 30 and 60 min after VEGF-A administration
was then done for those units that developed ongoing firing
by 60 min.

C) Effect of SRPK1 inhibition in normal skin (mice) and after nerve
injury (rats) on nociceptive behavior and VEGF-A isoform
expression: SRPIN340 (10 μl; 10 μM), an inhibitor of SR protein
kinases SRPK1 and 2 (Fukuhara et al., 2006) that are responsible
for splicing control of VEGF-A isoforms (Nowak et al., 2010) or
vehicle (saline) was injected into the plantar surface of one
hind paw under brief isofluorane anesthesia (2–3% in O2).
Nociceptive behavior was tested before and after injection
(n = 6/group). Animals were killed by anesthetic overdose,
and the plantar skin at the site of injection removed. Total
VEGF-A and VEGF-A165b mRNA expression was determined at
the site of SRPIN340 or saline injection by quantitative (q) PCR.
To investigate the effect of inhibition of splicing in the injured
nerve, 8 rats underwent PSNI surgery and were treated with
the SR protein kinase (SRPK1/2) inhibitor, SRPIN340 (Nowak
et al., 2010) or vehicle (saline). SRPIN340 (10 μM) was incorpo-
rated into a sterile gel consisting of (2% hyproxymethylcellulose,
0.2% tyloxapol, 3.4% dextrose, 0.025% ethylenediaminetetraacetic
acid (EDTA), 0.0006% benzalkonium chloride) and applied to the
nerve in the area of the tight ligation (n = 4); gel without
SRPIN340 was used in control animals (n= 4). Nociceptive test-
ing was performed on days 1 and 2 after PSNI. Animals were
killed by anesthetic overdose and the saphenous nerves and
L3/L4 DRGs removed. VEGF-A splice variant mRNA expression
was determined at the site of injury by qRT-PCR for total VEGF-
A and VEGF-A165a.

D) Interactions between VEGF-A and TRPV1:
i) Effect of pharmacological TRPV1 receptor blockade (mice):

Mechanical nociceptive behavior was determined every other
day for 5 days. VEGF-A and SB366791 (500 μg/kg) or vehicle
were given via systemic (i.p.) injection on days 1 and 3 imme-
diately after behavioral testing (n = 3/group, both hind limbs
tested and treated as replicates). To exclude an effect of
pharmacological inhibition on central rather than peripheral
TRPV1, 2.5 nM VEGF-A165a was injected subcutaneously into
the plantar surface of the hindpaw was with either PBS
or 1 μM SB366791 (n = 5 per group) followed by behavioral
testing.

ii) VEGF-A-mediated TRPV1 sensitization (rats): To determine
the effect of VEGF-A isoforms administered together with a
non-sensitizing concentration of TRPV1 agonist in identified
primary afferents, a bolus of 10 μM capsaicin was injected
through an intra-femoral arterial cannula inserted in the
mid-thigh in the opposite hind limb to the recordings, with
the tip advanced to the bifurcation of the descending aorta.
This allowed close arterial delivery of capsaicin (100 μl;
10 μMwashed in with 400 μl saline) to the peripheral afferent
receptors. The effects of VEGF-A165a and VEGF-A165b on
TRPV1 agonist responses were investigated using close arteri-
al injection of capsaicin combined with local (subcutaneous)
injection of 2.5 nMVEGF-A165a, 2.5 nMVEGF-A165b or both to-
gether. When VEGF-A165b was used, it was then followed by
VEGF-A165a to confirm VEGF receptor responses in the affer-
ents studied, as described above.

Numbers of afferents included in the experimentswere: ongoing and
mechanically evoked activity— saline vehicle n=12, VEGF-A165a n=7,
and VEGF-A165b n = 5; mechanical activation threshold — VEGF-A165a,
saline n = 7, VEGF-A165b n = 5; capsaicin sensitization — baseline
n = 16, VEGF-A165a n = 8, VEGF-A165b n = 8, VEGF-A165a + VEGF-
A165b n = 7.

Experimental note: This concentration of capsaicin delivered by
close arterial injection does not result in sensitization or desensitization
of the TRPV1 receptors to agonist stimulation on repeated injection
(Dunham, 2008; Dunham et al., 2008). A low capsaicin concentration
to avoid possible desensitization of TRPV1 in the presence of a further
sensitizing agent, aswe hypothesized VEGF-A165a to be. Capsaicin injec-
tion resulted in a short burst of action potentials that confirmed access
of the agonist to the afferent receptor terminals. It should be noted
that the effective concentration of capsaicin at the primary afferent ter-
minalswhen delivered by thismethod is approximately 1000 fold lower
than that injected as a result of dilution in hind limb blood volume, and
tissue penetration (Dunham, 2008).

Statistical analyses
The majority of data sets was Gaussian in nature and therefore met

the requirements for parametric analyses; in a small number of cases,
data sets were log transformed to render them Gaussian prior to analy-
sis (e.g. withdrawal thresholds). Multiple groups were compared using
one or two way ANOVA followed by post-hoc Bonferroni tests where
appropriate, and where Gaussian assumptions were not met or log
transformation did not render the samples Gaussian, non-parametric
tests were used, in which case multiple groups were compared with
Kruskal–Wallis or Friedman's tests followed by post-hoc Dunn's tests.
Two group tests were 2 tailed Student's t-tests with Welch's correction
where necessary for unequal variance, or Mann Whitney U tests for
non-parametric data. Numbers of DRG neurons with TRPV1-activated
currents were compared using Fisher's exact test.
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Results

VEGF-A splice isoforms differentially affect pain behaviors, through direct
VEGFR2-mediated effects on primary sensory nociceptive neurons

Systemic delivery of anti-mouse VEGF antibody acutely sensitized
animals to mechanical (Fig. 2A) and thermal (Fig. 2B) stimulation. Neu-
tralization of VEGF-A165b (Fig. 2C), and inhibition of VEGF receptor-2
(VEGFR2) by selective (ZM323881, Fig. 2D) and specific (PTK787,
Fig. 2E) inhibitors also produced sensitization. Systemic recombinant
human (rh)VEGF-A165b (up to 20 ng/g bodyweight, i.p.) had no effect
on mechanical (Fig. 2F), or thermal (Fig. 2G) nociceptive behavior,
whereas rhVEGF-A165a (8 ng/g bodyweight, i.p.) sensitized to mechan-
ical (Fig. 2H) but not thermal stimuli (Fig. 2G). rhVEGF-A121a, which has
the same C-terminal six amino acid sequence as the VEGF-Axxxa family
but reduced affinity for neuropilin-1 (NP-1) also resulted inmechanical
sensitization (Fig. 2I). rVEGF-A159, which lacks the six C terminal amino
acids (Cebe Suarez et al., 2006), had no effect on pain (Fig. 2I), showing
that the mechanism through which VEGF-A165a and VEGF-A121a en-
hance pain is C-terminal sequence dependent (summarized in Fig. 2J) .

We then determined the neuronal mechanism through which sys-
temic rhVEGF-A165a might alter nociceptive behavior. VEGFR2 protein
was detected in DRG neurons (Figs. 3A & B) as previously described
(Lin et al., 2010; Sondell et al., 2000) by immunofluorescence in propor-
tions of both TrkA- and isolectin B4, nociceptive neurons (Fig. 3A), with
Fig. 2. VEGF-A isoforms differentially affect pain depending on VEGFR2 activation. A. Intraperito
mice (n = 5; vehicle n = 6). B. Systemic injection of anti-pan-VEGF-A antibody (6 μg/g) but n
reproduced by an anti-VEGF-A165b antibody (n = 6), shown normalized to the data from pan
in mechanical allodynia (n = 6/group). E. Systemic injection of PTK787 (30 μg/g) significan
n = 6/group). F. rhVEGF-A165b (8 ng/g or 20 ng/g) was not painful in normal animals (n = 5
rhVEGF-A165b (both 8 ng/g bodyweight) affected thermal hyperalgesia in naïvemice compared
I. rhVEGF-A121a administration caused mechanical allodynia whereas rVEGF-A159 did not (n =
Axxxa-evoked allodynia is mediated by the C-terminal 6 amino acids. * = p b 0.05, ** = p b 0
p b 0.05, ‡‡= p b 0.01, ‡‡‡ = p b 0.001, between groups, NS = not significantly different. Me
increased expression following traumatic nerve injury. Inhibition of
VEGFR2 (locally applied PTK787 to the receptive field) directly sensi-
tized nociceptors to mechanical stimulation (Fig. 3C). As endogenous
VEGF-A isoforms can exert potent vascular effects, we also determined
whether VEGFR2 inhibitors PTK787 and ZM323881 overtly affected
local blood flow. Neither receptor blocker resulted in any reduction in
local blood flow as measured by laser Doppler flowmetry, or in skin
temperature, in contrast to local adrenaline injection used as a positive
control (data not shown). To determine the roles of VEGF-A isoforms on
sensory afferents, effects on nociceptors were determined before and
after injection of vehicle, VEGF-A165a or VEGF-A165b (Fig. 3D). Injection
of rhVEGF-A165a, but not rhVEGF-A165b into individual characterized
sensory neuronal receptive fields resulted in the initiation of spontane-
ous ongoing firing (Fig. 3E) in 56% of mechano-sensitive primary affer-
ent nociceptors tested (Fig. 3F), indicating expression of functional VEGF
receptors in a large proportion of the sampled afferents. The proportion
of neurons responding to VEGF-A (N50%) was significantly higher than
the proportion of VEGFR2 positive IB4/TrkA + ve neurons— posited to
be nociceptors (Fang et al., 2005, 2006). There are a number of explana-
tions for this including: unconscious bias in our search strategy for
afferents (mechanosensitive, C-fiber nociceptors) leading to an over-
representation of afferents expressing VEGFR2; detection of protein by
immunofluorescence underestimating the degree to which functional
VEGFR are found on sensory neurons; or a higher proportion of VEGF
sensitive nociceptors in the paw than in other regions through which
neal injection of 6 μg/g anti-VEGF-A antibody induced significant mechanical allodynia in
ot vehicle lowered thermal nociceptive withdrawal latency. C. Mechanical allodynia was
el A. D. Local blockade of VEGFR2 with 100 nM ZM323881 (specific for VEGFR2) resulted
tly reduced mechanical withdrawal threshold in naïve rats compared to vehicle (saline,
/group). Arrowheads denote times of drug administration. G. Neither rhVEGF-A165a nor
to vehicle (saline, n= 5/group). H. rhVEGF-A165a (8 ng/g) induced mechanical allodynia.
5/group). J. Comparison of the effects of different VEGF-A isoforms shows that rhVEGF-

.01, *** = p b 0.001 compared with baseline measurements within the same group, ‡ =
an ± SEM for mouse behavior, and median ± IQR for rat behavior.

image of Fig.�2


Fig. 3.Effects of rhVEGF-A isoformson primary afferent nociceptors. A. VEGFR2 is expressed innociceptive sensory neurons as determinedbydouble-labelingwith thenociceptivemarkers
TrkA (high affinity nerve growth factor receptor) and isolectin B4 (IB4). VEGFR2 expression is upregulated in TrkA + ve nociceptors ipsilateral, and in IB4-binding nociceptors contralat-
eral, to partial saphenous nerve injury (PSNI). B. Photomicrographs of (i) TrkA positive DRGneurons, (ii) VEGFR2 positive neurons and (iii)merged images of (i) and (ii) showing TrkA and
VEGFR2 colocalization (scale bar= 50 μm). (iv) Expression of VEGR2 in DRG neurons is much lower in naïve rat DRG compared to (v) animals with PSNI (scale bar= 100 μm). C. Endog-
enous VEGF-A moderates nociceptor sensitivity, as when VEGFR2 is inhibited by PTK787 mechanical activation threshold of individual nociceptors is reduced within 5 min and over the
next 60min, indicating sensitization.D. Digitized data trace showing theeffect of vehicle (saline), VEGF-A165a andVEGF-A165b onmechanically evoked activity at 5min, after discharge and
ongoing activity in a single afferent nociceptor. rhVEGF-A165a sensitized afferents to mechanical stimulation, enhancing after discharge and ongoing activity. Vertical lines are time-
compressed action potentials. E. Increased spontaneous ongoing activity was evoked by rhVEGF-A165a but not rhVEGF-A165b in ~50% of mechanonociceptive afferents in rats. (Saline ve-
hicle n=12, VEGF-A165a n=15, VEGF-A165b n=5). Graphs include data from all neurons, including those inwhich properties did not change in response to VEGF-A. F. VEGF-A165a led to
increased ongoing activity in 56% of nociceptive C fibers (OA N 0.1 Hz (Shim et al., 2005)). VEGF-A165b did not alter the degree of ongoing activity or number of C fibers that demonstrated
ongoing activity, and in addition blocked VEGF-A165a-induced ongoing activity. G. rhVEGF-A165a reduced primary afferentmechanical threshold 60min after rhVEGF-A165a injection. This
was not seen for rhVEGF-A165b, and was blocked by its co-administration. H rhVEGF-A165a increased primary afferent activity in response to stimulation at suprathreshold force, 5 and
60 min after the injection of rhVEGF-A165a, whereas saline and rhVEGF-A165b had no effect. * = p b 0.05, ** = p b 0.01, *** = p b 0.001 compared with saline, mean ± SEM.
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L4 DRG neurons receive input. As the characteristics and distribution of
VEGF sensitive afferents are not fully known in any species, any biaswas
unavoidable, and only came to light in post-hoc analysis.

Those neurons that developed ongoing firing after VEGF-A165a
administration also became more sensitive to mechanical stimulation
after 5 min (Fig. 3H, evoked activity at 5 and 60 min after rhVEGF-
A165a, main effect of drug p b 0.0001), had lowered mechanical activa-
tion thresholds at 5 min (thresholds were saline: 6 (9) g (median
(range)); rhVEGF-A165a: 1.5 (3.9) g; rhVEGF-A165b: 4 (14.4) g, ANOVA
p = 0.08) and 60 min (Fig. 3G) and increased after discharge
post-stimulus at 5 (Fig. 3D) and 60 min (not shown), indicating VEGF-
A165a mediated peripheral neuronal sensitization that would translate
into increased sensitivity to painful mechanical stimulation. Conversely,
VEGF-A165b does not lead to sensitization of nociceptor activity
(Figs. 3E, F, G and H) and importantly, completely abolished VEGF-
A165a induced nociceptor hyperexcitability in all instances (Figs. 3E, F,
G and H). Thus both VEGFR2 inhibition and VEGFR2 activation by
rhVEGF-A165a enhance nociception by sensitization of peripheral
mechanosensitive nociceptors.

Alternative splicing of pre-mRNA to VEGF-Axxxa rather than VEGF-
Axxxb is controlled by the constitutively active serine–arginine protein
kinase SRPK1 (Nowak et al., 2010), leading to activation of the splicing
factor SRSF1 and selection of the proximal splice site (Fig. 1). On activa-
tion, SRSF1 translocates to the nucleus, and therefore activation of
SRSF1 and subsequent splice site choice can be assessed by the degree
of nuclear localization (Ghosh and Adams, 2011). SRPK1 inhibition
and block of SRSF1 function, thus enhancing distal splice site selection,
results in an increased proportion of VEGF-Axxxb (Fig. 1). Subcutaneous
injection of an SRPK inhibitor (SRPIN340) in normal rat hind paw
switched splicing, reducing VEGF-A165a relative to total VEGF-A to 33%
of control levels in skin (Fig. 4A). This was associated with a 50% in-
crease in mechanical threshold (Fig. 4B), but no effect on thermal with-
drawal latency (Fig. 4C). We then determined whether VEGF-Axxxa
expression was altered in traumatic nerve injury (Hulse et al., 2008).
After peripheral saphenous nerve injury (PSNI), therewas a N10 fold in-
crease in the expression of VEGF-A165a mRNA (Fig. 4D) in the local en-
vironment at the site of injury. In the same animals, there was also
increased nuclear localization of SRSF1 in the damaged L4 DRG
(Fig. 4E, F), consistent with a switch in SRPK1 mediated splicing to
VEGF-Axxxa in neurons. Staining of DRG for Y1175-phosphoVEGFR2
(Fig. 4G) demonstrated increased numbers of VEGFR2-pY1175 positive
neurons (Figs. 4G, H), indicative of increased VEGFR2 activation in these
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Fig. 4. Splicing inhibitors that shift the balance of endogenous VEGF-A towards an excess of VEGF-Axxxb isoforms are anti-nociceptive in normal and nerve injured rats. A. Intraplantar
injection of SRPK1 inhibitor SRPIN340 reduced the amount of VEGF-A165a mRNA as a proportion of the total VEGF-AmRNA in plantar skin compared to vehicle (saline). B. SRPK inhibition
raisedmechanical withdrawal thresholds i.e. resulted in hypoalgesia, in mice. C. SRPIN340 did not alter thermal withdrawal latencies. D. VEGF-Axxxa expression increased as a proportion
of total VEGF-A after PSNI. This increase was inhibited by SRPK inhibition. E. Nuclear localization of SRSF1, indicative of SRPK1 activity, is increased in L3/4 DRG neurons following PSNI.
F. SRSF1 expression (red) in the cytoplasmof naïve rat DRG sensory neurons (scale bar 50 μm)and SRSF1 expression in thenucleus (stained bluewithHoechst) of rat DRG sensory neurons
following PSNI. Note blue staining of nuclei in naïve rats, but purple in PSNI (inset, arrow). G. Phosphorylated (p)Y1175-VEGFR2 (red) staining in naïve and nerve injured mice. H. The
number of pY1175-VEGFR2 positive DRG neurons increased after PSNI (*p = 0.019). I. SRPIN340 prevented PSNI-induced mechanical allodynia. J. SRPIN340 reduced SRSF1 activation
in DRG containing injured neurons 2 days after nerve injury. ‡, ‡‡‡, p b 0.05, 0.001 respectively compared to baseline; *, *** = p b 0.05, 0.001 respectively compared to other groups.
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neurons. SRPK inhibition by SRPIN340 as a depot at the site of nerve in-
jury blocked the change in mechanical withdrawal threshold (Fig. 4I),
with no effect on thermal withdrawal latencies (data not shown). It
also blocked the increased expression of VEGF-A165a mRNA (Fig. 4D)
and the SRSF1 activation in DRG neurons (Fig. 4J). In SRPIN340 treated
animals there were no contralateral changes in either mechanical or
thermal nociceptive behavior (not shown).

As nerve injury shifted the balance of VEGF-A isoforms towards
VEGF-Axxxa, in both injured neurons and at the site of nerve injury, re-
sulted in pro-nociception, and through blockade of this SPRK1–SRSF1
mediated switch with SRPIN340, VEGFxxxa mediated pro-nociceptive
actions could be reversed, we hypothesized that altering the relative
balance of VEGF-A isoforms with exogenous protein would have a
similar effect. In contrast to normal animals (Fig. 2F), systemic
rhVEGF-A165b treatment exerted anti-nociceptive effects on both me-
chanical (Fig. 5A) and thermal behavior (Fig. 5B) after PSNI, whereas
rhVEGF-A165a was pro-nociceptive (Figs. 5B & C). Similar changes in
thermal latencies but not in mechanical thresholds were also seen in
the contralateral hindpaw (Fig. 5D), suggesting that central VEGF-A-
dependent mechanisms may also contribute to changes in thermal
nociception following nerve injury. It is possible that rhVEGF-A165b
exerted little effect in uninjured animals because VEGF-A165b is the pre-
dominant VEGF-A isoform in both skin (Pritchard-Jones et al., 2007),
and human and rat DRG neurons (~70% total, measured by ELISA,
Figs. 6A & B), where it is expressed (Fig. 6C) in a proportion of TrkA-
positive nociceptive neurons (Fig. 6D).

VEGF-A isoforms affect pain by a TRPV1-dependent mechanism

Sensitization through phosphorylation of the TRPV1 ‘capsaicin’ re-
ceptor is a common endpoint in the sensitization of many nociceptors
to both thermal and mechanical stimulation in inflammation, and
nerve injury (Levine and Alessandri-Haber, 2007). TRPV1 is a thermal
(Caterina et al., 1997), not a mechano-transducer molecule, but TRPV1
agonists are well recognized to alter both thermal and mechanical
thresholds in humans (Fluhr et al., 2009). TRPV1-expressing peripheral
sensory nerves are mechanosensitive in addition to thermosensitive
(Brenneis et al., 2013). There is substantial evidence of an involvement
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Fig. 5. Exogenous VEGF-A165a exacerbates, and VEGF-A165b alleviates neuropathic pain. A. PSNI resulted in ipsilateral mechanical allodynia (NI+ Vehicle) comparedwith sham and base-
line. rhVEGF-A165b (20 ng/g)was anti-allodynic on days 3 (pb 0.001), 7 (pb 0.01) and 10 (pb 0.0001). Nerve injuryonday 0, arrowheadsdenote drug injection. B. PSNI doesnot normally
result in thermal hyperalgesia (NI + vehicle), but rhVEGF-A165a induced hyperalgesia (NI + VEGF-A165a) and rhVEGF-A165b hypoalgesia. C. rhVEGF-A165a (8 ng/g) enhanced ipsilateral
mechanical allodynia (filled squares) compared to vehicle (filled circles). D. rhVEGF-A165a induced thermal hyperalgesia contralateral to PSNI. rhVEGF-A165b again resulted in hypoalgesia.
‡, ‡‡‡, p b 0.05, 0.001 respectively compared to baseline (not shown for mechanical thresholds for clarity as all significant); *, *** p b 0.05, 0.001 respectively compared to vehicle.
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of TRPV1 inmechanical sensitization in visceral afferents (see references
in Jones et al., 2005; Kiyatkin et al., 2013; Ravnefjord et al., 2009).
Peripheral sensitization of afferents involving TRPV1-dependentmecha-
nisms has also been reported in deep tissue afferents (Kelly et al., 2013;
Lam et al., 2009), and importantly for these data, in skin, where TRPV1
sensitization by agonist, such as capsaicin, lowersmechanical thresholds
and hence contributes to enhancedmechanonociception (Li et al., 2008;
Ren et al., 2005, 2006). Systemic pharmacological antagonism (using
SB366791 Fig. 7A) and TRPV1 knockout (Fig. 7B) both eliminated
VEGF-A165a-mediated mechanical allodynia indicating that the mecha-
nism of action of VEGF-A165a involves, at least in part, TRPV1. TRPV1
was colocalized with VEGFR2 in DRG neurons (Fig. 7C). Administration
of locally applied VEGF-A165a to the plantar surface of the hindpaw led
to mechanical hypersensitivity, which was blocked by local co-
administration of the TRPV1 antagonist SB366791 (Fig. 7D), indicating
peripheral TRPV1 in VEGF-A165a-induced mechanical hypersensitivity.

We then determined whether VEGF-A isoforms affected TRPV1
function in sensory neurons. Capsaicin induced a dose dependent in-
crease in intracellular calcium in primary DRG cells (Fig. 8A). Treatment
with rhVEGF-A165a enhanced TRPV1-ligand (capsaicin) stimulated
calcium influx (Figs. 8B & C), confirmed by patch clamping, where
rhVEGF-A165a enhanced TRPV1-ligand induced currents (Figs. 8D &
E) consistent with altered pain behavior. Capsaicin induced currents
were found more frequently in primary DRG neurons incubated
with VEGF-A165a (10/14 responders) than control (4/16, p = 0.03).
rhVEGF-A165a, but not rhVEGF-A165b, caused significant TRPV1 phos-
phorylation in DRG cells, with no increase in overall TRPV1 expression
level (Fig. 8F). Sensitization of TRPV1 is fundamental to the develop-
ment of hyperalgesia (Ferrari et al., 2010) and dependent on PKC
phosphorylation (Ristoiu et al., 2011). The VEGF-A165a-enhanced
calcium response was inhibited by incubation with the PKC inhibitor
bisindolylmaleiamide-1 (BIM, Fig. 8G). In vivo, low dose capsaicin
evoked neuronal activity in primary afferent nociceptors, whichwas in-
creased by rhVEGF-A165a (Fig. 8H) and was blocked by rhVEGF-A165b
(Fig. 8H). These behavioral, cellular and in vivo physiological experi-
ments indicate that VEGF-A165a-enhanced pain is at least partly
mediated by enhanced sensory neuronal properties, through mecha-
nisms that involve activation of PKC, and TRPV1 phosphorylation.

Discussion

Clinical and experimental reports of the detrimental effects of anti-
VEGF agents on neuronal integrity and pain have raised concerns over
the use of such therapies as their use can result in neuronal damage,
often leading to pain (Verheyen et al., 2012). VEGF-A165a is reported
to have both pro- (Benton and Whittemore, 2003; Herrera et al.,
2009; Liu et al., 2012; Malykhina et al., 2012) and anti-nociceptive ef-
fects (Grosios et al., 2004; Lin et al., 2010; Verheyen et al., 2013).We hy-
pothesized that this conflict in the literature regarding findings on pain
may be resolved by a more detailed understanding of the contributions
of the alternatively spliced VEGF-A isoforms to nociception. We show
herein that a controlled change in the repertoire of VEGF-A alternative
splice variants in the environment around peripheral sensory neuronal
fibers/terminals, using either exogenous protein or control of endoge-
nous splicing in favor of VEGF-Axxxa, results in enhanced pain, and
that VEGF-A165b can alleviate pain in neuropathy.

Although differential expression of several alternatively spliced
growth factors has been reported after peripheral nerve injury (Amiri
et al., 2009; Chen et al., 2008; Kerber et al., 2003; Kerr et al., 2010),
and injured peripheral neurons show altered RNA splicing (Kiryu-Seo
et al., 1998), control of pain through targeting of alternative RNA splic-
ing has not been previously reported. We have shown, for the first
time, that peripheral axotomy activates changes in alternative RNA
splicing in the area of damage, where mediators in the local environ-
ment can profoundly affect neuronal properties (Djouhri et al., 2012;
Obata et al., 2004), possibly through TRPV1 activation on sensory
nerve fibers (Hoffmann et al., 2009), as well as in the damaged neurons
themselves. Use of a specific SRPK1 inhibitor has, also for the first time,
allowed RNA splicing mechanisms to be considered as a potential anal-
gesic strategy and enabled us to identify a relationship between changes
in alternative RNA splicing and pain. The serine–arginine-rich protein
kinases (SRPKs) are a small kinase family with principal actions on
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Fig. 6. Expression of VEGF-A165a and VEGF-A165b in rat DRG. A. VEGF-A165b represents ~70% of total VEGF-A expression in DRG. B. In one human DRG VEGF-A165b represented a similar
proportion of total VEGF-A expression to that seen in the rat. C. VEGF-A165b is expressed in neurons in embryonic human spinal cord and DRG. Higher magnification images are derived
from the boxes in the top image and are left: DRG and right: spinal cord ventral horn. D. VEGF-A165b is expressed in a proportion of rat DRG neurons (Ai, iii, v), with overlap (arrows) with
the nociceptive markers TrkA (Aii, iv, vi) and a small colocalization with IB4 (Aii, iv, vi). Scale bar = 75 μm. High power images of a single neuron showing colocalization of VEGF-A165b
(green) and TrkA (red). Scale bar = 50 μm.

254 R.P. Hulse et al. / Neurobiology of Disease 71 (2014) 245–259
mRNA splicing and maturation (Giannakouros et al., 2011). Of the
mammalian target RNAs affected by SRPK1/2 and SRSF1-controlled
splicing (Fig. 9), none have been previously implicated in pain or
nociception, other than VEGF-A.

As pre-mRNA splicing inhibition affected the balance of endogenous
VEGF-A isoforms and nociception, and exogenous VEGF-A isoforms
modulated behaviors and neuronal properties in a similar fashion, we
hypothesize that it is the balance of VEGF-Axxxa and VEGF-Axxxb that
determines the net effect on nociception. A slight disruption in this
balance can have profound effects on VEGFR2 function (Table 1) as
both receptor number and intracellular signaling mechanisms are
altered. VEGF-A165a and VEGF-A165b have the same binding affinities
to VEGFR2. However, when the two isoforms are equimolar or VEGF-
A165b is in excess (as it often is in normal tissues, data herein, (Harper
and Bates, 2008; Pritchard-Jones et al., 2007)), VEGF-A165b can reduce
VEGF-A165a actions by ~95% (Hua et al., 2010). This is brought about
by competitive antagonism at VEGFR2 (Kawamura et al., 2008;
Woolard et al., 2004), and reduction in receptor number (Ballmer-
Hofer et al., 2011). This complex mechanism can explain why local al-
teration of alternative RNA splicing, with a N60% reduction in VEGF-
A165a mRNA in skin, induced hypoalgesia in normal animals whereas
systemic low concentration VEGF-A165b had little effect. Conversely, in-
creasing VEGF-A165a using systemic exogenous recombinant protein
had clear pro-nociceptive effects on both behavior and neurons.

Increasing local VEGF-A165a had a robust action on a sub-population
of small unmyelinated somatic nociceptors that express functional
VEGF receptors and TRPV1 receptors, increasing spontaneous firing
(Djouhri et al., 2006; Hulse et al., 2010b) and mechanically-evoked
activity, and lowering activation thresholds, all changes indicative of
peripheral sensitization of sensory neurons. All of these changes, partic-
ularly increased spontaneous firing, increase afferent barrage and
induce central sensitization in the spinal cord and higher centers, lead-
ing to altered pain behaviors (hyperalgesia and allodynia) (Grubb,
1998). Peripheral administration of VEGF-A165a had rapid (within
5 min) effects on primary afferents in vivo, suggestive of direct VEGF-A
effects on neurons. This is supported by our data that show increased
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Fig. 7.VEGF-A isoforms alter nociception in a TRPv1 dependentmanner. A. Systemic TRPV1 antagonismwith SB366791 inmice resulted in inhibition of rhVEGF-A165a-inducedmechanical
allodynia. Arrows denote time of drug administration. B. TRPV1 knockoutmice did not develop rhVEGF-A165a-inducedmechanical allodynia, in contrast to wild-type strainmatched con-
trols. C. TRPV1was co-expressedwith VEGFR2 in sensory dorsal root ganglia sensory neurons (scale bar= 20 μm). D. Local administration of VEGF165a+ vehicle into the plantar hindpaw
resulted in a reduction in mechanical withdrawal values, which was blocked by co-administration of the TRPV1 antagonist SB366791 (TRPV1 antagonist).
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Y1175 phosphorylation of neuronal VEGFR2 after nerve injury, and by
the direct modulation of TRPV1 currents in isolated neurons. Neuronal
properties in intact afferent fibers can be affected by growth factor/
inflammatory mediator actions at both receptor terminals, as a result
of neuroinflammation caused by degeneration of adjacent fibers
(Djouhri et al., 2012; Obata et al., 2004), and by mechanical stimulus-
enhancement of endothelin hyperalgesia,mediated through endothelial
cell ATP release and nociceptor sensitization (Joseph et al., 2013, 2014).
VEGF effects on neurons are unlikely to be entirelymediated through in-
direct vascular effects, as local blood flow was unaffected by the VEGFR
antagonists that reduced nociceptive thresholds. We cannot completely
exclude a contribution from the vasculature in themechanical behavior-
al effects of VEGF-A165a (Chen et al., 2014; Joseph et al., 2013). This
mechanism could contribute only in part to the pro-nociceptive effects
that we report, as the actions of VEGF-A165a on cultured neurons, and
in vivo demonstrate that VEGF-A165a exerts direct sensitizing effects
on neurons that are independent of any mechanical stimulation, or
other cells.

PLC/PKC signaling is key in peripheral nociceptor sensitization
(Ferrari et al., 2010; Joseph et al., 2007), as changes in PKC activation
modulate both voltage gated sodium channels (Malykhina et al., 2012;
Stamboulian et al., 2010) and other key channels such as TRPV1
(Moriyama et al., 2005; Ristoiu et al., 2011; Rosenbaum and Simon,
2007). Our results show that, at least in vitro, PKC contributes to the
VEGF-A165a modulation of TRPV1 sensitivity, possibly thereby contrib-
uting to alteration of neuronal properties/excitability. VEGF-A proteins
also interact with neuropeptides in other tissues, such as somatostatin
and angiotensin in the retina (Mei et al., 2012; Wilkinson-Berka, 2004)
and kappa opioids in tumor angiogenesis (Yamamizu et al., 2013,
2011) often through common downstream signaling pathways (Pan
et al., 2008). Interestingly, all these neuropeptides are also implicated
in nociception (Pan et al., 2008; Rice et al., 2014), suggesting that
VEGF-A nociceptive signaling may also involve complex interactions
with other pro-nociceptive molecules, in addition to its direct effects.

VEGF-A165b has actions on nociception that involve TRPV1, a key
molecule in the sensitization of neurons leading to chronic pain states
(Levine and Alessandri-Haber, 2007). VEGF-A165a exerts direct effects
on agonist-induced TRPV1 channel opening (Figs. 8D, E), TRPV1-
evoked calcium signaling and TRPV1 phosphorylation in isolated DRG
neurons (Fig. 8), and alters neuronal properties in neurons co-
expressing functional TRPV1 receptors resulting in peripheral mechan-
ical sensitization (Fig. 3) suggesting direct modulation of neuronal
TRPV1. It is therefore somewhat surprising that VEGF-A165a alteredme-
chanical but not thermal thresholds in the normal animal, given that
TRPV1 is well-known as a thermal transducer molecule (Caterina
et al., 1997). Local capsaicin can however cause peripheral mechanical
sensitization of cutaneous (Li et al., 2008; Ren et al., 2005; Ren et al.,
2006; Wang et al., 2011), deep tissue and visceral afferents (Kiyatkin
et al., 2013; Lam et al., 2009). The mechanism(s) through which
TRPV1-dependent peripheral mechanical sensitization of afferents oc-
curs are not known, butmay be a consequence of altered nociceptor ex-
citability, rather than directly affecting mechanotransduction per se
(Malykhina et al., 2012; Raouf et al., 2012). Heterodimerization of
TRPV1 with TRPA1 (Akopian, 2011), a molecule implicated in mechan-
ical sensitization of primary afferents (Dunham et al., 2008; Lennertz
et al., 2012), may explain, in part, the TRPV1 agonist effects onmechan-
ical nociception. Of course, we cannot exclude the possibility of a contri-
bution of an indirect effect through TRPV1 expressed elsewhere,
particularly as TRPV1 is expressed in vascular and connective tissues
(Fernandes et al., 2012), but theweight of evidence suggests a direct ef-
fect is at the very least a major contributor. In addition to a peripheral
sensitizing action, VEGF-A165a could exert central effects, as both
TRPV1 knockout and antagonist interventions (Fernandes et al., 2011)
can also affect central TRPV1 receptor function. Indeed our results
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Fig. 8. VEGF-A modulated TRPV1-agonist evoked responses in dorsal root ganglion neurons. A. Capsaicin stimulated a concentration-dependent increase in intracellular calcium in
DRG neurons. B. This was increased by rhVEGF-A165a, and reduced by rhVEGF-A165b (mean ± SEM, n = 3–7). C. Treatment of rat DRG neurons with rhVEGF-A165a increased
capsaicin-stimulated calcium influx (area under the curve of the calcium responses shown in Fig. 8B) compared with capsaicin alone or rhVEGF-A165b (2 way ANOVA main effect of
drug p = 0.0051). The bell shaped concentration–response curve displays TRPV1 desensitization at higher capsaicin concentrations (5 μM). D. Example of a digitized trace of raw
capsaicin-evoked current in the presence (gray) and absence of capsaicin. E. Capsaicin-evoked currents in primary DRG neurons were significantly larger in neurons incubated in
VEGF-A165a overnight compared to vehicle treated neurons (box and whisker plots showingmedian, range, min andmax). F. rhVEGF-A165b treatment enhanced TRPV1 serine phosphor-
ylation in 50B11 immortalized DRG cells. IP of protein with TRPV1 antibody followed by IB with anti-pSer antibody showed rhVEGF-A165a, but not rhVEGF-A165b-mediated phosphory-
lation of TRPV1. (NGF treatment = positive control). G. Whereas 0.2 μM capsaicin alone did not alter intracellular calcium itself, overnight treatment with rhVEGF-A165a + 0.2 μM
capsaicin resulted in a robust sustained increase in response to capsaicin, which was blocked by treatment with the PKC inhibitor BIM1 (2 way ANOVA main effect of drug
p = 0.0003). H. Low concentration capsaicin (concentration at terminals ~10 nM) led to evoked activity from C fiber nociceptors in vivo. Capsaicin-evoked activity was increased by
rhVEGF-A165a and blocked by rhVEGF-A165b. ‡, ‡‡, ‡‡‡, p b 0.05, 0.01, 0.001 respectively compared to baseline. *, **, *** = p b 0.05, 0.01, 0.001 respectively compared to other groups.
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suggest that this is the case under sensitized but not normal conditions
as contralateral effects of VEGF-Axxxa and b were seen in nerve injured
animals but not in normals, (Fig. 5) (Hulse et al., 2012).

Pain is an expected consequence of neuronal damage, as the
resulting local neuro-inflammatory responses alter the properties of pe-
ripheral sensory neurons. Neuroprotective therapeutic strategies are
therefore thought to be good for both analgesia, and functional loss as-
sociatedwith neuronal damage. VEGF is known to be neuroprotective. It
has thus been suggested that anti-VEGF therapies cause pain through
blockade of the neuroprotective actions of VEGF (Verheyen et al.,
2013, 2012). However, while both VEGF-A165a (Rosenstein and Krum,
2004; Storkebaum et al., 2004) and VEGF-A165b are neuroprotective
for peripheral and central neurons (Beazley-Long et al., 2013) our find-
ings show that only VEGF-A165b is anti-nociceptive. Thus the pain asso-
ciatedwith anti-VEGF and anti-VEGFR therapies is unlikely to be entirely
attributable to a loss of neuroprotective effect, but probably also in-
volvesmodulation of nociception by VEGF-A isoforms. Amore likely ex-
planation for the difference in the effects of VEGF-A isoforms on pain
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Fig. 9. Downstream targets of the serine–arginine protein kinase SRPK1. The serine–arginine protein kinase is known to have three major downstream targets, the RNA splicing factors
SRSF1 (Edmond et al., 2011), SRSF2 (Aubol and Adams, 2011; Ngo et al., 2005; Velazquez-Dones et al., 2005), and the lamin B receptor (Papoutsopoulou et al., 1999). SRPK1 activity results
inHsp90-dependent nuclear translocation of SRSF1 (Zhou et al., 2012). SRSF1 has been reported to control alternative RNA splicing of the proto-oncogenemyc, BIM (BCL2L11) (Anczukow
et al., 2012), the cation cotransporter SLC39A14 (Thorsen et al., 2011), the tumor suppressors MKNK2 and BIN1 (Das et al., 2012; Karni et al., 2007), the angiogenesis related genes RON
(Ghigna et al., 2005) and TEAD1 (Das et al., 2012), and VEGF-A (Amin et al., 2011; Nowak et al., 2010; Nowak et al., 2008). TEAD1 activates VEGF-A expression (Teng et al., 2010). None of
the downstream targets of SRPK1 has been implicated in nociception other than VEGF-A.
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behavior, and sensory neuronal function is a multifactorial process in-
cluding alteration of the balance of isoforms present, different down-
stream actions on VEGFR2, and/or effects on central processing of
nociceptive inputs, as well as neuroprotection.

Thesefindings have important implications for the treatment of con-
ditions in which VEGF-A drives pathology. VEGFR2 upregulation both
ipsi- and contralateral to nerve injury in nociceptive neurons, involved
in the establishment of chronic pain (Ferrari et al., 2010) may imply
that VEGF-A is an important molecule in the protective priming of noci-
ceptive systems around the body that can occur as a result of peripheral
nerve damage or inflammation (Donaldson, 1999; Koltzenburg et al.,
1999b). Consideration will need to be given as to whether isoform-
specific VEGF-A supplementation might itself be used as an analgesic
therapy. Early intervention to prevent changes in VEGF-A mRNA
alternative splicing in pathological conditions may contribute to the
prevention of the development of pain, in addition to being valuable in
the treatment of existing pain. These findings open up the possibility
of developing a novel class of analgesic agents based on controlling
the splice regulatory mechanisms determining the balance of VEGF-A
isoforms.
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