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Abstract: In this paper, for an intensity wavelength division multiplexing (IWDM)-based multipoint
fiber Bragg grating (FBG) sensor network, an effective strain sensing signal measurement method,
called a long short-term memory (LSTM) machine learning algorithm, integrated with data de-noising
techniques is proposed. These are considered extremely accurate for the prediction of very complex
problems. Four ports of an optical coupler with distinct output power ratios of 70%, 60%, 40%, and
30% have been used in the proposed distributed IWDM-based FBG sensor network to connect a
number of FBG sensors for strain sensing. In an IWDM-based FBG sensor network, distinct power
ratios of coupler ports can contain distinct powers or intensities. However, unstable output power
in the sensor system due to random noise, harsh environments, aging of the equipment, or other
environmental factors can introduce fluctuations and noise to the spectra of the FBGs, which makes it
hard to distinguish the sensing signals of FBGs from the noise signals. As a result, noise reduction
and signal processing methods play a significant role in enhancing the capability of strain sensing.
Thus, to reduce the noise, to improve the signal-to-noise ratio, and to accurately measure the sensing
signal of FBGs, we proposed a long short-term memory (LSTM) deep learning algorithm integrated
with discrete waveform transform (DWT) data smoother (de-noising) techniques. The DWT data
de-noising methods are important techniques for analyzing and de-noising the sensor signals, and it
further improves the strain sensing signal measurement accuracy of the LSTM model. Thus, after
de-noising the sensor data, these data are fed into the LSTM model to measure the sensing signal of
each FBG. The experimental results prove that the integration of LSTM with the DWT data de-noising
technique achieved better sensing signal measurement accuracy, even in noisy data or environments.
Therefore, the proposed IWDM-based FBG sensor network can accurately sense the signal of strain,
even in bad or noisy environments; can increase the number of FBG sensors multiplexed in the sensor
system; and can enhance the capacity of the sensor system.
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1. Introduction

Due to the primary appealing characteristics of high multiplexing capability, low price, small size,
low noise interference, and remote sensing suitability, fiber Bragg grating (FBG) sensors are commonly
used for strain, temperature, vibration, and other measurements [1–3]. The strain sensing principle of
the FBG sensor depends on the shift of the peak wavelength of each FBG due to the change in physical
or environmental factors, such as strain, stress, temperature, vibration, pressure, and others [4–8].
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In a distributed sensor system, a number of FBG sensors can be multiplexed in the fiber cable using
the wavelength division multiplexing (WDM) method. Thus, the distributed FBG sensor system can
measure the conditions of different objects in different applications.

However, in a traditional WDM, a unique spectral operational region is assigned to each FBG sensor
and the reflection spectra of contiguous FBGs sensors cannot be allowed to overlap. This extremely
limits the numbers of FBG sensors in the sensor system. Recently, intensity wavelength division
multiplexing (IWDM) techniques have been proposed to improve the multiplexing ability of the sensor
system, where the reflection spectra of FBG sensors in the sensor system are allowed to overlap [9].
Thus, IWDM is used to enhance the multiplexing capacity of the FBG sensor network and to enable
the sensor system to contain more than twice as many FBGs as traditional WDM techniques [9–11].
However, the overlapping spectra of FBG sensors can cause cross talk between the adjacent FBGs and
can make it difficult for the traditional wavelength detection techniques to identify the sensing signal
of each FBG sensor. Moreover, the FBG sensor system may be influenced by the harsh environment,
which affects the shape of the reflection spectra and increases the wavelength detection errors [12].

In real-world applications of sensor systems, the environment is noisy and FBG sensors are
vulnerable to the rain and wind. Also, the insignificant vibration makes the spectra of FBG unsmooth,
and several burrs occur over the spectrum of FBGs [12,13]. Thus, the noise can degrade the performance
and reliability of the FBG sensor system, resulting in large sensing signal measurement errors. As a
result, noises from the FBG signal must be filtered using de-noising methods before implementing the
sensing signal measurement. Therefore, since the major task in the IWDM-based FBG sensor system is
to accurately measure the sensing signals of each FBG sensor from the partially or fully overlapping
spectra of FBGs, a correct choice of the interrogation system is critical for the FBG sensor.

Recently, several advanced wavelength detection methods have been proposed for measuring the
sensing signal of FBGs from the overlapping spectra. Evolutionary algorithms (EA) are one typical
type of method. Recently, several evolutionary algorithms (EA), such as the tree search dynamic
multi-swarm particle swarm optimizer (TS-DMS-PSO) [14], genetic algorithms (GA) [15], and the
dynamic multi-swarm particle swarm optimizer (DMS-PSO) [16], have been used to enhance the
sensing signal measurement accuracy. These EA methods have the ability to accurately detect each
FBG’s sensing signal even when the spectra of adjacent sensors are partially overlapped. However,
they suffer from a comparatively long processing time in large-structure sensor system.

In addition, there are several types of wavelength prediction algorithms, for example, centroid
detection, direct-peak detection (DPD), nonlinear Gaussian fitting, and polynomial fitting [17,18],
which are primarily designed to measure the reflection spectrum of a single FBG sensor. However,
since, in IWDM-based FBG sensor networks, a number of FBG sensors are multiplexed and there
is more than one peak in the reflection spectrum of FBGs, all of the above algorithms cannot work
directly in the IWDM FBG sensor systems. Moreover, to improve both the sensing signal measurement
accuracy and the speed, machine learning techniques such as extreme learning machine (ELM) and
multilayer perceptron (MLP) have been proposed [19,20]. However, the ELM and MLP methods still
have less accuracy in the measurements of the sensing signal and increase the time consumption due
to the traditional machine learning algorithms having less learning capacity and inflexibility.

Overall, the conventional peak wavelength measurement algorithms listed above have numerous
shortcomings, such as experimental noise, sensitivity to power fluctuations, and time consumption.
Most recently, in complicated data analysis, deep learning is developing as an advanced machine
learning technique. Unlike other traditional machine learning methods, deep learning consists of
various hidden layers to learn the features of FBG spectra with various levels of interpretation.
Deep learning algorithms can plot the training data to a nonlinear model with a best representation
and fitting effect through the multiple hidden layers [21–23].

In this paper, a long short-term memory (LSTM) deep learning algorithm integrated with data
de-noising techniques is proposed to optimize the performance of IWDM-based multipoint FBG sensor
system. LSTM, suggested by Reference [24], is an architectural variation of a recurrent neural network
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(RNN) that is particularly appropriate for sequences of long input. We applied the LSTM algorithm to
recognize and learn the features of the reflection spectrum of FBGs at different strain values and to
build the sensing signal measurement model for an IWDM-based FBG sensor network.

The LSTM model can extract wavelength features from the reflection spectra of FBGs. Then,
a well-trained LSTM model can measure the sensing signal of each FBG sensor from the overlapping
spectra of FBG sensors. Although the LSTM can measure the sensing signal of FBGs, the measurement
error may be high due to noises or interference caused by the instability of the broadband erbium-doped
fiber (EDF) amplified spontaneous emission (ASE) source and the rough measurement environments.
Thus, noise reduction and signal processing play a significant role in strain sensing signal measurements
using machine learning techniques.

In this paper, we proposed a DWT data de-noising mechanism in conjunction with an LSTM
model to reduce the noise of the sensor dataset and to improve the signal-to-noise ratio prior to training
the LSTM model. The experimental results prove that our proposed LSTM model, integrated with
discrete waveform transform (DWT) techniques, achieves a better sensing signal measurement of
each FBG sensor with a smaller measurement error. Therefore, the contribution of this paper is a
data de-noising technique using a DWT function in conjunction with an LSTM model with the aim
of providing accurate sensing signal measurements of each FBG and of improving the multiplexing
capability and computational speed of IWDM-based FBG sensor systems.

The rest of this paper is structured as follows: The operational principle of our proposed
IWDM-based FBG sensor system and the proposed LSTM algorithm is described in Section 2.
In Section 3, the experimental setup, data collection, data preprocessing, and design of our proposed
LSTM model are presented. In Section 4, the test results and the discussion are presented. Finally, in
Section 5, the conclusion is presented.

2. Operational Principle of the IWDM-Based FBG Sensor Network

Figure 1 shows the experimental setup of the proposed IWDM-based FBG sensor network.
The sensor network structure consists of an erbium-doped amplifier (EDFA), optical spectrum analyzer
(OSA), optical coupler (C), a personal computer (PC), and FBGs. The EDFA emits the light. The EDFA
is utilized to illuminate the FBG sensor array positioned in a parallel structure. The light produced
from the EDFA is passed through a coupler (C1), then split into two divisions (i.e., C1 and C2), and
fed into FBG sensors. Then, the reflected signals of FBGs are transmitted to the central office (CO)
through the C1 coupler. The OSA, located in the CO, can detect and record the reflected spectra of
FBGs. Finally, for additional data processing, the detected reflection spectra of the FBG sensors from
OSA will be passed to a personal computer (PC). Thus, the PC is used to perform data preparation and
to perform the simulation of the deep learning model for measuring the sensing signals of FBGs.Sensors 2020, 20, x 4 of 18 
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Figure 1. Experimental setup of the proposed intensity wavelength division multiplexing (IWDM)-based
fiber Bragg grating (FBG) sensor network. EDFA: erbium doped fiber amplifier, C: optical coupler, PC:
personal computer.
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For the proposed IWDM-based FBG sensor system, the total reflection spectra R(λ) of the FBGs is
the sum of all FBGs spectra in the sensor system. Assuming that n number of identical FBGs with
distinct peak wavelengths are positioned in a parallel structure and that their reflectivity is small
enough, the measured spectrum of FBG sensors is expressed as follows:

R(λ,λBi) =

 n∑
i

Rigi(λ,λBi)

+ Noise(λ) (1)

where λ is the broadband source’s wavelength, λBi is the central wavelength of the ith FBG, Rigi(λ, λBi)
is the reflected spectrum of the ith FBG, n is the total number of FBGs, and noise(λ) is a random noise.

Furthermore, the return power of the FBGs on the OSA is relative to the broadband source
spectrum and the reflection spectrum of the FBGs, which is expressed as follows:

I =
∫
∞

0
R(λ)Z(λ− λI)dλ (2)

where Z(λ− λI) is the broadband source and R(λ) is the spectrum of FBG. Since the broadband source’s
spectral width is lower than the FBG bandwidth and the spectrum of FBG is Gaussian shaped, the
broadband source’s total returned power can be calculated as follows:

Ii = CiZλIRm exp
[
−4 ln 2×

(
λ− λBi
4λB

)2]
(3)

where λI, Rm, λBi, and ∆λB are the broadband source wavelength, the peak reflectivity of FBGs, the
central wavelength of FBGs, and the FBG’s bandwidth, respectively. Z is a delta function, and C
is the coefficient of power allocation, which depends on numerous influences, including losses of
transmission and fluctuations of power. To demonstrate and verify the proposed system experimentally,
we use four FBG sensors in this real experiment as we have four FBGs in our lab. Thus, for a four-FBG
sensor, there are four Gaussian spectra that return power for each FBG. In IWDM-based FBG sensor
systems, the output power of each FBG is different. The reflective spectra of each FBG sensor have a
Gaussian shape, calculated by the following:

R(λ,λBi) = Ipeak exp

−4 ln 2×
(
λ− λBi
4λBi

)2 (4)

where Ipeak is the peak reflectivity of the FBGs.
In the proposed IWDM-based FBG sensor system, once the reflection spectra of FBGs enter the

overlapping region, the reflection spectra of adjacent FBGs can be overlapped. There are three kinds
of overlapping situations, such as nonoverlapping spectra of FBGs, partially overlapping spectra of
FBGs, and fully overlapping spectra of FBGs. When the spectra of FBGs are nonoverlapping, the
spectra of the four FBGs are separate and the strain sensing signal of each FBG can be easily identified.
If the reflection spectra of FBGs are partly overlapped, the strain sensing signal of each FBG may
be identified. However, when the reflection spectra of two or three adjacent FBGs are completely
overlapped, it is very challenging to measure or identify the exact sensing result of each FBGs from the
overlapped spectra using conventional peak detection methods or OSA. Moreover, the partial and
fully overlapping spectra of FBG sensors also bring peak wavelength cross talks.

Thus, the conventional peak detection (CPD) techniques cannot understand the overlapped FBG
spectra (cross talk) easily and cannot accurately measure the strain sensing signal of each FBG. In this
paper, we propose deep learning techniques to overcome the cross talk of overlapping FBG spectra.
Our objective is to measure the sensing signal values of FBG1, FBG2, FBG3, and FBG4. However, when
FBG1 and FBG2, FBG1 and FBG3, or FBG1 and FBG4 are close and overlap, it is difficult to measure
FBG1, FBG2, FBG3, and FBG4 directly from the measured reflection spectrum R = (λ,λBi). For this
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reason, we use the proposed LSTM algorithm to measure the sensing signal of each FBGs. In the model
training stage, the reflection spectra sequential feature of the four FBGs at different strain steps is set as
the input for training the LSTM model. The training data set is built as follows:

D = (Xl, Yl), . . . , (Xk, Yk), (XN, YN) (5)

where XkRl is the reflection spectra FBGs, Yk is the central wavelength of the four FBG sensors at each
strain step, and l is the number of sampling points. After completing the training of the LSTM model,
the strain sensing signal of each FBG will be measured or recognized from the overlapping spectra of
FGB sensors. Thus, the LSTM model can measure the sensing signal of each FBG sensor even if the
FBG spectra has cross talk or the overlap problem. The details for the LSTM algorithm are described in
the section below.

2.1. Long Short-Term Memory (LSTM) Algorithm

The LSTM algorithm is a special kind of recurrent neural network (RNNs) that manages sequential
information by memorizing the information for long periods [25,26]. Unlike traditional RNNs, LSTM
adds a new framework called a “memory cell” with an internal state to store valuable information [27].
In LSTM, the block of memory replaces the hidden unit structure of the RNN, as shown in Figure 2.
The most important structures in the memory block (cell) of LSTM are the three gates and a cell
structure. The three gates of LSTM are input gate, output gate, and forget gate. These three gates are
applied into the LSTM memory cell of the hidden layer to solve the problem of the vanishing gradient
and to thus make it suitable to avoid long-term dependency problems [28,29].Sensors 2020, 20, x 6 of 18 
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The input gate decides which information in the cell states needs to be updated, and the output
gate decides which part of the information in the cell states will be output. The forget gate decides
which information should be dropped from the cell state to reset the partial memory [30]. In this way,
LSTM has the option of removing or adding information to the cell state rather than fully overwriting
cell states as done by standard RNNs [28]. Unlike traditional neural feed-forward networks, LSTM is
a sequential algorithm that has a capacity to connect prior information to the current task. Figure 2
shows the LSTM memory cell structure. In the figure, at the time of t, the input value to the memory
cell is xt. The input value helps to capture all sequences of the FBG reflection spectra.

The following equations describe how a memory cell layer is updated at each time, t.
First, we calculate the values of the input gate, it, and the values of candidate state, c̃t, for the

memory cells states at time t:
it = σ(Wixt + Hiht−1 + bi) (6)
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c̃t = tan h(Wcxt + Hcht−1 + bc) (7)

Second, we calculate the activation value of the memory cells of forget gates, ft, at time t:

ft = σ(W f x f + H f ht−1 + b f ). (8)

Third, given the activation value of the candidate state, c̃t ; input gate, it; and the forget gate, ft,
we can calculate the new state, ct memory cells, at time t, which is calculated by the combination of it
and c̃t and of ft and ct−1 through the element-wise multiplication (*):

ct = ftx ct−1 + itx c̃t (9)

The final step is to determine the output value. We can calculate the value of the output gates and
eventually update the hidden state for the next iteration. Their outputs are calculated as follows:

ot = σ(Woxt + Hoht−1 + bo) (10)

ht = otx tanh(ct) (11)

ht and ct are transmitted as the input parameters to the next time step, σ represents the sigmoid
function between 0 to 1, and the tanh activation function can set the data value within the range −1 to 1.

(x) =
1

1 + e−x (12)

tan h(x) =
ex
− e−x

ex + e−x (13)

where Wi, W f , Wo, and Wc are weight matrices which connect xt to the gates and the candidate value;
Hi, H f , Ho, and Hc are weight matrices which connect ht−1 to the gates and the candidate value; and bi,
b f , bo, and bc are bias vectors of the three gates and candidate value.

Figure 3 illustrates our proposed architectures of the LSTM algorithms. The first layer of the
architecture of our proposed model consists of a layer of LSTM cells. This helps to collect the sensor
reflection information about our sensor data throughout different strain sensor values. The LSTM
model output may still have remaining nonlinearities; hence, we used two dense hidden layers
to solve the distortions or nonlinearities. Then, we implemented a dropout layer to mitigate the
risk of overfitting by regularizing the output. Finally, in order to obtain the optimal prediction, the
output layer is set to structure the output of the model. Taking the benefit of LSTM in processing
sequential data, the sensing signal detection problem is changed into a regression sequential data
problem. As shown in Figure 3, the sensing signal detection is considered as a sequential learning
problem. When the sequence of reflection spectra of FBGs X = {x1, x2, . . . . . . .., xm} is given as an input,
an LSTM-based sensing signal measurement model calculates the hidden value hy, and then the output
value Z = {λBFBG1, λBFBG2, λBFBG3, λBFBG4} is calculated by the following:

hy = H(Wxhxm + Whhhm−1 + bh) (14)

Z = Whyhm + by (15)

where b is the bias vector, W is the weight matrices, and H(.) is the recurrent function of the hidden layer.
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2.2. Discrete Waveform Transform (DWT)

DWT is a technique that uses a mother wavelet function to simultaneously analyze a signal in the
frequency domain and the time domain. Important data are retrieved from the sensor signal, and noisy
data are eliminated from the signal. The wavelet transform will break down signals to low and high
frequency to maintain the original data. The wavelet transform breaks down the original signal with
processes such as extending and basic wavelet translation. Then, several coefficients of wavelets are
obtained. The high-frequency information or low-frequency information of the signals are obtained
through high-pass or low-pass filters, respectively [30,31]. Let us say that n is the sensor signal length;
then the noised signal, Y, is expressed as follows:

Yn = xn + zn (16)

where x is the important signal and z is the unimportant (noisy) signal.
When the noise signal is random and discrete, the resulting wavelet coefficients are therefore

relatively low after the DWT. The low-frequency and high-frequency wavelet coefficients are filtered
with a pre-seating threshold. The remaining part is then transformed inversely by DWT. Finally, the
real signal is constructed. The method of the DWT noise reduction process is described as follows:

i. The original data with noise are collected using Equation (1).
ii. Apply wavelet transform on the data.
iii. Apply threshold processing.
iv. Make it the signal reconstruction.
v. Finally, the noise of the signal is reduced.

After the wavelet transform is applied to the data, to reduce the fluctuations in peak power and
shape of the FBG spectra, the threshold λ is expressed as follows:

λ = ε · σ (17)

where ε is the control coefficient and σ is the mean square error. σ is used as the threshold substrate for
wavelet coefficient processing, and ε is used as the control coefficient for σ. The control coefficient, ε, is
regulated utilizing the loss established once the training is completed and the threshold λ is regulated
globally. At last, λ can be used to enhance the original wavelet transform techniques. Moreover, since
there are different threshold functions, such as hard-threshold de-noising and soft-threshold de-noising
functions, the best threshold function can be chosen. The wavelet coefficient (y) is a function of time
in terms of the oscillations, which are localized in both time and frequency. In the soft-threshold
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de-noising method, when the wavelet coefficient
∣∣∣y∣∣∣ < λ, the noise can be reset to zero, while when∣∣∣y∣∣∣ ≥ λ, the |y| is subtracted by λ. The soft-threshold de-noising method is expressed as follows [30]:

yλ =

 sign(y)
(∣∣∣y∣∣∣− λ), i f

∣∣∣y∣∣∣ ≥ λ
0 , i f

∣∣∣y∣∣∣ < λ
 (18)

where y is the wavelet coefficient and λ is the threshold. On the other hand, in the hard
threshold-de-noising method, when

∣∣∣y∣∣∣ < λ, the noise can be reset to zero and, when
∣∣∣y∣∣∣ ≥ λ, the

wavelet coefficient retains y [30]. The hard-threshold de-noising method can be expressed as follows:

yλ =

{
y, i f

∣∣∣y∣∣∣ ≥ λ
0, i f

∣∣∣y∣∣∣ < λ
}

(19)

The final step is that the signal is obtained by the inverse wavelet transform to reconstruct the real
signal and to eliminate the noise from the signal.

3. Experimental Setup and Data Collection

3.1. Experimental Setup

The experimental setup of the IWDM-based FBG sensor system is presented in Figure 1. The output
power of the EDFA light source is approximately 16 dBm. The four ports of an optical coupler, with
distinct output power ratios of 70%, 60%, 40%, and 30%, have been used in the proposed distributed
IWDM-based FBG sensor network to connect a number of FBG sensors for strain sensing. An IWDM
technique is suggested to enhance the multiplexing capacity. The EDFA broadband source was used in
the FBG sensor scheme to illuminate the four FBG sensors. The central wavelengths of FBG1, FBG2,
FBG3, and FBG4 are 1542.34, 1545.2039, 1545.5393, and 1545.8403, respectively. The full width half
maxima (FWHM) of the four FBG sensors is 0.2 nm, and the resolution of OSA was set to 0.1 pm.
The span width of the OSA was set to 5 nm and was sampled by 2001 points. In our proposed
experimental setup, the number of FBGs sensors increases four times the traditional WDM, as each
output path of the coupler (i.e., four paths) can support a number of FBGs. The details regarding how
the training data were collected are discussed below:

3.2. Data Collection and Preprocessing

Figure 4 shows the data processing and preparation process. As for the data preparation, the
main objective is to learn the direct correlation between the strain and the reflection spectrum of FBG.
During the experiment, the first step is to record the spectra of FBG sensors based on applying a
distinct strain to the FBG1 sensor. The experiment is conducted based on the setup shown in Figure 1.
For training the LSTM model, the training dataset and testing dataset are recorded using Equation (1),
with specified parameters in the experimental setup, including the peak power of each FBG, FWHM,
central wavelength of each FBGs, and sample points. The training and testing dataset are the reflection
spectra of four FBGs at distinct strain values of FBG1. Thus, we collect a number of training datasets
by applying different strain values to the FBG1 sensor (i.e., 0–1285 µε) until we find the maximum
strain value. When strain is applied to FBG1, the central wavelength of the FBG1 sensor is shifted
in the range from 1542.34 nm to 1547.34 nm and the measured spectra of FBGs are sampled by 2001
points, whereas the central wavelengths of other FBGs remain fixed. The strain applied to FBG1 sensor
at each strain step is ~41 µε.
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Figure 4. Training procedures.

Figures 5 and 6 illustrate the reflection spectra of the FBG sensors at FBG1 stain values of 335 µε
and 595 µε, respectively. As shown in the figures, the spectra of two or three adjacent FBGs overlap
fully or partially. The training and testing data samples are recorded using an optical spectrum
analyzer by changing the strain applied to FBG1. The collected training data (i.e., the four FBGs
reflection spectra at distinct strains) are denoted as z = [z1, z2 . . . zi], where i is the length of the data
input dimensionality. We have 2001 total features as input dimensionality to the proposed system.
However, the FBG sensing signals are subject to unstable reflection spectra and noises in practical
applications due to the instability of the output power, harsh environment, random noise, deviations
in the shape of reflection spectra, aging of the equipment, and other environmental factors that affect
the reflection spectra shape, which makes it difficult to distinguish the sensing signals of FBGs from
the noise spectrum or noise data.
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The reflection spectra features, such as asymmetry, spectral broadening, and top fluctuation, can
reduce the sensing signal measurement accuracy. As a result, to adapt and prove our proposed system
even in bad environments or noisy data, we train and test the proposed model using noisy data. Due to
white Gaussian noise better simulating random noise when the cause of the noise is very complicated,
we add white Gaussian noise to the original sensor data using Equation (1). Figures 5a and 6a show
the spectra of four FBGs after random noise is added in the original sensor data. The signal-to-noise
ratio (SNR) of the noisy FBG signals is 20 dB. However, due to the presence of a high level of noise in
the FBG sensor data, the LSTM deep learning model cannot accurately measure the sensing signal of
each FBG. To solve this problem, in this paper, the DWT de-noising method is proposed to reduce the
noise of the training data (noisy sensor data). The data de-noising process using a wavelet transform
of the hard/soft threshold technique can eliminate the noise from the signal.

As shown in Figures 5b and 6b, the noise of the sensing signal is filtered and the spectra of the
FBGs look clear. Among the number of spectra of FBGs that are used as training data (output data) that
feed into our proposed algorithm, Figures 5b and 6b show the spectra of four FBGs at strain values of
335 µε and 595 µε, respectively. Then, the data after DWT de-noising is used as the training data for
the LSTM model. Thus, after the data de-noising and data preprocessed procedure of the sensors data
is completed, the sensor data are fed into the LSTM model to measure the sensing signal of each FBG.
The LSTM can learn and understand the features from the reflection spectra of FBG sensors and can
design the sensing signals measurement model for the FBG sensor system.

The preprocessed dataset has been divided into training and testing datasets, as shown in Figure 4.
Each has a similar number of features and target values. Before training, the training data are
normalized to [0, 1] using min-max scaling. The sequence of the reflection spectra data of four FBGs at
different strain steps is used as the input data, and the central wavelengths of FBG1, FBG2, FBG3, and
FBG4 at different strain steps are used as target data for training the LSTM model. The training data are
used to train the network and to adjust the parameters iteratively to minimize the loss function of the
model. Then, the well-trained LSTM model estimates the sensing signal of the unknown test samples
from the test data, and a test loss is measured. Therefore, the sensing signal measurement of FBGs can
be rapidly determined by sequentially feeding the reflection spectra of FBGs into the well-strained
LSTM model.

4. Results and Discussion

4.1. Determining the Optimal LSTM Parameters

Our proposed LSTM model is implemented using the TensorFlow framework, in conjunction
with the Keras and Sklearn libraries. The simulation part of this paper runs on a PC, which has an Intel
Core i7-4790 3.60 GHz GPU and 20.0 GB RAM. Figure 7 shows the flowchart and training process of
the proposed LSTM with four hidden layers and two fully connected layers. The basic architectural
structure of our designed LSTM network is as follows: First, the collected training dataset (strain
sensing signals) is preprocessed, removes the noise using data de-nosing techniques, and is structured
according to the machine training formats. Then, to train the LSTM algorithm, the preprocessed
reflection spectra of the FBGs are used as inputs to the LSTM and the corresponding peak wavelengths
of FBGs are used as target values. We adjust the different parameters, such as epochs, hidden layers,
batch sizes, and optimizer and activation functions, until optimal values are obtained. Then, the
well-developed LSTM model is tested by using unseen test datasets. Finally, the prediction outputs are
generated by the dense layer, and then, we use a loss function to compare the prediction outputs with
the actual values. The prediction performance of our proposed model is evaluated through root mean
square error (RMSE).
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During the training of the LSTM, various parameters such as the number of epochs, batch sizes,
hidden layers, hidden units, and optimizer and activation functions are adjusted until optimal values
are obtained. Tuning all these parameters results in different training times, root mean square errors
(RMSE), and mean square errors (MSE). To know the optimal optimizers, we train the model with
distinct optimizers [32] and compare the performance based on MSE (see Figure 8).
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As illustrated in Figure 8, Adamax achieves a smaller MSE (i.e., 0.025 pm) than the other optimizers,
as adamax is computationally efficient and minimizes noise. Thus, the proposed algorithm is trained
using the Adamax optimizer. We also use different activation functions [33]—sigmoid, Relu, tanh, and
softmax—to squash the output of the proposed algorithm and to compare the performance. Moreover,
we apply dropout regularization within the LSTM layer.

Throughout the training period, a portion of the input units are dropped randomly at each
update, both at the input gates and at the recurrent connections, resulting in a lower probability of
overfitting and a better generalization performance. Hence, several trainings have been computed on
the proposed algorithm until we found the optimal outputs. Therefore, after several trainings, we
compile the network using the Adamax optimization algorithm and tanh activation function. Finally,
the prediction outputs are generated by the dense layer, and then, we use a loss function to compare the
prediction outputs with the actual values. The loss metrics for evaluating the training and validation
losses of the proposed model is MSE. The MSE can be calculated as follows:

MSE =
1
n

n∑
i=1

(yi − y)2 (20)
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where n, yi, and y are the number of predicted values, the actual value, and the predicted
value, respectively.

Moreover, to obtain the optimal model, we trained the LSTM model with a variety of hidden units
to choose the best number of hidden units. The comparison of the LSTM models’ RMSE with various
hidden unit numbers is shown in Figure 9. As shown in the figure, the RMS error decreases as the
numbers of hidden units increases. However, when the number of hidden units increases, this requires
more testing time. The number of hidden units is saturated, and the error increases after the 824th
hidden unit. The maximum test time for the 824 hidden unit LSTM model is 0.526 s. Therefore, for
the proposed LSTM model, the optimal hidden unit’s number is 824, which achieves both acceptable
accuracy and test time.
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Moreover, Figure 10 shows the MSE variation of the training and validation losses of our proposed
LSTM model with various epoch numbers. Both the training and validation losses reduce significantly
with the increase of the epochs/iterations. When the epoch number exceeds 250, the training loss reduces
slowly and the validation loss varies in the range of 0 pm to 0.014 pm. The training loss and validation
loss converge quickly after approximately 800 iterations, while the optimum value is obtained at the
1400th iteration. The training and validation losses of LSTM are 0.003 and 0.0005 pm, respectively.Sensors 2020, 20, x 13 of 18 
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Figure 11 shows the training accuracy and validation accuracy of our proposed LSTM models with
different epoch numbers. As shown in the figure, when the epoch number increases, the accuracy of
the model also increases. Thus, at epoch 1400, the LSTM validation accuracy (blue color) achieves 100%
accuracy and the LSTM training accuracy (red color) achieves 95% accuracy. Therefore, after several
training computations, the optimal values are achieved using the following parameters: 824 hidden
units, 1500 batch size, 1400 epochs, and four hidden layers for the well-trained LSTM model, which
achieves an acceptable accuracy and testing time.
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4.2. Model Testing

This section describes the strain sensing signal measurement performance of our proposed LSTM
deep learning model. To test the strain sensing signal measurement performance of the well-trained
LSTM, we have taken the unseen test data (reflection spectra of FBGs) from OSA. To test the sensing
signal measurement performance of our well-trained LSTM model, we use four different testing cases.
Thus, the test data focus on when the situation of the spectra of two or three adjacent FBG sensors are
partially or fully overlapped (see blue color spectrum in Figures 12 and 13). As shown in Figures 12
and 13, when two or three FBG sensors are overlapped, the output power (intensity) is the sum of
the two or three sensors and the peak power is high. To test the strain sensing signal measurement
accuracy performance of our proposed model, we use RMSE evaluation methods, defined as follows:

RMSE =

√∑n
i=1 (yi − y)2

n
(21)

where n, yi, and y are the number of predicted values, the actual value, and the predicted
value, respectively.

Therefore, the sensing signal measurement of FBGs can be rapidly determined by sequentially
feeding the reflection spectra of FBGs into the well-strained LSTM model. As a result, the strain sensing
signals output the results of the well-trained LSTM model for four distinctive test cases, as shown in
Figures 12 and 13. Figure 12a,b shows the sensing signal measurement output of our proposed LSTM
model without using DWT data de-noising techniques when the spectra of two FBGs are overlapped
(see Figure 12a) and of three FBGs are overlapped (see Figure 12b). As shown in Figure 12a, the
proposed LSTM model can measure the sensing signals of FBGs without using de-noising techniques
when the spectra of FBG1 and FBG2 are completely overlapped. As shown in Figure 12b, the proposed
LSTM model measures the sensing signal of each FBG without using de-noising techniques when the
spectra of the FBG1, FBG2, and FBG3 sensors are overlapped.
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The sensing signal measurement performances of the proposed LTM model without using a DWT
data de-noising method are 0.092 pm and 0.098 pm when two FBG spectra (test case a (Figure 12a))
and three FBGs spectra (test case b (Figure 12b)) are overlapped, respectively. On the other hand,
Figure 13a,b shows the sensing signal measurement output of our proposed LSTM model in conjunction
with using DWT data de-noising techniques when the spectra of two FBGs spectra and three FBGs
spectra are overlapped, respectively.

As shown in Figure 13a, the proposed LSTM model accurately measured the sensing signals of
FBGs using DWT data de-noising techniques even when the spectra of FBG1 and FBG2 are completely
overlapped. As shown in Figure 13b, the proposed LSTM model in conjunction with using DWT
de-noising techniques accurately measured the sensing signal of each FBGs even when the spectra of
the FBG1, FBG2, and FBG3 sensors are overlapped. The sensing signal measurement performances
of the proposed LTM model in conjunction with a DWT data de-noising method are 0.024 pm and
0.067 pm when the two FBG spectra (test case a (Figure 13a)) and three FBGs spectra (test case b
(Figure 13b)) are overlapped, respectively.

The smaller the RMSE measurement error indicates that the measured value by our proposed
model is nearly closer to the actual value. As a result, the experimental results, as shown in Figure 12,
demonstrate that the sensing signal measurement performance using our proposed LSTM model
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without using a DWT is unsatisfactory. On the other hand, the performance of the LSTM model in
conjunction with the DWT de-noising technique achieves a better performance even in noisy data, as
shown in Figure 13. Hence, the LSTM model in conjunction with a DWT de-noising method is capable
of efficiently improving the sensing signal measurement accuracy of the FBG sensor system. Therefore,
our proposed deep learning algorithm proves that we can accurately measure the sensing signal of
FBGs even with overlapped FBG spectra and noisy sensor data.

4.3. Performance Evaluation

Furthermore, to verify and validate the strain sensing measurement performance of our proposed
deep learning model, we compare and contrast the performances of our proposed LSTM model with
two other models: extreme learning machine (ELM) and multilayer perceptron (MLP). We computed
the simulation using the same parameters, the same training and testing data, and under the same PC
environment. For the ELM model, the number of hidden units is set to 1200. Table 1 indicates the
comparison of strain sensing signal measurement performance of our proposed LSTM models with the
other two models based on four different test cases. As shown in the table, the performances of our
proposed LSTM model without using DWT method in test case a and test case b are 0.092 pm, and
0.098 pm, respectively.

Table 1. The performance comparison results of four different models in four different testing cases.

RMSE (pm)

Test Case LSTM MLP ELM

Without using DWT
de-noising techniques

a (Figure 12a) 0.092 0.237 0.175
b (Figure 12b) 0.098 0.274 0.207

With using DWT de-noising
techniques

i (Figure 13a) 0.024 0.243 0.168
ii (Figure 13b) 0.067 0.258 0.200

On the other hand, the performances of our proposed LSTM model in conjunction with a DWT
data de-noising method in test case i and test case ii are 0.024 pm and 0.067 pm, respectively. Hence, the
RMSE of our proposed LSTM model is smaller than the other two models in all test cases. Therefore,
our proposed LSTM model achieves better sensing signal measurement performance than the MLP
and ELM models with a low-error sensing signal measurement. The LSTM algorithm has the ability to
learn complex representations from the sequential features of the spectra of FBGs. The proposed LSTM
model can also avoid the randomness and uncertainty of EAs with higher reliability. Thus, even when
the adjacent FBG sensors spectra are fully or partly overlapped, the proposed LSTM model accurately
measures the strain sensing signal of the four FBGs.

Furthermore, Figure 14 shows the performance comparison between our proposed LSTM models
with an MLP model based on a different number of epochs.

In our proposed LSTM model, a small RMSE is achieved when the epoch number is 1400. Thus,
as shown in the figure, even when the spectra of three FBG sensors are overlapped, the RMS errors
are 0.024 pm and 0.258 pm for LSTM and MLP, respectively. As a result, our proposed LSTM model
achieves better sensing signal measurement performance than MLP at different epoch numbers.
The LSTM algorithm has the ability to learn complex representations from the sequential features of
the spectra of FBGs.



Sensors 2020, 20, 1070 16 of 18

Sensors 2020, 20, x 16 of 18 

 

 
Figure 14. The performance comparisons of our proposed LSTM model with four different methods 
in different epoch numbers. 

In our proposed LSTM model, a small RMSE is achieved when the epoch number is 1400. Thus, 
as shown in the figure, even when the spectra of three FBG sensors are overlapped, the RMS errors 
are 0.024 pm and 0.258 pm for LSTM and MLP, respectively. As a result, our proposed LSTM model 
achieves better sensing signal measurement performance than MLP at different epoch numbers. The 
LSTM algorithm has the ability to learn complex representations from the sequential features of the 
spectra of FBGs. 

Furthermore, the comparison of the RMS error from the proposed LSTM models with the other 
two models based on hidden unit numbers variation is shown in Figure 15. As shown in the figure, 
the RMS error decreases as the numbers of hidden units increases and LSTM has better performance 
than the other two models. Our proposed LSTM model achieves a better result when the hidden unit 
is 824. Therefore, the LSTM-based strain sensing signal measurement method can improve the 
sensing signal measurement accuracy, speed, and the number of FBG sensors even in bad or noisy 
environments. 

 
Figure 15. The performance comparisons of our proposed LSTM model with three different methods 
in different number of hidden unites. 

5. Conclusions 

In this paper, we proposed an LSTM integrated with data de-noising techniques for an IWDM-
based multipoint FBG sensor system to improve the sensing signal measurement accuracy. As the 
performance of our proposed LSTM model depends on the sensing signal measurement of FBGs, we 
calculated the sensing signal measurement errors to test the effectiveness of our proposed LSTM 
model. First, we used DWT data de-noising methods to reduce the noise and processed the noisy 
FBG signals. Then, we utilized our proposed LSTM model to measure the sensing signal of each FBG 

Figure 14. The performance comparisons of our proposed LSTM model with four different methods in
different epoch numbers.

Furthermore, the comparison of the RMS error from the proposed LSTM models with the other
two models based on hidden unit numbers variation is shown in Figure 15. As shown in the figure, the
RMS error decreases as the numbers of hidden units increases and LSTM has better performance than
the other two models. Our proposed LSTM model achieves a better result when the hidden unit is 824.
Therefore, the LSTM-based strain sensing signal measurement method can improve the sensing signal
measurement accuracy, speed, and the number of FBG sensors even in bad or noisy environments.
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5. Conclusions

In this paper, we proposed an LSTM integrated with data de-noising techniques for an IWDM-based
multipoint FBG sensor system to improve the sensing signal measurement accuracy. As the performance
of our proposed LSTM model depends on the sensing signal measurement of FBGs, we calculated the
sensing signal measurement errors to test the effectiveness of our proposed LSTM model. First, we
used DWT data de-noising methods to reduce the noise and processed the noisy FBG signals. Then,
we utilized our proposed LSTM model to measure the sensing signal of each FBG from the de-noising
FBG signal. The well-trained LSTM model learned from the sequential features of the FBG sensors
spectra and can identify the strain sensing signal of FBGs for the entire FBG sensor system.

A significant benefit of the proposed LSTM model is that, in any bad environment or with noisy
sensor data, we do not require retraining or building of a new model. As a result, the well-trained
LSTM model achieves a better sensing signal measurement performance even though the spectra
of FBG sensors completely overlap and the sensor data are noisy. Compared with other traditional
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machine learning techniques, the LSTM model achieves a high sensing signal measurement accuracy
performance. Therefore, the proposed LSTM model can increase the number of FBG sensors in the
sensor system and improves the sensing signal measurement accuracy performance of the IWDM FBG
sensor network.
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