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Abstract

Background and Aims: Mounting evidence highlights a strong association between

chronic pancreatitis (CP) and type 2 diabetes (T2D), although the exact mechanism

of interaction remains unclear. This study aimed to investigate the crosstalk genes

and pathogenesis between CP and T2D.

Methods: Transcriptomic gene expression profiles of CP and T2D were extracted

from Gene Expression Omnibus, respectively, and the common differentially

expressed genes (DEGs) were subsequently identified. Further analysis, such as

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),

protein–protein interaction, transcription factors (TFs), microRNA (miRNAs), and

candidate chemicals identification, was performed to explore the possible common

signatures between the two diseases.

Results: In total, we acquired 281 common DEGs by interacting CP and T2D

datasets, and identified 10 hub genes using CytoHubba. GO and KEGG analyses

revealed that endoplasmic reticulum stress and mitochondrial dysfunction were

closely related to these common DEGs. Among the shared genes, EEF2, DLD, RAB5A,

and SLC30A9 showed promising diagnostic value for both diseases based on receiver

operating characteristic curve and precision‐recall curves. Additionally, we identified

16 key TFs and 16 miRNAs that were strongly correlated with the hub genes, which

may serve as new molecular targets for CP and T2D. Finally, candidate chemicals

that might become potential drugs for treating CP and T2D were screened out.

Conclusion: This study provides evidence that there are shared genes and

pathological signatures between CP and T2D. The genes EEF2, DLD, RAB5A, and

SLC30A9 have been identified as having the highest diagnostic efficiency and could

be served as biomarkers for these diseases, providing new insights into precise

diagnosis and treatment for CP and T2D.
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1 | INTRODUCTION

Chronic pancreatitis (CP) is a progressive and chronic disease

characterized by a syndrome of fibrosis and inflammation of the

pancreas in individuals with genetic, environmental, and/or other risk

factors.1 Patients with CP often suffer from various physical

disorders, including abdominal pain and sequelae of exocrine and

endocrine insufficiency.1,2 Long‐term complications of CP evolve as

the disease progresses, including malnutrition, pseudocysts, low bone

mineral density, diabetes mellitus, and pancreatic cancer, which cause

severe impact on quality of life and life expectancy.2–5 Unfortunately,

there is currently no effective treatment to interrupt or reverse the

progression of the disease. The objective of current treatment

strategies is to improve clinical symptoms and mitigate these

complications. Thus, early screening, as well as early management

and treatment, are urgently needed for CP and its related

complications.

Since 1901, the relationship between diabetes and pancreatitis

has been appreciated.6 Diabetes, a group of metabolic diseases

characterized by insulin resistance and malfunction of pancreatic β‐

cells, affects 537 million people worldwide.7 Of these, over 90%

cases are type 2 diabetes (T2D).7 Interestingly, a “circular argument”

of causation has been raised to describe the relationship between

diabetes and pancreatitis. Namely, diabetes is believed to influence

pancreatitis, and vice versa.8 In general, diabetes is considered a

frequent complication of CP, with a prevalence ranging from 25%

to 80%.2

The American Diabetes Association classifies CP‐related diabe-

tes as type 3c diabetes, which shares many similarities with T2D in

terms of clinical presentation and treatment.9 According to a

spectrum analysis of diabetes, in addition to the pathophysiological

mechanisms associated with CP, many patients with CP‐related

diabetes also have risk factors associated with T2D.10 Another study

showed that the combination of CP and T2D can lead to a mutually

aggravating process involving insulin resistance, chronic low‐intensity

inflammation, and dyslipidemia.11 Moreover, compared to comorbid-

ity in CP‐T2D, patients with diabetes related to CP present a more

aggressive phenotype (microangiopathy and infection) and higher

need for glucose‐lowering treatment, and even patients who

experience their first attack of pancreatitis may require long‐term

management after being discharged from the hospital.12,13 Taken

together, CP and T2D exhibit a strong correlation during the

progression of the disease. However, the shared signatures and

underlying pathogenesis of comorbidity are still not fully understood.

Currently, the rapid development of sequencing technology and

integrated bioinformatics analysis provides an effective means to

discover the common pathogenesis of multiple diseases, which could

be used as new biomarkers for diagnosis and treatment. In this study,

microarray datasets of CP and T2D were retrieved from the Gene

Expression Omnibus (GEO) database, and 281 common differentially

expressed genes (DEGs) were identified. Next, the common DEGs

were analyzed using a series of computational approaches to uncover

the underlying biological processes and signaling pathways. The

CytoHubba plug‐in was then utilized to extract hub genes that could

potentially serve as therapeutic targets for CP and T2D. To

investigate the common pathogenesis, we also predicted transcrip-

tion factors (TFs) and microRNAs (miRNAs) based on the hub genes.

Finally, gene‐drug interaction was analyzed to predict possible drug

compounds for treating CP and T2D. The research flowchart is

displayed in Figure 1.

2 | MATERIALS AND METHODS

2.1 | Data acquisition

We searched the gene expression profiles of CP and T2D in the GEO

database (https://www.ncbi.nlm.nih.gov/geo/), and filtered the data-

set based on the following criteria. First, the genetic information must

include both cases and controls. Second, the sample size had to

consist of five or more pairs, and the sample had to be derived from

pancreatic tissue. Third, the dataset type should be expression

profiling by array. Fourthly, the complete raw data should be

available for reanalysis. At last, we selected a CP dataset (accession

ID: GSE143754, platform ID: GPL17586) consisted of 9 negative

pancreatic head samples and 6 CP pancreatic head samples. Similarly,

the T2D dataset (accession ID: GSE25724, platform ID: GPL96)

consisted of 7 non‐diabetic pancreatic islets samples and 6 T2D

pancreatic islets samples was collected. In addition, the GSE123375

dataset (platform ID: GPL17586) of pancreatic fibroblast samples

from 11 controls and 5 CP patients, as well as the GSE20966 dataset

(platform ID: GPL1352) of pancreatic beta‐cell samples from 10

controls and 10 T2D patients, were downloaded for external

validation.

2.2 | Data processing and DEGs identification

The raw data was normalized using R software (version 4.1.2) and

underwent a log2 transformation. A corresponding gene matrix file

was then generated for further analysis. Next, the “limma” R package

was applied to identify DEGs with a p < 0.05 and |log2 fold change

(FC)| ≥0.585 in the CP dataset (GSE143754) and T2D dataset

(GSE25724), respectively. Subsequently, we used the “VennDiagram”

R package to get the overlapping DEGs between these datasets,

considering them as the common DEGs.

2.3 | Function enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses of common DEGs were conducted

through the “clusterProfiler” R package. A p < 0.05 was set as the

threshold.
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2.4 | Protein–protein interaction (PPI) network
analysis

We uploaded the common DEGs to the online STRING website

(https://stringdb.org) to generate a file that represents the interac-

tions among proteins, known as a string‐interactions file. The filtering

criteria was a combined score >0.4. Then, the PPI network was

visualized using the “igraph” and “ggraph” R packages.

2.5 | Screening of hub genes

The top 10 hub genes were identified by cytoHubba plug‐in of Cytoscape

(3.8.2) software, with the filtering condition being Betweenness

algorithm.14 Using the “ggplot2” R package, we performed the relevance

analysis and heatmap construction for the shared hub genes based on the

Spearman method. Furthermore, receiver operating characteristic curve

(ROC) analysis and precision‐recall (PR) curves were conducted to

evaluate their diagnostic effiectiveness for disease.

2.6 | Verification of hub genes

The validation datasets were treated in the same way as explained

earlier, which involved normalization and processing. The ROC and

PR curves were analyzed using the “pROC” R package, and visualized

through the “ggplot2” R package. The area under curve (AUC) value

was used as an evaluation criterion for determining the diagnostic

significance of diseases.

2.7 | Identification of TFs and miRNAs

JASPAR (http://jaspar.genereg.net/), a user‐friendly open‐access

database, was used to predict the top TFs that bind to hub genes.

In the meantime, miRNAs targeting the hub genes were identified by

miRTarBase (version 8.0) and TarBase (version 8.0) databases.

Moreover, we selected the miRNAs that overlap between these

databases as the key miRNAs. NetworkAnalyst (version 3.0) (https://

www.networkanalyst.ca/) was applied to identify the key TFs and

miRNAs, while Cytoscape was employed to construct the topological

network of TFs‐gene and gene‐miRNA.

2.8 | Chemical prediction of hub genes

To explore possible therapeutic chemicals for CP and T2D, protein‐

chemical interactions was analyzed based on comparative toxicoge-

nomics database (CTD).15 The visual network was mapped through

Cytoscape software.

F IGURE 1 The flowchart of this study.
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2.9 | Gene‐disease association analysis

The DisGeNET platform (http://www.disgenet.org/), which contain-

ing the full spectrum of human diseases as well as normal and

abnormal traits, was employed to discover potential diseases

associated with hub genes, providing theoretical foundation for

studying the molecular mechanisms of diseases.

3 | RESULTS

3.1 | Identification of common DEGs between CP
and T2D

To explore the pathogenesis of CP and T2D, we separately collected

their DEGs on the basis of the screening criteria mentioned above. As

shown in Figure 2A and Table S1, we identified 1263 upregulated

and 578 downregulated DEGs in the CP dataset (a total of 1841

DEGs), whereas 629 upregulated and 1362 downregulated DEGs in

the T2D dataset (a total of 1991 DEGs). The DEGs for CP and T2D

were presented by volcano plots, respectively (Figure 2B,C; Table S2).

According to the Venn diagram, the CP and T2D datasets shared 281

DEGs, which were considered as common DEGs (Figure 2D;

Table S2), indicating a strong correlation between CP and T2D.

3.2 | GO and pathway enrichment analyses

To understand the biological functions and signaling pathways associated

with the 281 common DEGs, we next performed GO and KEGG

enrichment analyses. GO enrichment analysis includes biological process

(BP), cellular component (CC), and molecular function (MF), which

represent the functional composition of enriched gene. Specifically, the

BP were largely related to Golgi vesicle transport, endoplasmic reticulum

(ER) to Golgi vesicle‐mediated transport, and ER unfolded protein

response. For the CC category, DEGs were primarily associated with

the mitochondrial matrix, intrinsic component of organelle membrane,

and mitochondrial protein‐containing complex. Additionally, the top three

statistically significant terms in the MF category were ribonucleoprotein

complex binding, ribosome binding, and signal sequence binding

(Figure 3A,B; Table S3). Moving on to the KEGG analysis, the DEGs

were predominantly enriched in Pathways of neurodegeneration‐multiple

diseases, Protein processing in ER, and Alzheimer disease, etc

(Figure 3C,D; Table S3). These results revealed that the common DEGs

were closely related to ER and mitochondrial function, which has been

recognized as one of the important mechanisms in both CP and T2D.

3.3 | PPI network construction and hub genes
extraction

To further elucidate PPIs between the two diseases, the shared

genes were analyzed via STRING database, and subsequently a

string‐interactions file was generated for the following analysis

(Table S4). A PPI network was then constructed using R software

on the basis of combined score (Figure 4; Table S4). Ulteriorly, the

cytoHubba plug‐in was applied to discover the most critical hub

genes in the PPI network. Based on the Betweenness method

score, we ultimately harvested the top 10 hub genes including

HSP90AB1, DLD, EEF2, RAB5A, RPL8, SEC61A1, DDX21, RANBP2,

SRP54, and SLC30A9 (Figure 5A; Table S4). In the meantime,

relevance heatmap of these hub genes was shown in Figure 5B and

Table S5, which indicated the correlation among them. Subse-

quently, we conducted ROC and PR analyses for CP and T2D,

respectively. The results displayed that the AUC value of the CP

dataset was greater than 0.926, while that of the T2D dataset was

greater than 0.857 (Figures S1–4). Taken together, these data

suggested that the hub genes played an excellent diagnostic role,

and might become novel diagnostic and therapeutic targets for CP

and T2D.

3.4 | Verification of hub genes

To validate the screened genes, we also analyzed the ROC curves

of hub genes and calculated the AUC values for external

validation datasets. Among the 10 hub genes, EEF2 and SEC61A1

have the highest diagnostic value in the GSE123375 dataset, with

AUC values for DLD, RAB5A, SLC30A9, and HSP90AB1 were

0.955, 0.90, 0.891, and 0.818, respectively (Figure S5). Similarly,

they also have effective diagnostic value in the GSE20966

dataset, with the AUC values of RAB5A, DLD, SLC30A9, RPL8,

EEF2, and RANBP2 being 0.86, 0.85, 0.84, 0.79, 0.77, and 0.710,

respectively (Figure S6).

3.5 | The regulatory signatures analysis of hub
genes

As crucial factors in transcriptional and post‐transcriptional

regulation, TFs and miRNA are often indicative of distinct specific

functions.16,17 Given their important regulatory role in gene

expression, we separately predicted the TFs and miRNA of hub

genes to gain a better comprehension of disease progression. Hub

genes associated TFs were ranked by degree values. Ultimately, we

selected 16 TFs as key TFs, including FOXC1, CREB1, NFKB1,

RELA, MEF2A, NRF1, SRF, YY1, E2F1, PPARG, TP53, GATA3,

TP63, PRDM1, GATA2, and FOXL1 (Figure 6; Table S5). The

miRNAs were also ranked by degree values using the miRTarBase

and TarBase databases, and 16 key miRNAs were determined

through intersection, containing hsa‐mir‐193b‐3p, hsa‐mir‐186‐

5p, hsa‐mir‐16‐5p, hsa‐mir‐18a‐5p, hsa‐mir‐320a, hsa‐mir‐342‐3p,

hsa‐mir‐423‐5p, hsa‐let‐7a‐5p, hsa‐mir‐877‐3p, hsa‐mir‐34a‐5p,

hsa‐mir‐15b‐5p, hsa‐mir‐335‐5p, hsa‐let‐7b‐5p, hsa‐mir‐484, hsa‐

mir‐939‐5p, and hsa‐mir‐455‐3p (Figure 7A,B; Table S5). These

results revealed a high relevance between hub genes and TFs,
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miRNAs, which could potentially serve as new molecular targets

for CP and T2D.

3.6 | Recognition of protein‐chemical interactions

Based on the CTD database, potential chemical compounds

targeting hub genes were ranked by their degree values. The top

10 candidate chemicals were Cyclosporine, Enzyme Inhibitors,

Valproic Acid, Aflatoxin B1, Methyl Methanesulfonate, Plant

Extracts, Estradiol, Sodium Selenite, chloropicrin, and arsenic

trioxide (Figure 8; Table S6), which may have therapeutic effects

on hub genes.

3.7 | Determination of gene‐disease associations

A great number of diseases share common genes and pathogenesis.

Thus, we analyzed possible diseases related to hub genes through the

gene‐disease associations score, and the results showed that the

F IGURE 2 Screening of common DEGs between two datasets (GSE143754 and GSE25724). (A) The number of DEGs between CP and T2D
datasets. (B) The volcano plot of DEGs in the CP dataset. (C) The volcano plot of DEGs in the T2D dataset. (D) The Venn diagram illustrates the
intersection of DEGs between CP and T2D datasets. CP, chronic pancreatitis; DEG, differentially expressed gene; T2D, type 2 diabetes.
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most prominent diseases were NADH cytochrome B5 reductase

deficiency, hyperuricemic nephropathy, spinocerebellar ataxia,

inflammatory myofibroblastic tumor, and Shwachman syndrome,

etc. (Figure 9; Table S6). These findings illustrated that they shared

some similarities with CP and T2D.

4 | DISSCUSSION

In recent years, the possible connections between different diseases

have attracted widespread attention from researchers. Actually, the

relationship between CP and diabetes has been recognized for over a

F IGURE 3 GO and KEGG enrichment analyses of the common DEGs between CP and T2D. (A) The bubble diagram of GO enrichment
analysis. (B) The chord plot of GO enrichment analysis. (C) The bubble diagram of KEGG enrichment analysis. (D) The chord plot of KEGG
enrichment analysis. CP, chronic pancreatitis; DEG, differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; T2D, type 2 diabetes.
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century. According to a large multicenter cohort study, traditional risk

factors for T2D, such as excess weight and family history, were found

to have a first‐order association with disease progression of CP.18

Other clinical studies have revealed deeper levels of inflammation

and secretory insufficiency of the pancreas in patients with CP‐T2D

comorbidity compared to those with isolated CP.19 However, the

molecular mechanisms behind the complex relationship between CP

and T2D have not yet been fully elucidated. Hence, it is necessary to

identify shared molecular markers and explore possible co‐

pathogenesis between these diseases. To our knowledge, this study

is the first to investigate the shared genes and signatures between CP

and T2D using integrated bioinformatics.

In the present study, we identified 281 common DEGs by

intersecting the gene expression profiles of CP and T2D downloaded

from the GEO database. Through GO and KEGG analyses, we

discovered that these common DEGs were mainly enriched in ER and

mitochondria associated protein processing. Protein synthesis is

highly active in the pancreas, leading to a significant demand for ER

and mitochondrial systems. Under physiological conditions, pancre-

atic acinar cells produce plenty of digestive enzymes, accompanied

by activated protein folding and degradation, to maintain ER

homeostasis.20 Previous research has elucidated the indispensable

impact of ER stress on pancreatic function and disease pathology,

involving T2D and CP.21,22 On the other hand, mitochondrial signal

transduction in pancreatic acinar cells and β‐cells also plays a central

role in both CP and T2D by mediating insulin secretion and

maintaining Ca2+ homeostasis.23 Thus, it can be seen that the

crosstalk mechanism between CP and T2D may be closely linked to

ER stress and mitochondrial dysfunction.

Next, to better understand the potential mechanisms of these

two diseases, we screened out 10 hub genes through cytoHubba

plug‐in of Cytoscape, namely HSP90AB1, DLD, EEF2, RAB5A, RPL8,

SEC61A1, DDX21, RANBP2, SRP54, and SLC30A9. Among them, DLD,

a mitochondrial enzyme, is essential for modulating mitochondrial

energy metabolism patterns.24 Moreover, the suppression of EEF2

prevented the progression of Alzheimer's disease by regulating

protein synthesis.25 In addition, the expression of RAB5A has been

shown to be positively correlated with the formation and migration of

filopodia in pancreatic cancer cells.26 SLC30A9 is required for Zn2+

homeostasis and mitochondrial physiology in neurodegenerative

diseases.27 ROC and PR analyses of the top 10 shared genes were

then conducted to assess their diagnostic effects for diseases.

F IGURE 4 PPI network analysis of the common DEGs between CP and T2D. CP, chronic pancreatitis; DEG, differentially expressed gene;
PPI, protein–protein interaction; T2D, type 2 diabetes.
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F IGURE 5 Screening out of the top 10 hub genes and their correlation analysis. (A) The PPI network of hub genes identified by CytoHubba,
and the 10 central genes represent the top 10 hub genes ranked by Betweenness algorithm. (B) The correlation heatmap of hub genes based on
the Spearman method. PPI, protein–protein interaction.
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Our results presented that all of these genes have significant

diagnostic value, with AUC values greater than 0.926 in the CP

dataset and greater than 0.857 in the T2D dataset. In addition, we

performed ROC curve analysis on these genes in validation datasets,

and results indicated that the AUC values of EEF2, SEC61A1, DLD,

RAB5A, and SLC30A9 were above 0.818 in the GSE123375 dataset.

Similarly, the AUC values of RAB5A, DLD, SLC30A9, RPL8, EEF2, and

RANBP2 were above 0.710 in the GSE20966 dataset. From the above

results, it can be concluded that EEF2, DLD, RAB5A, and SLC30A9

have a better diagnostic significance in these diseases, which might

become intervention targets for CP and T2D in the future.

To further explore the shared molecular mechanisms under-

lying diseases, TFs and miRNAs prediction were conducted using

the NetworkAnalyst online database. TFs have been widely proven

to hold a huge therapeutic potential in numerous human diseases

by binding to DNA sequences, regulating β‐cell function, driving

cell differentiation, and controlling immune responses, etc.28,29

miRNAs, on the other hand, have emerged as a promising

therapeutic tool for diseases due to their powerful genetic

regulatory properties.30 At present, clinical trials associated with

miRNA have revealed promising results for the treatment of T2D

and pancreatic cancer.31,32 We screened out the top 10 TFs,

including FOXC1, CREB1, NFKB1, RELA, MEF2A, NRF1, SRF, YY1,

E2F1, and PPARG. The top 10 miRNAs were hsa‐mir‐193b‐3p,

hsa‐mir‐186‐5p, hsa‐mir‐16‐5p, hsa‐mir‐18a‐5p, hsa‐mir‐320a,

hsa‐mir‐342‐3p, hsa‐mir‐423‐5p, hsa‐let‐7a‐5p, hsa‐mir‐877‐3p,

and hsa‐mir‐34a‐5p. According to literature research, MEF2A, a

critical indicator of glucose transport, was downregulated in

T2D.33 Moreover, a case‐control study showed that the NRF1

gene polymorphism increased the risk of T2D.34 As a regulator of

the insulin gene, SRF is highly expressed in pancreatic β‐cells and

can mitigate the severity of acute pancreatitis by inhibiting NF‐

κB.35,36 The gene mutations of E2F1 and PPARG were believed to

be closely related to the risk of developing T2D.37,38 Among the

miRNAs, the plasma level of mir‐193b‐3p was found to be elevated

in patients with T2D,39 while mir‐18a‐5p, mir‐320a, and mir‐34a‐

5p were considered to be strongly linked to pancreatic endocrine

dysfunction.40–42 The impact of other miRNAs on CP and T2D still

needs further exploration.

Furthermore, to clarify the common pathogenesis of CP and

T2D from multiple dimensions, diseases targeting the shared hub

genes were subsequently analyzed. Our results presented that these

hub genes are largely associated with diseases such as NADH

cytochrome B5 reductase deficiency, hyperuricemic nephropathy,

spinocerebellar ataxia, inflammatory myofibroblastic tumor, and

Shwachman syndrome. It has been confirmed that NADH cyto-

chrome B5 reductase, a member of the NADPH reductase family

located in the ER, hold a place of importance in maintaining the

redox status of pancreatic β‐cells, giving rise to the development of

T2D and cancer.43,44 Besides, in T2D, hyperuricemia was proved to

be associated with insulin resistant and progression to overt

nephropathy.45 Moreover, pancreatitis secondary to an inflamma-

tory myofibroblastic tumor has been reported in a series of clinical

cases, although the pathogenesis is still unclear.46 As a common

cause of exocrine pancreatic insufficiency, Shwachman syndrome

was confirmed closely related to CP and pancreatic cancer.47

Combined with the above findings, we can draw a conclusion that

there are many similarities in the pathogenesis of these diseases

with CP and T2D, which may provide valuable insights for further

research in CP and T2D fields.

At last, we selected 10 candidate chemicals based on their

degree values, including Cyclosporine, Enzyme Inhibitors, Valproic

Acid, Aflatoxin B1, Methyl Methanesulfonate, Plant Extracts,

Estradiol, Sodium Selenite, chloropicrin, and arsenic trioxide.

According to literature evidence, both Estradiol and Sodium Selenite

have been found to play significant beneficial roles in both CP and

T2D, as supported by clinical and laboratory data,48,49 which

indicating that they may serve as potential interventional drugs

for CP and T2D.

In conclusion, this study proposes the identification of crosstalk

hub genes and pathological signatures to investigate the potential

connection between CP and T2D in terms of gene targets, regulatory

networks, signaling pathways, and chemical compounds, respectively.

Among the shared hub genes, EEF2, DLD, RAB5A, and SLC30A9 were

confirmed to have the highest diagnostic efficiency in CP and T2D

datasets, which might serve as biomarkers for these diseases, offering

new perspectives on accurate diagnosis and treatment for CP and

T2D. Nevertheless, some limitations in this study must be acknowl-

edged. First, as an open online resource, the data information in the

GEO database has certain limitations, which may lead to biases in our

subsequent bioinformatics analysis. Second, this study relied on

F IGURE 6 Identification of TFs binding with the hub genes
ranked by degree values. The red circles represent the shared hub
genes, the blue circles represent the top 16 key TFs that are highly
correlated with the hub genes, and the green circles represent TFs
with low correlation with the hub genes. TF, transcription factor.
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F IGURE 7 Identification of miRNAs binding with the hub genes ranked by degree values. (A) The Venn network diagram demonstrates the
overlapping miRNAs between miRTarBase and TarBase databases. (B) The topological network showing the relevance between the hub genes
and top 16 crucial miRNAs. The red circles represent the shared hub genes, while the orange circles represent the top 16 crucial miRNAs that are
highly correlated with the hub genes. miRNAs, microRNA.
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F IGURE 8 Recognition of Protein‐chemical interactions based on CTD database. The red circles represent the shared hub genes, the deep
green circles at the center represent the potential chemical compounds that are highly correlated with the hub genes, and the light green circles
around represent compounds with low correlation with the hub genes. CTD, comparative toxicogenomics database.

F IGURE 9 Determination of Gene‐disease associations using DisGeNET database. The red circles represent the shared hub genes, the deep
purple circles at the center represent the possible diseases that are highly correlated with the hub genes, and the light purple circles around
represent diseases with low correlation with the hub genes.

different patient cohorts, and sample related information including

patient age, sex, and comorbidities were not considered, which may

have an impact on our results. Third, our findings need to be further

confirmed through clinical and laboratory experiments, and a model of

CP and T2D co‐existing needs to be developed to better understand

the potential co‐pathogenesis and explore novel intervention targets

for CP and T2D.
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