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Abstract: Oxygen deprivation or hypoxia characterizes a number of serious pathological conditions
and elicits a number of adaptive changes that are mainly mediated at the transcriptional level by the
family of hypoxia-inducible factors (HIFs). The HIF target gene repertoire includes genes responsible
for the regulation of metabolism, oxygen delivery and cell survival. Although the involvement of
HIFs in the regulation of carbohydrate metabolism and the switch to anaerobic glycolysis under
hypoxia is well established, their role in the control of lipid anabolism and catabolism remains still
relatively obscure. Recent evidence indicates that many aspects of lipid metabolism are modified
during hypoxia or in tumor cells in a HIF-dependent manner, contributing significantly to the
pathogenesis and/or progression of cancer and metabolic disorders. However, direct transcriptional
regulation by HIFs has been only demonstrated in relatively few cases, leaving open the exact and
isoform-specific mechanisms that underlie HIF-dependency. This review summarizes the evidence
for both direct and indirect roles of HIFs in the regulation of genes involved in lipid metabolism
as well as the involvement of HIFs in various diseases as demonstrated by studies with transgenic
animal models.
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1. Oxygen Sensing and Hypoxia-Inducible Factor (HIF) Regulation

Insufficient oxygen availability in cells and tissues (hypoxia), a consequence of an imbalance
between oxygen supply and metabolic demand, is encountered both physiologically (i.e., during
intense exercise or embryogenesis) and in pathological conditions such as cancer, ischemia and
metabolism related diseases. Response to hypoxia comprises reduction of oxygen consumption,
via metabolic adjustments, and intensification of mechanisms responsible for oxygen transport to
cells such as upregulation of erythropoiesis and angiogenesis. These adaptations require extensive
reprogramming of gene expression, coordination of which is achieved by the hypoxia-inducible factors
(HIFs) [1].

HIFs are heterodimeric transcription factors that consist of an oxygen regulated alpha subunit
and a constitutively expressed beta subunit, also known as ARNT (aryl hydrocarbon receptor nuclear
translocator), both members of the basic helix-loop-helix (bHLH) proteins of the PER-ARNT-SIM (PAS)
DNA binding protein family. The active heterodimer binds to hypoxia-response elements (HREs) on
the promoter or enhancer regions of target genes, causing their transcriptional activation [2]. Three
HIF-α isoforms have been identified to date. HIF-1α is expressed ubiquitously in cells and tissues,
while, HIF-2α (termed also EPAS1) is tissue specific [3,4]. The third and least studied HIF-α isoform,
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HIF-3α, exists in multiple splice variants most of which act as dominant-negative regulators of HIF
activity [5,6].

Under physiological oxygen conditions, HIF-α isoforms are constantly produced and destroyed
in a process that involves hydroxylation at two proline residues within a conserved HIF-α region
termed oxygen dependent degradation domain (ODDD). This modification is catalyzed by three
prolyl-hydroxylases (PHDs), enzymes that act as “oxygen sensors” in the cell, as their catalytic
activity requires oxygen as a substrate. Following hydroxylation, HIF-α is recognized by the von
Hippel–Lindau (VHL) tumor suppressor protein, an E3 ubiquitin ligase complex member, resulting
to HIF-1α ubiquitination, targeting to the proteasome and degradation [7] (Figure 1). Another
oxygen-sensitive enzyme, the asparaginyl hydroxylase FIH (factor-inhibiting HIF) modifies HIF-α
subunits at the C-terminal transactivation domain and disrupts the interaction between HIF-α and the
transcriptional co-activators p300/CBP thereby impairing residual HIF transcriptional activity [8].
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targeted to the proteasome for degradation. In addition, HIF-α modification by FIH (factor-inhibiting 
HIF), an oxygen-sensitive asparaginyl hydroxylase, disrupts interaction with the transcriptional 
co-activators p300/CBP and impairs residual HIF transcriptional activity. (B) When oxygen becomes 
limited (Hypoxia), PHDs and FIH are inactive. The non-hydroxylated HIF-α is stable and dimerizes 
with HIF-1β. The HIF heterodimer interacts with p300/CBP and activates the transcription of HIF 
target genes. 

In addition to oxygen tension, HIF-1 expression and activity are also controlled by 
oxygen-independent mechanisms regulating gene transcription, mRNA translation, protein–protein 
interactions and post-translational modification of the HIF-1α subunit. Transcriptional upregulation 
of the HIF-1α gene (HIF1A) in response to inflammation is achieved in a NF-κB-dependent manner 
[9–11]. Transcription of HIF1A also involves STAT3 (signal transducer and activator of transcription 
3) [12] and Sp1 [13]. Moreover, activation of the PI-3K/AKT pathway by growth factors leads to 
increased HIF-1α mRNA and protein synthesis (reviewed in [2]). HIF-1α is also regulated through 
its association with other proteins. To mention only few examples, HIF-1α interaction with the 
molecular chaperone HSP90 results in its stabilization, whereas binding to RACK1, has the opposite 
effect [14–16]. Post-translationally, in addition to hydroxylation, HIF-1α is subject to SUMOylation 
[17–20], acetylation [21,22], deacetylation [23] and S-nitrosylation [24], although the impact of these 
modifications on HIF-1α stability and/or activity has not yet been adequately clarified. In contrast, 
direct phosphorylation by several kinases is important for HIF-1α regulation and is extensively 
studied (reviewed in [25]) (Figure 2). 

Figure 1. Regulation of hypoxia-inducible factor (HIF) by oxygen. (A) Under physiological oxygen
concentration (Normoxia), HIF-α isoforms are modified by oxygen-dependent prolyl-hydroxylases
(PHDs), recognized by the von Hippel–Lindau (VHL) tumor suppressor protein, ubiquitinated and
targeted to the proteasome for degradation. In addition, HIF-α modification by FIH (factor-inhibiting
HIF), an oxygen-sensitive asparaginyl hydroxylase, disrupts interaction with the transcriptional
co-activators p300/CBP and impairs residual HIF transcriptional activity. (B) When oxygen becomes
limited (Hypoxia), PHDs and FIH are inactive. The non-hydroxylated HIF-α is stable and dimerizes
with HIF-1β. The HIF heterodimer interacts with p300/CBP and activates the transcription of HIF
target genes.

In addition to oxygen tension, HIF-1 expression and activity are also controlled by oxygen-independent
mechanisms regulating gene transcription, mRNA translation, protein–protein interactions and
post-translational modification of the HIF-1α subunit. Transcriptional upregulation of the HIF-1α
gene (HIF1A) in response to inflammation is achieved in a NF-κB-dependent manner [9–11].
Transcription of HIF1A also involves STAT3 (signal transducer and activator of transcription 3) [12] and
Sp1 [13]. Moreover, activation of the PI-3K/AKT pathway by growth factors leads to increased
HIF-1α mRNA and protein synthesis (reviewed in [2]). HIF-1α is also regulated through its
association with other proteins. To mention only few examples, HIF-1α interaction with the
molecular chaperone HSP90 results in its stabilization, whereas binding to RACK1, has the
opposite effect [14–16]. Post-translationally, in addition to hydroxylation, HIF-1α is subject to
SUMOylation [17–20], acetylation [21,22], deacetylation [23] and S-nitrosylation [24], although the
impact of these modifications on HIF-1α stability and/or activity has not yet been adequately clarified.
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In contrast, direct phosphorylation by several kinases is important for HIF-1α regulation and is
extensively studied (reviewed in [25]) (Figure 2).Cells 2019, 7, x FOR PEER REVIEW  3 of 17 
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Figure 2. Positive and negative regulation of HIF-1α by phosphorylation. Direct phosphorylation
by several kinases is important for HIF-1α regulation. Positive regulation: ERK1/2-dependent
phosphorylation inhibits binding of the exportin CRM1 and promotes nuclear accumulation of
HIF-1α, while phosphorylation by ATM, CDK1 or PKA inhibits HIF-1α degradation. Negative
regulation: phosphorylation by casein CK1δ impairs HIF-1α association with ARNT and thus, decreases
HIF-1 transcriptional activity, while phosphorylation by GSK3 or Plk3 results in VHL-independent
degradation of HIF-1α. See text for details and references.

Phosphorylation by GSK3 (glycogen synthase kinase 3) at three residues within the N-terminal
transactivation domain causes degradation of HIF-1α in a VHL-independent manner [26]. A similar
role has also been proposed for Plk3 (Polo-like kinase 3)-mediated phosphorylation of HIF-1α [27]. On
the other hand, direct modifications of HIF-1α by ATM [28], CDK1 [29] or PKA [30] have been shown
that stabilize HIF-1α by inhibiting its degradation. Downstream of its stabilization, transcriptional
activity of HIF-1α also depends of its efficient accumulation inside the nucleus, a process regulated
by ERK1/2-dependent phosphorylation. Translocation of HIF-1α inside the nucleus appears to be
constitutive and is mediated by multiple import receptors; the importin α/β family, which recognize a
nuclear localization signal (NLS) at the C-terminal domain of HIF-1α [31–33], as well as importins 4/7,
which interact with the N-terminal part of HIF-1α [34]. However, CRM1-dependent nuclear export of
HIF-1α depends in its modification by ERK1/2, which phosphorylates HIF-1α at sites adjacent to an
atypical hydrophobic nuclear export signal (NES), thereby preventing CRM1 binding and increasing
the nuclear concentration and activity of HIF-1α [35,36]. Inhibition of ERK-mediated phosphorylation
of HIF-1α tips the balance in favor of nuclear export and cytoplasmic localization of a major pool of
HIF-1α, which is bound by mortalin and targeted to the mitochondrial surface, where it participates to
the formation of an anti-apoptotic complex [37].

Finally, phosphorylation by CK1δ (casein kinase 1δ) within the PAS domain impairs HIF-1α
association with ARNT, hinders the formation of a functional heterodimer and thus, decreases
HIF-1 transcriptional activity [38]. Interestingly, the association between HIF-1α and ARNT can
also be inhibited by interaction of HIF-1α with MgcRacGAP (male germ cell RacGTPase Activating
Protein) in cancer cells [39,40] or after treatment of human bronchial smooth muscle cells with
the proinflammatory factor TNF-α [11]. Much less is known regarding the oxygen-independent
mechanisms and post-translational modifications that regulate HIF-2α. The few examples include
deacetylation by Sirt1, which enhances HIF-2α activity [41] and phosphorylation by CK1δ, which,
in contrast to HIF-1α, promotes HIF-2α nuclear activity [42]. The crosstalk between the signaling
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pathways, that result to modification and regulation of the HIF-α isoforms, with those controlling
metabolic homeostasis may ultimately define the exact role of HIFs in the metabolic adaptation of cells
to hypoxia.

2. The Involvement of HIFs in the Regulation of Lipid Metabolism

When oxygen is sparse, cells adapt to hypoxia by reprogramming the expression of a number of
genes involved in energy metabolism. The role of HIF-1 in the activation of genes encoding for proteins
involved in carbohydrate metabolism has long been established (reviewed in [43,44]). HIF-1 not only
promotes glucose uptake by activating the transcription of transporters GLUT1 and GLUT3, but also
enhances anaerobic energy production, as it upregulates most of the glycolytic enzymes (including
HK1/2, ENO1, PGK1 and PKM2) and proteins that facilitate the synthesis and excretion of lactate
(LDH and MCT4). Moreover, in order to reduce mitochondrial function for decreasing consumption
of oxygen and ROS production, HIF-1 stimulates the expression of pyruvate dehydrogenase kinase
(PDK1) and BNIP3 [45–47]. PDK inhibits the pyruvate dehydrogenase complex and blocks the
conversion of pyruvate, the glycolytic end product, to acetyl-CoA, which normally feeds into TCA
cycle by producing citrate. Therefore, the flow of pyruvate into the mitochondria is decreased, fueling
the production of lactate by LDH in the cytoplasm. On the other hand, BNIP3 triggers mitochondrial
autophagy, further reducing mitochondrial metabolic processes.

Despite the extensive literature on HIF-dependent regulation of carbohydrate metabolism, the
effects of hypoxia and HIFs on lipid metabolism have only recently become the focus of closer
examination (Figure 3). Fatty acids (FAs), provided either by exogenous FA uptake or de novo
synthesis, are used as substrates for oxidation and energy production, membrane synthesis, energy
storage in form of triacylglycerols (TAGs) and production of signaling molecules and, therefore,
are essential for cell survival and proliferation both under normoxia and hypoxia. However, as FA
oxidation takes place inside mitochondria and requires oxygen, FA metabolism has to be modified
under hypoxia in order to serve mainly processes other than energy production. Furthermore, as
conversion of glucose into citrate—the major source of cytoplasmic acetyl-CoA and FA precursor—is
prohibited under hypoxia due to the inhibition of the TCA cycle, alternative sources of FA precursors
have to be exploited. In tumor cells, which usually have to grow in a hypoxic microenvironment, these
hypoxia-mediated changes in lipid metabolism are especially important in order to maintain the high
proliferation rate that characterizes cancer cells.

Uptake of extracellular FA and TAG synthesis are promoted under hypoxia by transcription factor
PPARγ, the gene of which is a directly activated by HIF-1 [48]. Extracellular FA influx and lipogenesis
under hypoxia are also enhanced via HIF-1-mediated induction of the expression of FABP (fatty acid
binding protein) 3 and 7 in cancer cells [49] and FABP4 in primary mouse hepatocytes [50]. In addition,
HIF-1 can promote the endocytosis of lipoproteins, by upregulating the expression of low-density
lipoprotein receptor–related protein (LRP1), the receptor that internalizes LDL in vascular smooth
muscle cells [51], as well as the expression of VLDL receptor (VLDLR) in cardiomyocytes [52].

To also maintain de novo FA synthesis under hypoxia, production of FA precursors is supported in
human renal cell carcinoma (RCC) as well as other cancer cells through HIF-dependent stimulation of
reductive glutamine metabolism [53,54]. This proceeds via conversion of glutamine to α-ketoglutarate
and its subsequent reductive carboxylation that produces citrate, in a reversion of the TCA cycle
reaction catalyzed by IDH (isocitrate dehydrogenase). This may be an indirect result of the
HIF-mediated decrease of intracellular citrate levels (due to upregulation of PDK1) but IDH1 or
2 may also actively contribute to the preservation of citrate levels under hypoxia [55–57]. Moreover,
HIF-1 increases the amount of α-ketoglutarate, which can be used as substrate for citrate synthesis and
FA/lipid production, by inducing the expression of GLS1 (glutaminase 1) [58], as well as, by inducing
the E3 ubiquitin ligase SIAH2, which in turn mediates the proteolysis of the E1 subunit (OGDH2) of
the α-ketoglutarate dehydrogenase complex (αKGDH) [57]. Adequate FA supply is further supported
by Akt- and HIF-1-dependent activation of SREBP-1, which in turn upregulates the expression of
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FASN (fatty acid synthase), an essential lipogenic enzyme, the activity of which is correlated with
cancer progression and hypoxia induced chemoresistance [59].Cells 2019, 7, x FOR PEER REVIEW  5 of 17 
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Figure 3. Reprogramming of lipid metabolism under hypoxia. Hypoxia enhances lipogenesis by
HIF-dependent modulation of proteins involved in fatty acid (FA) uptake, synthesis, storage and
usage. Uptake of extracellular FA is promoted under hypoxia by activation of the transcription factor
PPARγ and the increased expression of FABPs 3, 4 and 7. Endocytosis of lipoproteins is enhanced
by the upregulation of LRP1 and VLDLR, while ceramide levels are increased by upregulation of
NEU3. To maintain de novo FA synthesis under hypoxia, preservation of citrate levels and synthesis of
acetyl-CoA is achieved by stimulation of reductive glutamine metabolism, mediated, at least in part,
by induction of GLS1 and proteolysis of the OGDH2 subunit of the α-ketoglutarate dehydrogenase
complex (αKGDH) by SIAH2. Adequate FA supply is further supported by activation of SREBP-1,
which in turn upregulates the expression of FASN. To avoid lipotoxicity and/or replete lipid stores, FAs
are converted to neutral triacylglycerols (TAGs), which are stored in lipid droplets (LDs). Formation
of LDs under hypoxia is favored by the upregulation of the TAG biosynthesis pathway enzymes
AGPAT2 and lipin-1, and the LD membrane proteins PLIN2 and HIG2. Finally, lipid accumulation
under hypoxia is additionally supported by the inhibition of β-oxidation through downregulation of
PGC-1α, CPT1A, PGC-1β, MCAD and LCAD. The proteins upregulated or activated under hypoxia
are shown in red and the proteins downregulated or inhibited under hypoxia are shown in green. See
text for details and references.

As FA catabolism is impaired under hypoxia, an excess of intracellularly accumulated free
FAs could cause lipotoxicity. To avoid this, cells can convert FAs to neutral TAGs, that are stored
in lipid droplets (LDs) and can serve as the main form of energy depots [60,61]. Two enzymes
of the TAG biosynthesis pathway, AGPAT2 (acylglycerol-3-phosphate acyltransferase 2) [62] and
lipin-1 [63], have been shown to mediate hypoxia-induced LD accumulation. AGPAT2, or else LPAATβ
(lysophosphatidic acid acyltransferase β), catalyzes the conversion of lysophosphatidic acid (LPA)
to phosphatidic acid (PA). Interestingly AGPAT2, which is a direct target of HIF-1 [62], is one of
the genes mutated in patients with congenital generalized lipodystrophy, and is upregulated in
biopsies from cancer patients. Likewise, HIF-1 also directly upregulates the expression of lipin-1, a
phosphatidic acid (PA) phosphatase that catalyzes the conversion of PA to diacylglycerol (DAG) in
TAG synthesis [63]. AGPAT2 and lipin-1 upregulation is necessary for LD accumulation and increased
viability and chemoresistance under hypoxia [62–64]. The importance of the hypoxic upregulation of
AGPAT2 and lipin-1 may extend beyond the formation of lipid droplets. The products of their catalytic
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activity LPA and PA can either be used as precursors of TAGs or as precursors for the synthesis of
phospholipids, which are important blocks for new membrane formation [61]. Formation of lipid
droplets under hypoxia is further favored by the hypoxic induction of essential constituents of LD
membranes. Stimulation of the LD coat protein adipophilin/perilipin 2 (PLIN2) expression by HIF-2
promotes RCC lipid storage, ER homeostasis and viability [65], and the induction of HIG2/HILPDA
(Hypoxia-inducible protein 2/hypoxia-inducible lipid droplet associated) by HIF-1 increases lipid
accumulation in both cancer and normal cells [66,67]. Furthermore, HIG2 upregulation under hypoxia
inhibits the adipose triglyceride lipase (ATGL) and impairs intracellular lipolysis in various cancer
cells [68].

Finally, lipid accumulation under hypoxia is additionally supported by the inhibition of enzymes
involved in fatty acid degradation. Under low oxygen concentration, fatty acid β-oxidation is
actively reduced by HIF-1- and HIF-2-dependent downregulation of the transcriptional coactivator
of β-oxidation enzyme PGC-1α (proliferator-activated receptor-γ coactivator-1α) [69] and carnitine
palmitoyltransferase 1A (CPT1A), the limiting component of mitochondrial fatty acid transport, in
both hepatoma and RCC cells [69,70] as well as by the HIF-1-mediated decreased expression of MCAD
and LCAD (medium- and long-chain acyl-CoA dehydrogenases) in hepatoma cells, which depends on
the hypoxic inhibition of PGC-1β, a transcription factor involved in mitochondrial regulation [71]. As
HIFs have not been shown to possess intrinsic transcription repressor activity, downregulation of these
enzymes may be mediated by the action of HIF-1 target genes that remain, in most cases, to be identified.
In summary, hypoxia overall causes enhanced lipogenesis by HIF-dependent induction of genes
involved in FA uptake, synthesis and storage (Table 1). Importantly, as discussed below, induction
of these genes and subsequent lipid accumulation are indispensable for cancer cell proliferation
under hypoxia.

3. HIF-Dependent Regulation of Lipid Metabolism and Cancer Cell Proliferation

Hypoxia develops in tumors as a consequence of the high proliferation rate of cancer cells and
aberrant angiogenesis. Activation of the hypoxia response pathway helps cancer cells to adapt and
survive by affecting multiple metabolic pathways [72]. Enhanced esterification of free FAs to neutral
TAGs and storage in expanded LDs, protects cancer cells from lipotoxicity [73]. In addition, segregation
of free FAs in LDs protects solid tumor cancer cells that are exposed to intermittent hypoxia from the
lethal formation of free radicals during cycles of hypoxia and reoxygenation [49,65,74,75].

Besides their role in sequestering potential harmful FAs, LDs serve as energy stores and reservoirs
of building blocks for the production of the essential sterol esters and phospholipids required in
proliferating cells for the biogenesis of new membranes (reviewed in [76]). A connection between
HIF-induced TG synthesis and cell proliferation is supported by metabolic profiling analysis of
cancer cells kept under hypoxia, which has shown that the concentration of TAGs and derivative
phospholipids PC and PE is substantially increased in a HIF-1α-dependent manner [77]. It has to
be pointed out that, in many cancer types, silencing of HIFs or interfering with the expression of
its target genes required for lipid accumulation, results in reduction of proliferation potential and
chemoresistance under hypoxia [49,55,57,59,62,63,65,68,70,78,79]. Moreover, the overexpression of
HIF-regulated genes involved in lipid metabolism has been correlated with malignant subtypes of
human cancers or poor patient prognosis [70,79]. Intervening with HIF-dependent reprogramming of
lipid metabolism can indeed suppress effectively cancer cell proliferation. Systemic administration of
glutaminase inhibitors suppressed the growth of RCC cells as xenografts in mice [54], while recent
studies have shown that modulation of HIF-1α phosphorylation can regulate LD accumulation and
cancer cell growth, specifically under hypoxia [64,80]. Modification of HIF-1α by CK1δ reduced
induction of lipin-1 and restricted lipid droplet formation and cell proliferation under hypoxia in a
HIF-1 and lipin-1-dependent manner [64]. In addition, inhibition of ERK-mediated phosphorylation of
HIF-1α by transduced recombinant HIF-1α-derived peptides abolished induction of lipin-1 expression,
reduced lipid droplet accumulation and triggered apoptosis in cancer cells grown under hypoxia [80].



Cells 2019, 8, 214 7 of 16

4. HIF-Dependent Regulation of Lipid Metabolism in Obesity and Metabolic Syndrome

HIF-dependent regulation of lipid metabolism in response to hypoxia, or other stimuli including
diet, has been implicated in disorders affecting organs involved in lipid processing and storage, such
as the adipose tissue and the liver. In obesity, enlargement of adipocytes beyond the oxygen diffusion
limit and their distancing from the vasculature, leads to the development of local hypoxia (reviewed
in [81]). Accordingly, visceral adipose tissue from obese human subjects is characterized by increased
expression of HIF-1α [82]. Hypoxia has been shown to increase liver lipid contents via induction
of HIFs in mice [69] and hepatocellular carcinoma cells [63], while a theoretical model of hepatic
lipid accumulation, suggests that hypoxia is contributing to lipid accumulation and steatosis [83].
In addition, several studies have shown that liver HIF stabilization after hepatocyte-specific VHL
deletion increased liver lipid accumulation [45,84,85]. In one case, liver specific overexpression of
constitutively active forms of both HIF-1α and HIF-2α was required to phenocopy the VHL deletion
suggesting that both isoforms are involved in the accumulation of lipids in the liver [45]. On the other
hand, experiments in which HIF-1α, HIF-2α or both isoforms were deleted concomitantly with VHL
indicated that liver lipid accumulation was mediated predominantly via activation of HIF-2α [84,85].
A number of animal studies based on the deletion or overexpression of HIFs or other components of
the hypoxia-response network, suggest that HIF activation can be either beneficial or detrimental in
terms of metabolic disease. As this subject has recently been reviewed [86], only a brief overview will
be presented.

4.1. HIFs as Suppressors of Obesity

A number of studies have shown that obesity is increased by inhibition of HIFs and decreased
by HIF activation. In an in vitro adipocyte differentiation study, hypoxia inhibited adipogenesis via
HIF-1-dependent upregulation of DEC1/Stra13 and subsequent repression of PPARγ2 expression [87].
Accordingly, transgenic mice overexpressing an adipose tissue-selective dominant negative HIF-1α
mutant that decreased HIF-1 activity, developed increased obesity after high-fat diet treatment and
accumulated enlarged adipocyte LDs [88]. Similar phenotypes were also observed after HIF activation
in adipose tissue specific PHD2 knockout (KO) mice [89] or global FIH KO mice [90], which in both
cases protected from high-fat diet-induced obesity. Interestingly, the effects of neuron-specific FIH
knockouts resembled those of the global null mutants, suggesting that the nervous system is implicated
in the FIH-driven regulation of metabolism [90].

4.2. HIFs as Promoters of Obesity

In contrast to the above, there have been studies showing that HIF activation induces obesity.
Adipocyte specific KO of HIF1A [82,91–93], inhibition of HIF-1 by acriflavine [91] or PX-478 [94], or
adipocyte specific ARNT KO [93,95] decreased obesity and insulin resistance in mice fed with high-fat
diet. In agreement, adipose specific ablation of the PHD2 gene caused HIF-1-dependent reduction
of lipolysis and enhanced adiposity in mice [96]. This effect can be correlated with the capacity of
HIF-1 to downregulate FA oxidation in adipose tissue [82]. Resistance of mice with depletion of
adipocyte HIF-1α to insulin has also been linked to the downregulation of adiponectin expression via
HIF-1-mediated regulation of the SOCS3-STAT3 signal transduction pathway [91].

4.3. HIFs and Non-Alcoholic Fatty Liver Disease (NAFLD)

Hypoxia and obesity are also linked to liver diseases, such as non-alcoholic fatty liver disease
(NAFLD), characterized by inflammation, fibrosis and steatosis. Diet, adipokines and stress are
significant contributing factors in NALFD [97]. Although the causality and molecular mechanisms
that underlie NAFLD are not completely understood, the development of hypoxia in the liver is
implicated in the pathogenesis of the disease. Hepatocyte-specific HIF-1 activation has been shown to
promote alcohol-induced hepatomegaly and hepatic lipid accumulation, while hepatocyte-specific
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deletion of HIF-1α protected mice from alcohol- and lipopolysaccharide (LPS)-induced liver damage,
hepatomegaly and lipid accumulation [98]. In a contrasting study, hepatocyte-specific HIF-1α-null
mice exposed to ethanol-containing liquid diet exhibited enhanced accumulation of lipids in the liver,
via inactivation of the HIF-1-regulated transcriptional repressor DEC1 [99]. Similarly, HIF-1α liver KO
enhanced lipid accumulation in choline deprivation-induced NAFLD [100]. Interestingly in this case,
liver lipid accumulation was inhibited by overexpression of lipin-1, the direct target of HIF-1 mediating
TAG biosynthesis. This was attributed to a non-catalytic nuclear function of lipin-1 and regulation
of the PPARα target genes controlling peroxisomal fatty acid oxidation [100]. Finally, it appears that
extrahepatic expression of HIFs may also affect liver lipid metabolism. A recent study has shown that
mice with intestine-specific disruption of HIF-2α had substantially lower high-fat-diet-induced hepatic
steatosis and obesity compared to control animals [101]. This effect was also reproduced when mice
were treated with PT2385, a HIF-2α-specific inhibitor. Subsequent analysis suggested that hepatic
steatosis developed as a result of decreased ceramide production in the intestine, a process involving a
direct gene target of HIF-2, Neu3 (neuraminidase 3) [101].

In conclusion, the animal studies that have investigated the involvement of HIFs in obesity and
other metabolic disorders are often conflicting and do not clarify their exact role in the dysregulation of
metabolism that contributes to the onset of these disorders. These discrepancies may reflect differences
in the genetic background, age and diet of the mice used in these studies or the level of inhibition of
HIF activity achieved with the different genetic or pharmaceutical approaches. In addition, they may
also result from the complexity of systemic metabolic regulation in combination with the multifaceted
roles of HIFs in cellular functions that extend further than lipid metabolism.

Table 1. Representative HIF direct or indirect target genes that mediate reprogramming of lipid
metabolism under hypoxia.

Functional Category/Protein Name HIF Isoform & Effect Outcome & Experimental Evidence Ref.

FA & Lipoprotein Uptake

PPARγ HIF-1 Positive
Increased expression

HIF-1 binds to the promoter of PPARγ and activates
its transcription

[48]

FABP3 HIF-1 Positive
Increased expression

HIF-1α depletion inhibits the induction of FABP3
under hypoxia

[49]

FABP4 HIF-1 Positive
Increased expression

HIF-1 binds to the promoter of FABP4 and activates
its transcription

[50]

FABP7 HIF-1 Positive
Increased expression

HIF-1α depletion inhibits the induction of FABP7
under hypoxia

[49]

LRP1 HIF-1 Positive
Increased expression

HIF-1α binds to the LRP1 promoter and activates its
transcription

[51]

VDLR HIF-1 Positive
Increased expression

HIF-1α depletion inhibits activation of VDLR
promoter under hypoxia

[52]

Reductive Carboxylation of Glutamine

GLS1 HIF-1 Positive
Increased expression

HIF-1α depletion inhibits the induction of GLS1
under hypoxia

[58]

OGDH2 HIF-1 Negative
Increased proteolysis

SIAH2 (a HIF-1 target) mediates proteolysis of
OGDH2

[57]

Ceramide Salvage

NEU3 HIF-2 Positive
Increased expression

HIF-2α binds to the NEU3 promoter and activates its
transcription

[101]

FA Synthesis

SREBP-1 HIF-1 Positive
Up-regulation

Inhibition of HIF-1 impairs phospho-SREBP-1
increase under hypoxia

[59,69]

FASN HIF-1 Positive

Increased expression
Inhibition of HIF-1 impairs the induction of FASN

under hypoxia Increased binding of SREBP-1 to the
FASN promoter under hypoxia

[59]
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Table 1. Cont.

Functional Category/Protein Name HIF Isoform & Effect Outcome & Experimental Evidence Ref.

TG Synthesis

AGPAT2 HIF-1 Positive
Increased expression

HIF-1 binds to the promoter of AGPAT2 and
activates its transcription

[62]

Lipin-1 HIF-1 Positive
Increased expression

HIF-1 binds to the promoter of LPIN1 and activates
its transcription

[63]

LD Accumulation

PLIN2 HIF-2 Positive
Increased expression

HIF-2α depletion inhibits the induction of PLIN2
under hypoxia

[65]

HIG2 HIF-1 Positive
Increased expression

HIF-1 binds to the promoter of HIG2 and activates its
transcription

[66]

β-Oxidation

PGC-1α HIF-1 & HIF-2 Negative
Reduced expression

HIF-1α or HIF-2α depletion inhibits reduction of
PGC-1α expression under hypoxia

[69]

CPT1A HIF-1 & HIF-2 Negative
Reduced expression

HIF-1α or HIF-2α depletion inhibit reduction of
CPT1A expression under hypoxia

[69,70]

MCAD HIF-1 Negative
Reduced expression

HIF-1α depletion inhibits reduction of MCAD
expression under hypoxia

[71]

LCAD HIF-1 Negative
Reduced expression

HIF-1α depletion inhibits reduction of LCAD
expression under hypoxia

[71]

PGC-1β HIF-1 Negative
Reduced expression

HIF-1α depletion inhibits reduction of PGC-1β
expression under hypoxia

[71]

5. HIF-Dependent Regulation of Lipid Metabolism in Cardiovascular Disease

Deregulation of the adipose tissue function and ectopic lipid accumulation is a primary factor for
the development of cardiovascular disease. A number of studies indicate that many of the HIF-target
genes involved in lipid metabolism can contribute to cardiovascular pathogenesis. Upregulation of
LRP1 by HIF-1 contributes to the deposition of lipids in atherosclerotic plaques in human vascular
smooth muscle cells, while vascular cell LRP1 and HIF-1α co-localize in immunohistochemical samples
of human advanced atherosclerotic plaques [51]. Another HIF-1 target gene, HIG2/Hilpda, stimulates
lesion formation and development of atherosclerosis, as the expression of various atherosclerotic
pathogenic markers was decreased by conditional Hilpda KO in macrophages of ApoE-/- mice [67].
This is in line with older in vitro studies showing hypoxia-dependent formation of cytosolic lipid LDs
in macrophages [102]. Concerning the direct effects of hypoxia on cardiac function, experiments with
ventricular HIF-1α KO mice have shown that HIF-1-induced PPARγ activation contributes to metabolic
reprogramming and development of contractile dysfunction under pathological stress [48]. Similarly,
VHL-null hearts, in which HIFs were activated, developed a number of features associated with human
heart failure, including lipid accumulation, myofibril rarefaction, altered nuclear morphology, myocyte
loss, and fibrosis, resulting in premature death [103]. These pathogenic features were prevented by the
simultaneous cardiac ablation of both VHL and HIF-1α, strongly suggesting the involvement of HIF-1.
Interestingly, deletion of VHL specifically in mice adipocytes also caused the development of lethal
cardiac hypertrophy, which was, however rescued by genetic deletion of HIF-2α but not HIF-1α [104].
In contrast to the harmful effects of VHL deletion, inhibition of PHDs that also leads to HIF activation
has been suggested to play a protective role in cardiovascular disease. In atherosclerotic mice due to
LDLR (low-density lipoprotein receptor) KO, deletion of PHD1 [105] or PHD inhibition [106] resulted
to reduced atherosclerotic plaque development.

On the other hand, genetic deletion of PHD2 in endothelial and hematopoietic mouse cells
induced severe pulmonary vascular remodeling and right ventricular hypertrophy, characteristic
features of clinical pulmonary arterial hypertension [107]. Although the phenotypes caused by PHD
KO cannot be necessarily attributed to HIF activity, since PHDs may also have additional substrates
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or partners [108], pulmonary hypertension has been long known to be linked to HIF activation, since
exposure to chronic hypoxia can indeed cause pulmonary arterial smooth muscle cell proliferation,
migration and hypertrophy leading to pulmonary vascular remodeling and eventually pulmonary
hypertension [109]. Many studies with both human subjects and animal models have implicated HIFs
in the response of the pulmonary vasculature to hypoxia and also revealed the involvement of HIFs
in forms of pulmonary hypertension not directly caused by hypoxia (reviewed in [110]). Pulmonary
vascular remodeling is supported by extensive metabolic reprogramming, affecting both glucose and
lipid metabolism, many aspects of which may be mediated by HIFs [111,112]. The importance of
this reprogramming is illustrated by the fact that deficiency of malonyl-CoA decarboxylase, a key
regulatory enzyme for fatty acid oxidation, in mice can attenuate the vasoconstriction and vascular
remodeling caused by hypoxia [113,114]. Recent metabolomics studies in a murine model of pulmonary
arterial hypertension have indeed shown changes in lung tissue lipid composition compatible with
HIF-dependent metabolic reprogramming [115]. However, whether any of the HIF targets listed
Table 1 is directly involved in pulmonary vascular remodeling remains to be shown.

6. Conclusions

Recent information gathered from investigations in cell lines, animals and patient biopsy samples
signify the importance of hypoxia and HIF activation in the regulation of lipid metabolism, and
their contribution to the development and progression of cancer and other pathological conditions
associated with the accumulation of lipids in various types of cells and organs. A number of HIF
inhibitors are currently being tested, along with conventional therapies, for the treatment of different
types of cancer [116], as cancer cells depend on HIF function, including HIF-mediated stimulation of
lipid synthesis, for survival, proliferation and metastasis. As many studies have also shown that HIF
inactivation by deletion, silencing or chemical inhibition can revert the effects of lipid accumulation in
various mouse models, targeting of HIF function may also represent a valid therapeutic approach in
metabolic diseases. However, as the repertoire of direct HIF targets involved in the complex regulation
of lipid metabolism is far from exhausted, further detailed investigation is required to reveal the exact
steps controlled by HIFs, especially in terms of HIF-α isoform and tissue specificity.
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