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Abstract: In the nervous system, information is conveyed by sequence of action potentials, called
spikes-trains. As MacKay and McCulloch suggested, spike-trains can be represented as bits sequences
coming from Information Sources (IS). Previously, we studied relations between spikes’ Information
Transmission Rates (ITR) and their correlations, and frequencies. Now, I concentrate on the problem
of how spikes fluctuations affect ITR. The IS are typically modeled as stationary stochastic processes,
which I consider here as two-state Markov processes. As a spike-trains’ fluctuation measure, I assume
the standard deviation σ, which measures the average fluctuation of spikes around the average spike
frequency. I found that the character of ITR and signal fluctuations relation strongly depends on the
parameter s being a sum of transitions probabilities from a no spike state to spike state. The estimate
of the Information Transmission Rate was found by expressions depending on the values of signal
fluctuations and parameter s. It turned out that for smaller s < 1, the quotient ITR

σ has a maximum
and can tend to zero depending on transition probabilities, while for 1 < s, the ITR

σ is separated
from 0. Additionally, it was also shown that ITR quotient by variance behaves in a completely
different way. Similar behavior was observed when classical Shannon entropy terms in the Markov
entropy formula are replaced by their approximation with polynomials. My results suggest that in
a noisier environment (1 < s), to get appropriate reliability and efficiency of transmission, IS with
higher tendency of transition from the no spike to spike state should be applied. Such selection of
appropriate parameters plays an important role in designing learning mechanisms to obtain networks
with higher performance.

Keywords: information source; information transmission rate; fluctuations; Shannon entropy; spike-
trains; standard deviation

1. Introduction

Information transmission processes in natural environments are typically affected by
signal fluctuations due to the presence of noise-generating factors [1]. It is particularly
visible in biological systems, in particular during signal processing in the brain [2–6]. The
physical information carriers in the brain are small electrical currents [7]. Specifically, the
information is carried by sequences of action potentials also called spikes-trains. Assuming
some time resolution, MacKay and McCulloch proposed a natural encoding method that
associates to each spike-train a binary sequence [8]. Thus, the information is represented by
a sequence of bits which, from a mathematical point of view, can be treated as a trajectory
of some stochastic process [9,10].

In 1948, C. Shannon developed his famous Communication Theory where he intro-
duced the concept of information and its quantitative measure [11]. The occurrences of both
inputs transmitted through a communications channel and output symbols are described
by sequences of random variables that define already stochastic processes and form some
Information Sources [9,12]. Following this line, to characterize the amount of information
transmitted per symbol the Information Transmission Rate (ITR) is applied.

Spike-trains Information Sources are often modeled as Poisson point processes [13,14].
Poisson point processes provide a good approximation of the experimental data, especially
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when the refractory time scale or, more generally, any memory time scale in the spike
generation mechanism is short compared to the time scales such as mean interspike
interval. The use of Poisson processes to model spike trains has been proposed from the
earliest descriptions [15,16] due to the proportional relationship between the mean and
variance of multiple neuronal responses. The Poisson property has been observed for many
experimental data [17]. On the other hand, it is known that such processes exhibit Markov
properties [18,19]. This is because in these processes when describing spikes arrival times,
current time, and the time from the last spike are primarily taken into account [20]. There
is a number of papers devoted to the modeling of spike-trains by different types of Markov
processes (Markov Interval Models, Hidden Markov processes, Poisson Point processes)
successfully applied to a variety of experimental data [20–22].

Description of complex systems dynamics, from financial markets [23] to the neu-
ral networks of living beings [24,25], requires appropriate mathematical tools. Among
them, there are stochastic processes, Information Theory and statistical methods and re-
cently, fuzzy numbers [26,27]. In recent years, to limit or even to exploit the effect of
noise and fluctuations on information transmission efficiency extensive effort has been
conducted, specifically to design spiking neuronal networks (SNNs) with appropriate
learning mechanisms [28–32]. Moreover, different models of a neuron have been used to
address noise resistance [33]. Traditionally, the complex nature of systems is characterized,
mostly due to the presence of noise, by using fluctuations, variations, or other statistical
tools [18,19,34–36]. The natural measure of fluctuations should, in general, reflect oscilla-
tions around the mean average value of the signal. Therefore, in most systems in physics,
economics, fluid mechanics, fluctuations are most often quantifyied using the Standard
Deviation [37–39].

In this paper, I analyze the relationship between the Information Transmission Rate of
signals coming from a time-discrete two-states Markov Information Source and these signal
fluctuations. As a spike-trains’ fluctuation measure, I consider the Standard Deviation of
encoded spikes. Moreover, to gain a better insight, I have also analyzed the case when the
ITR is referred to the signals Variance V instead of the Standard Deviation σ.

In the analysis of neuronal coding, specifically when studying neuronal signals, find-
ing relationships between these signals’ main characteristics is of great importance [10].
Addressing this issue in our previous papers, I successively analyze the relations:

1. between signal Information Transmission Rates (also Mutual Information) and signal
correlations [40]. I show that neural binary coding cannot be captured by straightfor-
ward correlations among input and output signals.

2. between signals information transmission rates and signal firing rates (spikes’ fre-
quencies) [41]. By examining this dependence, I have found the conditions in which
temporal coding rather than rate coding is used. It turned out that this possibility
depends on the parameter characterizing the transition from state to state.

3. between information transmission rates of signals (which are (auto)correlated) coming
from Markov information sources and information transmission rates of signals
coming from corresponding (to this Markov processes) Bernoulli processes. Here,
“corresponding” means limiting the Bernoulli process with stationary distributions
of these Markov processes [42]. I have shown in the case of correlated signals that
the loss of information is relatively small, and thus temporal codes, which are more
energetically efficient, can replace rate codes effectively. These results were confirmed
by experiments.

In this paper, I consider the next important issue, namely I study the relation between
Information Transmission Rates of signals and fluctuations of these signals [40]. I found
that also the character of the relation between ITR and signal fluctuations strongly depends
on the parameter s. It turned out that for small s (s < 1), the quotient ITR

σ has a maximum
and tends to zero when the probability of transition from no spike state to spike state never
reaches 0. While for large enough s, the quotient ITR

σ is limited from below. A similar result
appears when the Shannon entropy formula is replaced by appropriate polynomials.
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On the other hand, I found that when I refer the quotient ITR
σ to σ, i.e., when I consider,

in fact, the quotient ITR
V , this quotient behaves in a completely different way. This behavior

is not regular. Specifically, I observed that for 1 < s, there is some range of parameter s for
which ITR

V has a few local extremas, in opposition to the case ITR
σ .

The paper is organized as follows. In Section 2, I briefly recall Shannon Information
Theory concepts (entropy, information, binary Information Sources, Information Trans-
mission Rate), and fluctuation measures (Standard Deviation and Root Mean Square). In
Section 3, I analyzed the quotients ITR

σ and ITR
V . Section 4 contains the discussion and final

conclusions.

2. Theoretical Background and Methods

To introduce the necessary notation, I briefly recall Shannon Information Theory’s
basic concepts [9,11,12], i.e., Information, Entropy, Information Source, and Information
Transmission Rate.

2.1. Shannon’s Entropy and Information Transmission Rate

Let ZL be a set of all words of length L, built of symbols (letters) from some finite
alphabet Z. Each word w ∈ ZL can be treated as an encoded message sent by Information
Source Z, being a stationary stochastic process. If P(w) denotes the probability that the
word w ∈ ZL already occurs, then the information in the Shannon sense carried by this
word is defined as

I(w) := − log2 P(w). (1)

This means that less probable events carry more information. Thus, the average information
of the random variable ZL associated with the words of length L is called the Shannon
block entropy and is given by

H(ZL) := − ∑
w∈ZL

P(w) log2 P(w). (2)

The appropriate measure for estimation of transmission efficiency of an Information Source
Z is the information transmitted on average by a single symbol, i.e., ITR [9,12]

ITR(L)(Z) :=
1
L

H(ZL) (3)

ITR(Z) = lim
L→∞

1
L

H(ZL). (4)

This limit exists if and only if the stochastic process Z is stationary [9].
In the special case of a two-letter alphabet Z = {0, 1} and the length of words L = 1, I

introduce the following notation

H2(p) := H(Z1) = −p log2 p− (1− p) log2(1− p). (5)

where P(1) = p, P(0) = 1− p are associated probabilities. This is, in fact, the formula for
the entropy rate of a Bernoulli source [12]. Index 2 in (5) indicates that I consider logarithm
with base 2, meaning that I consider the information expressed in bits.

2.2. Information Sources

In general, Information Sources are modeled as stationary stochastic processes [9,12].
The information is represented by trajectories of such processes. Here, to study the relation
between Information Transmission Rate (ITR) and trajectories fluctuations, I consider
Information Sources which are modeled as two-states Markov processes. The trajectories
of these processes can be treated as encoded spike-trains [3,10,43]. The commonly accepted
natural encoding procedure leads to binary sequences [10,43]. Spike-trains are, in fact,
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the main objects that carry information [3,7]. I additionally consider among the Markov
processes, as a special case, the Bernoulli processes.

2.2.1. Information Sources—Markov Processes

I consider a time-discrete, two-states Markov process M, which is defined by a set of
conditional probabilities pj|i, which describe the transition from state i to state j, where
i, j = 0, 1, and by the initial probabilities P0(0), P0(1). The Markov transition probability
matrix P can be written as

P :=
[

p0|0 p0|1
p1|0 p1|1

]
=

[
1− p1|0 p0|1

p1|0 1− p0|1

]
. (6)

Each of the columns of the transition probability matrix P has to sum to 1 (i.e., it is a
stochastic matrix [9]).

The time evolution of the states probabilities is governed by the Master Equation [34][
Pn+1(0)
Pn+1(1)

]
=

[
1− p1|0 p0|1

p1|0 1− p0|1

]
·
[

Pn(0)
Pn(1)

]
(7)

where n stands for time, Pn(0), Pn(1) are probabilities of finding states ”0” and ”1” at time
n, respectively. The stationary solution of (7) is given by

[
Peq(0)
Peq(1)

]
=

 p0|1
(p0|1+p1|0)

p1|0
(p0|1+p1|0)

. (8)

It is known [9,12] that for Markov process M, the Information Transmission Rate as defined
by (4) is of the following form

ITRM = Peq(0) · H(p1|0) + Peq(1) · H(p0|1) (9)

In previous papers [40–42], when I studied the relation between ITRs and firing rates, and
when I compared ITR for Markov processes and for corresponding Bernoulli processes, I
introduced a parameter s, which can be interpreted as the tendency of a transition from the
no-spike state (“0”) to the spike state (“1”) and vice versa:

s := p0|1 + p1|0 (10)

It turned out that this parameter plays an essential role in our considerations in this paper
also. Note that s = 2− trP and 0 ≤ s ≤ 2. One can observe that two-states Markov
processes are Bernoulli processes if and only if s = 1.

2.2.2. Information Sources—Bernoulli Process Case

The Bernoulli processes play a special role among the Markov processes. Bernoulli
process is a stochastic stationary process Z= (Zi), i = 1, 2, . . . formed by binary identically
distributed and independent random variables Zi. In the case of the encoded spike-
trains, I assume that the corresponding process (to be more precise, its trajectories) takes
successively the values 1 (when spike has arrived in the bin) or 0 (when spike has not
arrived). I assume that for a given size of time-bin applied (this depends, in turn, on the time
resolution assumed), spike trains are encoded [44] in such a way that 1 is generated with
probability p, and 0 is generated with probability q, where q is equal to 1− p. Following
the definition, the Information Transmission Rate (3) of the Bernoulli process is

ITRB(p, q) = −p log2 p− q log q = H2(p). (11)
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2.2.3. Generalized Entropy Variants

The form of entropy H was derived under assumptions of monotonicity, joint entropy,
continuity properties, and Grouping Axiom. In the classical case of the entropy rate
HM for the Markov process, in formula (11), the terms H(p1|0) and H(p0|1) are clearly
understood in the Shannon sense (2). To ontain a better insight into the asymptotic
behavior of the relations studied in this paper, I additionally consider formula (11) with
H replaced by its Taylor approximation (10 terms). I also studied the interesting case
when instead of H, I used a well known unimodal map U(p) = 4p(1− p) [45] which is,
in fact, close (Figure 1) to H in the supremum norm [46]. This idea is along the research
direction related to generalized concepts of entropy developed, starting from Renyai [47],
by many authors [48–52]. Figure 1 shows the approximation of entropy (11) by polynomials:
unimodal map (black dash line) and 10 first terms in the Taylor series of H (gray dash-dot
line). I also included the square root of the unimodal map (black point line) in this Figure.

Figure 1. Approximation of the Shannon entropy (black solid lines) using the Taylor series expression (gray dash-dot line,
10 first terms), unimodal function (black dash line), and unimodal map root (black point line).

2.3. Fluctuations Measure

It is commonly accepted that for a given random variable X, the fluctuations of values
of this random variable around its average can be characterized by the Standard Deviation
σ [35]

σ := (E(X− EX)2)
1
2 (12)

where symbol E means the average taken over the probability distribution associated with
the values reached by X.

Considering a stochastic process Y = (Xk), k = 1, 2, 3, . . ., where Xk are random
variables each with the same probability distribution as X, the fluctuation of trajectories
of this process can be estimated by the Root-Mean-Square (RMS). For a given trajectory
(xk)

n
k=1, k = 1, . . . , n RMS is defined as the root from the arithmetic mean value of the

squares, i.e.,

RMS(Y) := (
1
n

n

∑
k=1

(xk − xnavr )
2)

1
2 (13)
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where xnavr is the average value, i.e., xnavr =
1
n ∑n

k=1 xk. Note, that from this formula, the
form of σ for Markov processes can be derived when using stationary distribution (8) in
formula (12).

The Standard Deviation σ for any random variable depends, in fact, not only on its
probability distribution, but also on the values taken by this random variable. Here, I am
interested in bits oscillation, i.e., if the spike train occurs or not. Thus, I have limited our
considerations to the values 0 and 1.

To gain a better insight into the relation between ITR and signal/bits fluctuations, I
also included an analysis of the quotient ITR

V . This is interesting due to the specific form
of Variation for the Bernoulli process, which leads to interesting observations when one
considers, for example, the unimodal map to approximate entropy (5). Moreover, when

studying ITR
V I, in fact, refer the quotient ITR

σ to σ since I have simply ( ITR
σ )
σ = ITR

V .

3. Results

In this section, I study the quotients ITR
σ and ITR

V as a function of the transition
probability p1|0 from the state no-spike ”0” to the spike state ”1” for a fixed parameter s (10).
Note, that the probability 0 < p1|0 < 1 and parameter 0 < s < 2 uniquely determined the
transition probability matrix P (6) and consequently, they completely define the Markov
process M, provided that initial probabilities P0(0), P0(1) are chosen. Here, as initial
probabilities, to get a stationary process, I must assume the probabilities of the form (8). To
study the relation of ITR and σ, I decided to consider the quotients of these two quantities,
which seems to be natural and already easy to interpret. This idea was successfully applied
in [40–42], which compared ITR and signal correlations, as well as the frequency of jumps.
I found that the key role is played by the parameter s, the value of which determines the
qualitative and quantitative form of these relations. In fact, ITR and σ depend on s, and
this is the reason why I analyze the quotient for fixed s.

3.1. Information against Fluctuations for Two-States Markov Processes—General Case

I start my considerations from the most general form of the two-states Markov process.
To analyze the quotients ITR

σ and ITR
V , I first express Standard Deviation of Markov process

M in terms of conditional probability p1|0 and parameter s.

3.1.1. Standard Deviation in the Markov Process Case

For a given Markov process M to evaluate its fluctuation, specifically to address its
long time behavior, one considers its corresponding stationary probabilities as defined
by (8). Thus, in the limiting case, the Standard Deviation σ for the Markov process can be
assumed as

σM =
√

Peq(0) · Peq(1). (14)

Fixing parameter s and expressing σM as a function of the conditional probability p1|0, I
came to the following formula:

σM
s (p1|0) =

√
p0|1

s
·

p1|0
s

=

√
(s− p1|0)p1|0

s
. (15)

Note that in the case of Variance [VM
s (p1|0)] = [σM

s (p1|0)]
2, I have a polynomial dependence

on p1|0 (keeping in mind that s is fixed).

3.1.2. Relation between Information Transmission Rate ITR of Markov Process and Its
Standard Deviation

Let us start by establishing the relation between Standard Deviation and ITR for the
Bernoulli process. This means that in our notation, s is equal to 1. Making use of the
classical inequality x− 1 ≥ ln x(for all x > 0) and doing a few simple operations, one can
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come to the inequality 2 · log2 e ≤ ITR2(p1|0)

σ2 . To find the relations between entropy ITRM

and σM in more general cases, one can consider the quotient

QM,s
σ (p1|0) :=

ITRM,s(p1|0)

σM
s (p1|0)

. (16)

Note that QM,s
σ (p1|0) is a symmetric function with respect to to the axe p1|0 = s

2 , i.e.,

QM,s
σ (p1|0) = QM,s

σ (s− p1|0). (17)

For 0 ≤ s ≤ 2, I consider the quotient QM,s
σ (p1|0) in two cases taking into account the range

of p1|0
(A) 0 ≤ s ≤ 1 and this implies 0 ≤ p1|0 ≤ s (18)

(B) 1 < s < 2 and this implies s− 1 ≤ p1|0 ≤ 1. (19)

Substituting (8), (10) and (14) into (16) I obtain

QM,s
σ (p1|0) :=

p0|1
s H(p1|0) +

p1|0
s H(p0|1)√

(s−p1|0)p1|0
s

(20)

and after simple calculations, I have

QM,s
σ (p1|0) =

s−p1|0
s H(p1|0) +

p1|0
s H(s− p1|0)√

s−p1|0
s · p1|0

s

=

√
s− p1|0

p1|0
H(p1|0) +

√
p1|0

s− p1|0
H(s− p1|0)

(21)

One can check that for smaller s ∈ (0, 1), i.e., in case (18), for a given fixed s when p1|0
tends to interval bounds 0 or to s, the quotient QM,s

σ (p1|0) tends to 0, i.e.,

lim
p1|0→0+

QM,s
σ (p1|0) = lim

p1|0→s−
QM,s

σ (p1|0) = 0. (22)

By the form of (20) and symmetry property (17) it is clear that the quotient QM,s
σ (p1|0)

reaches the maximum in the symmetry point p1|0 = s
2 and it is equal to

QM,s
σ (

s
2
) = 2H(

s
2
). (23)

One can check that in the case B), i.e., for s ∈ (1, 2) for a given fixed s when p1|0 tends to

s− 1 or to 1 the quotient QM,s
σ (p1|0) tends to H(s−1)√

(s−1)
, i.e.,

lim
p1|0→(s−1)+

QM,s
σ (p1|0) = lim

p1|0→1−
QM,s

σ (p1|0) =
H(s− 1)√

s− 1
. (24)

Thus, I have for s ∈ (1, 2)

H(s− 1)√
(s− 1)

≤ QM,s
σ (p1|0) ≤ 2H(

s
2
). (25)
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Finally, I obtained an interesting estimation of Information Transmission Rate ITR by the
level of fluctuation σ:

H(s− 1)√
s− 1

σM
s (p1|0) ≤ ITRM,s(p1|0) ≤ 2H(

s
2
)σM

s (p1|0). (26)

The typical runnings of QM,s
σ (p1|0) for some values of the parameter, s are shown in

Figure 2. Column A is devoted to lower values of the jumping parameter 0 ≤ s ≤ 1, while
column B presents the QM,s

σ courses for higher values of the jumping parameter 1 < s < 2.
Observe, that for 1 < s < 2, the curves intersect contrary to the case 0 ≤ s ≤ 1. This is
mostly since the limiting value (24) is not a monotonic function of s, while the maximal
value (23) is already monotonic.

Figure 2. The quotient ITR
σ as a function of the transition probability p1|0 for chosen values of the jumping parameter s:

(A) For parameters 0 ≤ s ≤ 1 due to (16) the range of p1|0 is [0, s] and (B) for 1 < s < 2 according to (17) the range of

p1|0 is s− 1 ≤ p1|0 ≤ 1. The courses of the quotients QH,s
σ (p1|0), QU,s

σ (p1|0), QT,s
σ (p1|0) for Shannon form, unimodal map,

unimodal map root, Taylor series being applied as H in formula (9) are presented.

Note, that for the approximation of entropy H by polynomials, specifically by uni-
modal map U and by Taylor series T, the corresponding quotients QU,s

σ B, QT,s
σ behave

similarly as for the Shannon form of H (see Figure 2).

3.1.3. Relation between Information Transmission Rate ITR of Markov Process and
Its Variation

To find how the Variation of trajectories of Markov Information Source affects the
Information Transmission Rate, one should consider a modified quotient

QM,s
σ (p1|0) =

ITRM(p1|0)

V(p1|0)
=

ITRM(p1|0)

Peq(0) · Peq(1)
. (27)

Substituting (8) and (10) to (27) I obtain

QM,s
V (p1|0) =

p0|1
s H(p1|0) +

p1|0
s H(p0|1)

p0|1
s ·

p1|0
s

= s[
H(p1|0)

p1|0
+

H(s− p1|0)

s− p1|0
]. (28)
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First, observe that as in the standard deviation case, I have a symmetry property around
the value s

2 , i.e.,
QM,s

V (p1|0) = QM,s
V (s− p1|0). (29)

By this symmetry, it is clear that QM,s
V (p1|0) reaches extremum at the point p1|0 = s

2 and it
is equal to 4H( s

2 ).
Observe, that in the case A), i.e., for a given fixed s ∈ (0, 1), for p1|0 tending interval

bound, i.e., to 0 or s− the quotient QM,s
V (p1|0), in opposite to QT,s

σ (p1|0), tends to infinity,
i.e.,

lim
p1|0→0+

QM,s
V (p1|0) = lim

p1|0→s−
QM,s

V (p1|0) = +∞. (30)

Thus, it is clear that QM,s
V (p1|0) reaches a minimum at the point p1|0 = s

2 .
In the case of B), it turned out that the quotient QM,s

V (p1|0) for any fixed s ∈ (1, 2) is
bounded both from below and from above. I have:

lim
p1|0→(s−1)+

QM,s
V (p1|0) = lim

p1|0→1−
QM,s

V (p1|0) = s
H(s− 1)

s− 1
. (31)

Numerical calculations showed that for the parameters s > s0 the point p1|0 = s
2 is a

minimum while for s < s0 at this point, there is a maximum, where the critical parameter
s0 ≈1.33 can be calculated from the equality:

s0
H(s0 − 1)

s0 − 1
= 4H(

s0

2
). (32)

The typical running of the QM,s
V (p1|0) for some values of the parameter, s is shown in

Figure 3. Panel A (left column) is devoted to lower values of the jumping parameter
0 ≤ s ≤ 1, while panel B presents graphs of QM,s

V (p1|0) for higher values of the jumping
parameter 1 < s < 2.

Figure 3. The quotient ITR
V as a function of the initial probability p1|0 for the chosen values of the jumping parameter s:

(A) For parameters 0 ≤ s ≤ 1 due to (16) the range is 0 < p1|0 < s and (B) For parameters 1 < s < 2 due to (16) the range is
s− 1 ≤ p1|0 ≤ 1. Observe that ITR

V has a completely different course to that of the quotient ITR
σ presented in Figure 2.
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It turned out that the approximation of entropy H by polynomials, namely by the
unimodal map and by Taylor series, leads to completely different behavior of QM,s

V (p1|0).
Note, that for the approximation of H in (2) with the unimodal map the quotient QU,s

V (p1|0),
for each s, is a constant and equal to 4s(2− s), while for the approximation by the Taylor
series (10 terms), the quotient QT,s

V (p1|0) preserves a similar course as thay of H of the
Shannon form.

4. Discussion and Conclusions

In this paper, I studied the relation between the Information Transmission Rate carried
out by sequences of bits and the fluctuations of these bits. These sequences originate
from Information Sources which are modeled by Markov processes. During the last
30 years, authors have modeled neuron activity by different variants of Markov processes,
e.g., inhomogeneous Markov Interval Models and Hidden Markov Processes [20–22].
The Poisson Point processes commonly used to model experimental data of neuronal
activity also exhibit the Markov property [18,19]. Our results show that the qualitative
and quantitative character of the relation between the Information Transmission Rate
and fluctuations of signal bits strongly depends on the jumping parameter s, which we
introduced in our previous papers [41,42]. This parameter characterizes the tendency of
the process to transition from state to state. In some sense, it describes the variability of
the signals.

It turned out that, similarly as in our previous papers, when have studied the relation
between Information Transmission Rates, spikes correlations, and frequencies of these
spikes appearance, the critical value of s was equal to 1, which corresponds to the Bernoulli
process. For all small s (s < 1), the quotient ITR

σ could reach 0, while for larger s (s > 1),
this quotient was always separated from 0. Specifically, for 1 < s < 1.7, the ITR will
always be, independent of transition probabilities which form this s, above the level of
fluctuations (i.e., σ < ITR). Thus, this highlights an interesting fact that for large enough s,
the information is never completely lost, independent of the level of fluctuations.

On the other hand, for each 0 < s < 2, the quotient ITR
σ is limited from above by 2

and it is reached for each s, for p1|0 = s
2 Thus, I have that the maximum is reached when

p1|0 = p0|1. This means that, when one compares ITR to σ, the most effective transmission
was for symmetric communication channels. Note, that the capacity C(s) of such channels
is already equal to

C(s) = 1− H(
s
2
). (33)

Additionally, it turned out that ITR
σ for the approximation of Shannon entropy H by

polynomials, specifically by the unimodal map and its Taylor series, behaves similarly.
Observe, that for all s these quotients, independent of the approximation applied, reach
the maximum for p1|0 equal to s

2 and monotonically increase for p1|0 less than s
2 , while

monotonically decrease for p1|0 below s
2 .

For a better insight into the relation between ITR and signal variability, I also referred
ITR to Variance. I observed that the behavior of the ITR

V significantly differs from the
behavior of ITR

σ . For each s < 1, the quotient ITR
V can tend to infinity and it is separated

from 0. For 1 < s < 2, it is limited from above and it never reaches 0 for any s. However, it
behaves in a more complex way than ITR

σ by having even three local extreme points, e.g., it
is visible for s = 1.3 and s = 1.5. On the other hand, approximations of Shannon entropy
H by polynomials such as the unimodal map or by its Taylor series, contrary to the case of
ITR

σ , lead to a significant qualitative difference between the behavior of ITR
V .

To summarize, the results obtained show that for Markov information sources, re-
gardless of the level of fluctuation, the level of Information Transmission Rate does not
reduce to zero, provided that the transition parameter s is sufficiently large. This means
that to obtain more reliable communication, the spike trains should have a higher tendency
of transition from the state no spike to spike state and vice versa. The inequality (26)
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allows for estimatio of the amount of information being transmitted by the level of signal
fluctuations. Signal fluctuations characterize, in fact, the level of noise.

The results are presented in the context of signal processing in the brain, due to the
fact that information transmission in the brain is in this case a natural and fundamental
phenomena. However, our results have, in fact, a general character and can be applied to
any communication system modeled by two-states Markov processes.
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