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Abstract. Drosophila indirect flight muscle (IFM) con- 
tains two different types of tropomyosin: a standard 
284-amino acid muscle tropomyosin, Ifm-TmI, en- 
coded by the TmI gene, and two >400 amino acid tro- 
pomyosins, TnH-33 and TnH-34, encoded by TmlI. 
The two IFM-specific TnH isoforms are unique tro- 
pomyosins with a COOH-terminal extension of ~200 
residues which is hydrophobic and rich in prolines. Pre- 
vious analysis of a hypomorphic Tml mutant, Ifm (3)3, 
demonstrated that Ifm-TmI is necessary for proper myo- 
fibrillar assembly, but no null TmI mutant or TmH mu- 
tant which affects the TnH isoforms have been re- 
ported. In the current report, we show that four flight- 
less mutants (Warmke et al., 1989) are alleles of TmI, 
and characterize a deficiency which deletes both TrnI 
and TmlI. We find that haploidy of TmI causes m y o -  

fibrillar disruptions and flightless behavior, but that 
haploidy of TmH causes neither. Single fiber mechanics 
demonstrates that power output is much lower in the 
Tml haploid line (32% of wild-type) than in the TmH 
haploid line (73% of wild-type). In myofibers nearly 
depleted of Ifm-TmI, net power output is virtually abol- 
ished (<1% of wild-type) despite the presence of an or- 
ganized fibrillar core (~20% of wild-type). The results 
suggest Ifm-TmI (the standard tropomyosin) plays a 
key role in fiber structure, power production, and flight, 
with reduced Ifm-TmI expression producing corre- 
sponding changes of IFM structure and function. In 
contrast, reduced expression of the TnH isoforms has 
an unexpectedly mild effect on IFM structure and func- 
tion. 

T ROPOMYOSIN is an a-helical protein which is associ- 
ated with actin filaments and has a regulatory and 
structural role in muscle and nonmuscle cells. In 

striated muscle, tropomyosin (Tm) 1 acts with troponin 
(Tn) to regulate actomyosin interactions in response to 
changes in Ca 2+ concentration (reviewed in EI-Saleh et al., 
1986; Chalovich, 1993). At low Ca 2+ concentrations ( < 1 0  -7  

M), the Tm-Tn complex prevents the formation of strong, 
force-generating actomyosin cross-bridges, suppressing 
the actin-activated Mg2+-ATPase activity of myosin. This 
suppression is relieved when the Ca 2÷ concentration rises 
to ~10 -5 M. 

Models have been proposed to explain the function of 
tropomyosin. In the steric blocking model (Haselgrove 
and Huxley, 1973; reviewed in Adelstein and Eisenberg, 
1980; E1-Saleh et al., 1986; Chalovich, 1993; Squire, 1994) 
it is proposed that tropomyosin occupies a position on ac- 
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indirect flight muscle; Tin, tropomyosin; Tn, troponin. 

tin that physically blocks myosin crossbridges from bind- 
ing actin in relaxed muscle (low Ca2÷). This inhibition is 
relieved when troponin, responding to a rise in Ca 2+, shifts 
tropomyosin from a blocking to a nonblocking position on 
actin. The steric blocking model of muscle regulation is 
based on evidence from x-ray diffraction patterns and, 
most recently, three-dimensional reconstruction of thin fil- 
ament micrographs (Lehman et al., 1994; Reedy et al., 
1994b). A second model of thin filament regulation, the al- 
losteric or cooperative model, is based primarily on bio- 
chemical and fiber studies and expands the role of tro- 
pomyosin as a simple blocking protein to that of a more 
active participant in actomyosin interactions (reviewed in 
Chalovich, 1993; Lehrer, 1994). In this model, tropomyo- 
sin's role is not only to shift and remove a physical block 
which prevents actomyosin binding but also to facilitate 
the transition of actin from an "inactive" or "off" (nonmy- 
osin binding) to an "active" or "on" (myosin-binding) 
state. Despite work directed towards clarifying these mod- 
els, the precise role of tropomyosin in regulating muscle 
contraction is still not clear. 

A unique tropomyosin, TnH ("heavy" troponin; Bullard 
et al., 1988), is expressed with standard tropomyosin in the 
stretch activated indirect flight muscle (IFM) of certain in- 
sects (Karlik and Fyrberg, 1986; Bullard et al., 1988; 
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Hanke and Storti, 1988; Peckham et al., 1992). In Droso- 
phila, TnH consists of an NH2-terminal domain which is 
homologous to standard muscle tropomyosins joined to a 
COOH-terminal domain which is hydrophobic and rich in 
proline residues (Karlik and Fyrberg, 1986; Hanke and 
Storti, 1988). Although the function of TnH is not known, 
recent evidence suggests the COOH-terminal domain may 
form, or be a part of, an extended link between the thin 
and thick filaments (Bullard et al., 1988; Reedy et al., 
1994a; Tohtong et al., 1995). Reedy et al. (1994a) have 
shown an epitope on the COOH-terminal hydrophobic 
portion of TnH is close to the rear cross-bridge of the rigor 
double chevron in Lethocerus IFM, suggesting an intimate 
TnH-myosin interaction. 

Since Drosophila asynchronous IFM is activated sub- 
maximally by the release of intracellular calcium via inter- 
mittent nervous stimulation, a protein link such as TnH 
connecting thin and thick filaments may be one mecha- 
nism by which the muscle is further activated (see below). 
In isolated, Ca2+-activated IFM, the response to rapid 
stretch consists of a synchronous tension increase, a rapid 
decay of tension, and then a significant rise in tension even 
at constant length. The delayed second rise in tension 
(called "stretch activation") underlies the ability of all stri- 
ated muscles to do oscillatory work. Stretch activation is 
simply a manifestation of cross-bridge cycling (Steiger, 
1977; Thorson and White, 1983; Zhao and Kawai, 1993), 
but the amplitude of stretch-activated tension depends on 
the muscle type and is especially prominent in insect flight 
muscle. 

Several models have been proposed to explain the en- 
hanced amplitude of stretch activated tension in insect 
flight muscle. In one model, stretch increases the number 
of force-generating cross-bridges by increasing the attach- 
ment rate constant and/or decreasing the detachment rate 
constant (Pringle, 1978; Thorson and White, 1983; re- 
viewed in Granzier and Wang, 1993). Granzier and Wang 
(1993) and Peckham et al. (1992) point out that this model 
requires a unique strain or stress sensor, possibly TnH, to 
couple filament strain or stress to elements affecting cross- 
bridge kinetics. Dantzig et al. (Dantzig, J.A., N.J. Carter, 
J.C. Sparrow, D.C.S. White. 1992. FASEB. J. 6:A268) 
showed that mild treatment of Lethocerus IFM with 
calpain, which preferentially digests TnH in myofibrils 
(Bullard et al., 1988), resulted in a reduced amplitude of 
stretch activated tension. However, it is not understood 
how the TnH isoforms might act to translate stretch into 
enhanced cross-bridge binding. It is possible that the large 
proline rich extension of TnH mentioned above may link 
the thin and thick filaments and modulate the position of 
regulatory proteins, such as tropomyosin on the thin fila- 
ment or myosin light chain 2 on the thick filament, in re- 
sponse to stretch (Tohtong et al., 1995). 

The sophisticated genetic, molecular and mechanical 
manipulations possible in Drosophila make the fly a pow- 
erful system for investigating the structural and functional 
role of the tropomyosin isoforms in striated muscle (Fyr- 
berg and Beall, 1990; Peckham et al., 1990; Sparrow et al., 
1991). Drosophila tropomyosins are encoded by two 
closely linked third chromosome genes, TmI and TmII. 
Transcripts from both genes are alternatively spliced to 
produce protein isoforms expressed in different temporal 

and spatial patterns (Basi and Storti, 1984; Basi and Storti, 
1986; Karlik and Fyrberg, 1986; Hanke and Storti, 1988). 
The two 284-amino acid protein isoforms encoded by 
TmI, Scm-TmI and Ifm-TmI, differ in only their COOH- 
terminal 27 amino acids (Basi et al., 1984; Basi and Storti, 
1986). Scm-TmI is expressed in larval, adult head and ab- 
dominal muscles (Mogami et al., 1982; Basi et al., 1984). 
Ifm-TmI is expressed in the IFM and in the jump muscle 
(TDT) (Mogami and Hotta, 1982). TmH encodes two 
IFM-specific TnH isoforms, TnH-33 and TnH-34 (using 
the nomenclature of Cripps and Sparrow, 1992), a cyto- 
plasmic isoform, and a muscle specific isoform (mTmII). 

Ifm(3)3 is the only reported mutation in the Drosophila 
TmI gene (Mogami and Hotta, 1981; Karlik and Fyrberg, 
1985). It is a dominant flightless TmI mutation due to the 
reduction in Ifm-TmI expression (Miller et al., 1993). Poly- 
morphisms in the TmII gene have been identified (Cripps 
and Sparrow, 1992), as have mutations which affect the cy- 
toplasmic isoform (Erdelyi et al., 1995); however, no mu- 
tations which affect muscle function have been identified 
in TmII. Here we show four mutations, TmI cw, TmI J8, 
TmI L2, and TmI s2' previously identified as the dominant 
flightless complementation group 1(3)nc99Eb (Warmke et 
al., 1989), are alleles of the TmI gene, and identify a dele- 
tion, Df(3R)eaS°22/TM3 which uncovers both Tml and 
TmlI. TmI cw and Df(3R)eaS°22/TM3 represent the first 
molecularly defined deletions of the tropomyosin genes in 
Drosophila. 

Here we show that deleting one copy of Tml has more 
deleterious effects than deleting one copy of TmH on 
flight behavior, wing beat frequency, myofibrillar organi- 
zation, and dynamic stiffness and net power output of iso- 
lated single IFM fibers. Although our results indicate that 
the TmH isoforms TnH-33 and -34 are structural proteins 
in the IFM, power output of single fibers from a TmH het- 
erozygote was only slightly decreased compared to wild- 
type. However, in extreme mutants of TmI, IFM severely 
depleted of Ifm-TmI (e.g., TmICl°/Ifm[3]3 transheterozy- 
gotes) produced no net power. These results indicated that 
a reduction in the Ifm-TmI isoform to low levels not only 
disrupts the peripheral structure of IFM myofibrils, but 
also prevents the formation of force-generating cross- 
bridges between myofilaments. 

Materials and Methods 

Fly Stocks and Culture Conditions 

The TmI  cw mutation was isolated by Roger Karess (C.N.R.S., Gif-Sar- 
Yvette, France) in a P-M hybrid dysgenic screen for embryonic recessive 
lethal mutations. The T m l  J~, TmI  m, and Tml  s2 mutations were induced by 
ethylmethane sulfonate (EMS) and isolated in screens for recessive lethal 
mutations of the myosin light chain 2 (Mlc2) gene (Warmke et al., 1989). 
Thus, these mutants initially appeared to be Mlc2 alleles, but did not map 
to the Mlc2 locus. The apparent interaction between T m l  sS, Tm l  L2, T m l  s2 
and the MIc2 locus suggested TmI, and Mlc2 interact; however, we have 
been unable to reproduce this effect. The dominant flightless, homozy- 
gous viable TmI mutant I fm(3)3 (Mogami and Hotta, 1981) has been 
characterized previously (Karlik and Fyrberg, 1985; Tansey et al., 1987; 
Molloy et al., 1992; Miller et al., 1993) and the stocks w;Ifm(3)3 and the 
P[TmI +] transformant line 10-2 (Tansey et al., 1987) were kindly provided 
by R. Storti (University of Illinois, Chicago, IL). The Df(3R)ea 5°22rxt, m wh  
e deletion is an x-ray revertant of a dominant gain-of-function easter mu- 
tant ea 5°22 (Erdelyi and Szabad, 1989). This deletion was kindly provided 
by K.V. Anderson (Memorial Sloan Kettering Cancer Center, New 
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York). Third chromosome balancers used are ln(3LR)TM3, ri pP sep 
su(Hw) 2 Sb bx 34e e, In(3LR)TM6B, Hu e Tb ca (Craymer, 1984), and will 
be referred to as TM3, Sb and TM6B, Tb, respectively. Additional stocks 
and balancers used are described in Lindsley and Zimm (1992). Unless 
otherwise indicated, all fly stocks and crosses were maintained on corn- 
meal-agar-molasses-based media at 22°C. 

Rescue of the Dominant Flightless and Recessive 
Lethal Phenotypes 
The P[TmI +] transformed line 10-2 (Tansey et al., 1987) carries the wild- 
type TmI gene on the X chromosome and was used to test for the rescue 
of the flightless and lethal phenotypes of TmI c1°, TmI iS, Tml L2, Tml s2, 
and Df(3R)eaS°2L The P[Tml +] transgene was introduced into Tm mutant 
heterozygotes (e.g., P[TmI+]; TmI cI° e~/TM3, eSb) and the flies were 
tested for flight rescue and the wing beat frequency measured. Canton-S 
control flies were also tested for flight ability and wing beat frequency. 
For lethal rescue, separate lines were established for TmI cw, TmI ~s, 
TmI L2, TmI se, and Df(3R)ea 5°22 in which all wild-type X chromosomes in 
mutant  heterozygote males and females were replaced with the P[Tml +] 
X chromosome. Crosses between the transformed lines were performed to 
determine if the number of copies of P[TmI +] affected the viability of the 
Tm mutants over the deficiency (e.g., P[TmI+];TmI cw eS/Df(3R)eaS°22). 

Flight Testing and Wing Beat Frequency Analysis 
Flight tests and wing beat analysis were performed as described (Warmke 
et al., 1992). Frequency components of wing beats were extracted by spec- 
tral analysis of light signal fluctuations (Hyatt and Maughan, 1994). 

ldenttfication of the DJ~ 3 R )ea s°22 Breakpoints 
Df(3R)eaS°22/TM3, Sb males and females were mated in small fly cages 
with attached yeast-seeded agar-grape plates. After a 1-h collection at 
22°C, the plates were incubated for 20-24 h at 22°C and embryos were 
randomly selected from the plates and transferred to a 4 × 6 cm nitrocel- 
lulose filter. Each embryo was placed in a small circle that had been drawn 
on the filter by pencil. The embryos were punctured with a plastic pipet 
tip. The filter was processed according to standard bacterial colony hy- 
bridization protocols, except that the DNA was denatured for 15 min. Fil- 
ters were hybridized with overlapping genomic DNA fragments isolated 
in a chromosome walk of the 88F region (Karlik et al., 1984) kindly sup- 
plied by E. Fyrberg (Johns Hopkins University, Baltimore, MD). DNA 
from the phage TML52, TMLA7, TML31, TML16, TM1, TMR16, 
TMR325, and TMR56, were labeled by nick translation with ct-[32p]deoxy- 
cytidine (Amersham Corp., Arlington Heights, IL) to a specific activity of 
5-10 × 107 dpm. Prehybridization and hybridization with 10% dextran 
sulfate were done as described previously (Mullins et al., 1978). Genomic 
DNA isolated from Df(3R)eaS°22/TM3, e Sb Ser, and Canton-S was ana- 
lyzed by genomic Southern analysis according to standard methods 
(Southern, 1975). Canton-S DNA was used as a control because the mwh e 
parental DNA was not available. Genomic DNA was transferred to a ny- 
lon membrane (Zeta-Probe from Bio-Rad Laboratories, Boston, MA or 
Nytran from Schleicher & Sehuell, Keene, NH) by capillary action and 
probed with purified DNA fragments that were radio-labeled by random 
priming (Random Prime Labeling kit; United States Biochemical, Cleve- 
land, OH) with et-[a2p]deoxycytidine. Prehybridizations and hybridiza- 
tions were done at 65°C and high stringency washes were used to remove 
unbound probe. 

Cloning of the TmI cw, TmI Is, TmI u, and TmI sz Alleles 
DNA from Tml cw, Tml ~s, Tml L2, and Tml s2 was analyzed by Southern 
analysis as described above. To clone the Tml alleles, genomic DNA was 
isolated from unhatched Tm mutant embryos, e.g., TmlCW/Df(3R)ea 5°22 
using a standard micromethod procedure. Tm mutant embryos develop to 
the embryo/larval boundary (~24 h at 22°C) but cannot hatch from the 
eggshell and were selected from a cross between Tml c:°, Tml Js, Tml L2, 
and Tml s2 heterozygotes and the deficiency Df(3R)eaS°22/+. Control Can- 
ton-S genomic DNA was prepared using the large scale preparation de- 
scribed previously (Falkenthal et al., 1984). Isolated Canton-S and mutant/ 
ea z°z2 DNA was glass purified (USBioclean, United States Biochemical) 
and Tml sequences were amplified using PCR (Saiki et al., 1985) for 35 
cycles (1 cycle = segment 1: 94°C, 1 min, segment 2: 45°C, 2 min, segment 
3: 72°C, 3 min). The primer sequences used to amplify TmI ~8, Tml L2, and 
Tml s2 sequences were: G C G A A T T C C A G C A T A C T C A T r Y G T A T -  

TATTI 'GG'  and G C G G A T C C T G T C A G G G G C G T A G G A A G T I ' G -  
GATA. Oligonucleotide primers used to amplify Tml cw sequences were: 
GCGAATTC-GCAGACAGACACCTGCCTGTCACAC; and GCG- 
GATCCI 'ACAATAAGGCCTCGATTI 'GCGGAT.  The nucleotides in 
bold are Tml sequences, and the underlined nucleotides are EcoRI and 
BamHI restriction sites. Tml cw amplification followed the same protocol 
as above, except that the enzyme was added after the denaturation tem- 
perature (94°C) had been reached (Mullis, 1991). All PCR amplified frag- 
ments were cloned into BluescriptKS+ (Stratagene Corp., La Jolla, CA) 
and three clones for each mutant were sequenced using the dideoxy termi- 
nation method (Sanger et aL, 1987). 

Electron Microscopy 
Adult IFM from 3-5-d-old flies was prepared for microscopy as described 
in Warmke et al. (1992) except that thoraces were fixed overnight at 4°C 
and post-fixed in 1% osmium tetroxide buffered with 0.1 M sodium phos- 
phate, pH 7.2, for 1 h on ice in the dark. After fixation, IFM fibers were 
gently removed from the thoraces for embedding. 

Protein Isolation and Analysis 
For one-dimensional SDS-PAGE analysis of IFM myofibrillar proteins, 
muscles from half thoraces (12 half thoraces/genotype) were permeabi- 
lized in 50% glycerol buffer (20 mM sodium phosphate, pH 7.0, 1 mM 
NAN3, 1 mM DTT, 2 mM MgCI2, 50% glycerol, 0.5% Triton-X-100) for 
1-2 d at -20°C. IFM fibers were dissected from half thoraces, transferred 
to homogenization buffer (100 mM NaCI, 10 mM sodium phosphate 
buffer, pH 7.0, 2 mM EGTA, 2 mM MgCI2, 0.I mg/ml soybean trypsin in- 
hibitor, 1 mM DTT, 0.1 mM PMSF, 0.5% Triton-X-100), pelleted at 
14,000 rpm, and then resuspended in homogenization buffer (10 ixl/tho- 
rax). Pelleting and resuspension of the IFM were repeated twice, and then 
another three times in homogenization buffer without Triton X-100. The 
muscle pellets were then resuspended in SDS sample buffer, boiled for 5 
min, and loaded on a 6% SDS-PAGE gel. Gels were stained with Coo- 
massie blue (0.1% in 10% methanol, 10% acetic acid) and destained in 
10% methanol, 10% acetic acid. Quantification of proteins was deter- 
mined using a ScanMaker lISP (Microtek) and MacBas v. 2.31 quantita- 
tion software (Fuji Photo and Film, Ltd, and Kohshin Graphic Systems). 

Preparation of Isolated IFM Fibers 
Dorsal longitudinal fibers of the IFM, isolated from 2-5-d-old females 
which had been flight and wing beat tested, were dissected from split tho- 
races that were immersed for at least 1 h at 12°C in relaxing solution 
(~'¢pCa 8, 5 mM MgATP, 15 mM creatine phosphate, 240 U/ml creatine 
phosphokinase [unless otherwise indicated], 1 mM free Mg 2+, 0.11 mM 
CaCI2, 5 mM EGTA, and 20 mM BES, buffer, pH 7.0). Ionic strength was 
adjusted to 175 mM with added K or Na methyl sulfonate containing 50% 
(wt/vol) glycerol and a nonionic detergent, either 0.5% wt/vol Triton 
X-100 or 50 p~g/ml saponin. Both types of detergents solubilize cellular 
membranes permitting equilibration of the bathing media with the in- 
terfilament spaces of the IFM (Maughan and Godt, 1989). 50 mM sucrose 
was included to prevent or reduce osmotic swelling of the mitochondria 
and sarcoplasmic reticulum. Skinning solutions contained Na methyl sul- 
fonate, rather than K methyl sulfonate, to prevent depolarization of the 
membrane at the outset. 

Freshly skinned fibers or skinned fibers which had been stored frozen 
(-50°C) up to 2 wk in relaxing solution (containing 50% (wt/vol) glycerol 
and 10 ~g/ml leupeptin) were used for the mechanics. Aluminum T-clips 
were attached to the ends of the skinned fiber and the fiber transferred to 
a 30-}xl drop of relaxing solution in a temperature controlled chamber 
filled with 0.5 ml mineral oil. Oil temperature was maintained at 12 -+ 
0.5°C by a Peltier device (Cambion; Cambridge Thermionic Corp., Cam- 
bridge, MA). One end of the fiber was attached via a T-clip to a strain 
gauge (AE801; SensoNor, Horten, Norway), the other end to a piezoelec- 
tric motor (P173; Physik Instrumente GmbH & Co., Waldbronn, Ger- 
many), and the fiber was stretched until just taut (zero stress). The relative 
position of the motor head was monitored by a variable impedance dis- 
placement transducer (KD-2310; Kaman Instrumentation Corp., Colo- 
rado Springs, CO). The fiber length (L, between the T clips) and the fiber 
width (at the narrowest part of the segment) were measured using a filar 
micrometer. The fiber was stretched incrementally (by 2.5-5% steps), to a 
final strain of 1.10-1.15 L (corresponding to a stress of ~1 kN m-2). With 
each stretch, the force trace was allowed to return to a steady elevated 
level which followed a transient peak (i.e., the fiber was allowed to un- 
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dergo "stress relaxation"). Force was normalized to fiber cross-sectional 
area to correct for differences in fiber size. Fiber tension (in kN m -2) was 
calculated by dividing force by fiber cross-sectional area, assuming a circu- 
lar cross-section (unless otherwise indicated) by taking fiber width as the 
diameter. Analogue displacement and tension signals were monitored by 
a strip chart recorder with high-gain amplifier (WR3101; Watanabe Corp., 
Costa Mesa, CA), and a digital storage oscilloscope (2201; Tektronix 
Corp., Beaverton, OR). 

Skinned fibers were activated incrementally by Ca 2+ by exchanging 
equal volumes of pCa 8 relaxing solution for pCa 4.5 activating solution to 
attain pCa of 7, 6, and 5. Activating solutions had the same ionic composi- 
tion as relaxing solution, except the total concentration of CaCI 2 was 5.03 
mM (pCa 4.5) or 5.29 (pCa 4.0). Rigor was induced by exchanging activat- 
ing solution for ATP-free (rigor) solution containing 5.03 mM CaC12 (pCa 
4.5), 5 mM EGTA, 20 mM BES buffer (pH 7.0), and 175 mM ionic 
strength (adjusted with K methane sulfonate). At the end of each experi- 
ment, each fiber was fixed for light or electron microscopy by exchanging 
half the rigor solution volume with rigor solution containing 1% (wt/vol) 
gluteraldehyde. Solutions were formulated by solving a set of simulta- 
neous equations describing the multiple equilibria of ions in the solutions 
(Godt and Lindley, 1982; Andrews et al., 1991). 

Sinusoidal Analysis 

Sinusoidal analysis (Zhao and Kawai, 1993) was used to determine the dy- 
namic stiffness and power output of isolated muscle fibers. In this analysis, 
the length of a stretched skinned fiber was oscillated sinusoidally and the 
resultant force signal was measured and compared to the length signal to 
determine the complex stiffness of the fiber. The complex stiffness data 
were normalized for fiber dimensions to obtain the complex modulus. The 
complex modulus data obtained for each fiber were summarized graphi- 
cally using Nyquist plots (Figs. 6-7), the abscissa and ordinate of which 
represent the elastic and viscous modulus respectively (Kawai and Brandt, 
1980). 

A strip of latex membrane (Trojan-enz; Carter-Wallace, New York) 
was used as a reference material to characterize and subtract the response 
of the apparatus (Kawai and Brandt, 1980). 

Sinusoidal length pertubations of 0.25% fiber length (peak-to-peak) 
and 0.5-1,000 Hz were applied at 47 discrete frequencies (see Table III) 
using a microcomputer (486DX4-100 MHz microprocessor; ZEOS Inter- 
national, Inc., Minneapolis, MN) and a 16-bit data acquisition board 
(DT2838; Data Translation Inc., Marlboro, MA). The length and force 
signals from the servomotor and strain gauge were digitized, and the elas- 
tic modulus and viscous modulus components of the complex modulus 
were calculated by computing the amplitude ratio and the phase differ- 
ence for tension and length at each frequency. Dynamic stiffness moduli 
(in N m -2) were calculated as the vector sum of the elastic and viscous 
modulus at a given frequency. Power output (in watts) was calculated 
from the viscous modulus, the amplitude and frequency of the length per- 
turbation, and the fiber cross-sectional area and length (see Table II cap- 
tion for formulae). Details of the experimental setup and method of data 
acquisition are available upon request. 

Results 

The Df(3R)ea 5°22 Deletion Removes Both the TmI and 
TmH Genes 

The Df(3R)ea 5°22 mutant is an x-ray induced revertant of the 
d o m i n a n t  e a  5022 allele. Unlike easter mutants, Df(3R)ea 5°22 
also shows a dominant flightless phenotype, suggesting an 
additional mutation is present on the Df(3R)ea 5022 chro- 
mosome. The Df(3R)ea 5°22 chromosome has no cytologi- 
cally visible deletion or rearrangement, but as the tro- 
pomyosin genes are located ~20-kb centromere proximal 
to the easter gene, a small deletion encompassing easter 
and the Tm genes might be cytologically invisible. We de- 
veloped a novel technique to determine the extent of the 
Df(3R)ea 5°22 deletion and to test whether the deletion in- 
cluded the Tm genes. 

Embryos obtained from a laying stock of Df(3R)ea 5°22 

heterozygotes were hybridized with genomic phage from a 
walk which spanned the 88EF region (Fig. 1). DNA de- 
leted in Df(3R)ea 5°22 was identified by the failure of specific 
clones to hybridize to one-quarter of the embryos (i.e., 
Df(3R)ea5°22/Df(3R)ea 5022 embryos). DNA corresponding 
to the clones TML31, TML16, TM1, TMR16, and TMR325 
was deleted in Df(3R)ea 5°22 (Fig. 1), a region that includes 
both tropomyosin genes, TmI and TmII. Genomic Southern 
analysis using Df(3R)ea 5°22 DNA showed the leftmost break- 
point was in the TMIA7 clone, indicating the Df(3R)ea 5°22 
deletion removed all of the protein coding sequences of 
TmlI (Fig. 2). Additional Southern analysis of Df(3R)ea 5°22 
DNA using clones TMR16, TMR325, and TMR56 further 
showed the deletion extends centromere distal of the TmI 
and easter genes (data not shown; see Fig. 1). From these 
data, Df(3R)ea 5°22 deleted :,,60 kb, including the easter, TmI, 
and Trail genes, but did not delete the IFM-specific actin 
gene, Act88F. 

Rescue of Mutant Phenotypes by TmI + 

Genetic analysis showed the flightless and lethal pheno- 
types of four flightless alleles C10, J8, L2, and $2 (Warmke 
et al., 1989) mapped to the interval uncovered by the 
Df(3R)ea 5°22 deletion (data not shown). Tml and TmH are 
the only myofibrillar protein genes in this region (Karlik et 
al., 1984), suggesting that CIO, J8, L2, and $2 were alleles 
of TmI and/or TmlI. To determine if the mutants were 
TmI alleles, we attempted to rescue the flightless and le- 
thal phenotypes using a transformed wild-type copy of the 
TmI gene (P[TmI+]) introduced into the mutants by ge- 
netic crosses (see Materials and Methods). We assayed the 
flight behavior and wing beat frequency of each mutant 
heterozygote in the presence of the P[TmI ÷] transgene, 
and determined if P[TmI ÷] was able to rescue the reces- 
sive lethality of rnutant/Df(3R)ea 5°22 flies. We tested for 
flight and lethal rescue in females since the X-linked 
P[Tml +] gene is not fully dosage compensated in males 
(Tansey et al., 1987). The results showed both the flight- 
less behavior and recessive lethality of CIO, J8, L2, and $2 
were completely rescued to wild-type levels by the intro- 
duction of P[TrnI +] (Table I), indicating that CI0, J8, L2, 
and $2 were alleles of the TmI gene. Therefore, these al- 
leles will be referred to hereafter as TmI cw, TmI Js, TrnI c2, 
and TmI s2. 

The flightless behavior of the Df(3R)ea ~°22 deletion was 
also rescued by P[TmI ÷] (Table I), an unexpected result 
because P[TmI+];Df(3R)ea5°22/TM3 flies were still haploid 
for the TmH gene. The IFM is sensitive to the gene dosage 
of most contractile protein genes and perturbation in the 
IFM protein stoichiometry caused by mutation often re- 
suits in a flightless phenotype (reviewed in Bernstein et al., 
1993). However, our data indicated that, unlike the Tml 
gene, haploidy of the TmH gene reduced the wing beat 
frequency by ~20% but did not cause flightless behavior. 
The recessive lethality of Df(3R)ea s°22 was not rescued by 
P[TmI÷], most likely because TmH is an essential gene 
(Erdelyi et al., 1995). 

Molecular Analysis of the Tml Alleles 

Genomic Southern analysis indicated no gross DNA rear- 
rangements in TmI :s, TraIL2, Qr TmlS2; however, a :,,3 0-kb 
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Figure 1. Df(3R)ea 5°22 de- 
letes the TmI , TmII, and eas- 
ter genes. (A) Embryos from 
the diagrammed cross were 
placed onto nitrocellulose fil- 
ters, punctured, and hybrid- 
ized with overlapping ge- 
nomic clones from the 88EF 
region. A separate filter was 
used for each clone. The au- 
toradiogram on the left is a 
filter hybridized with clone 
TMR325, while the right one 
is the same filter stripped and 
reprobed with a myosin light 
chain-2 genomic clone (cyto- 
logical position 99D2-3) for a 
positive control. Embryos 
which did not hybridize to 
TMR325, but did hybridize 
to Mlc2, indicates DNA rep- 
resented in TMR325 is de- 
leted in Df(3R)ea s°ee. (B) 
Summary of embryo hybrid- 
izations. The arrangement of 
the Trnl, TmH, and easter 
genes on the third chromo- 
some is diagrammed on the 
top line, and the eight over- 
lapping genomic clones, 
TML52, TMLA7, TML31, 
TML16, TM1, TMR16, 
TMR325, and TMR56 are di- 
agrammed below. The stip- 
pled bar indicates the mini- 
mal extent of the deletion in 
Df(3R)ea 5°22, while the 
hatched bars represent the 
deletion breakpoint regions. 
These data are summarized 
in the table, showing that 
~60 kb of DNA is deleted, 
including Tml, Trail, and 
easter. 

deletion in the middle of  the TmI  gene was detected in 
T m l  c1°. D N A  isolated from TrnlCl°/Df(3R)ea 5°22 embryos 
was amplified using PCR and sequenced. The results indi- 
cated that the deletion breakpoints of TmI  c1° are in in- 
trons 1 and 4 of  TmI; consequently, exons 2, 3, and 4 are 
completely deleted (Fig. 3). These three exons encode all 
284 amino acids of the IFM-specific TmI  isoform and 257/ 
284 of the amino acids in the embryonic TrnI isoform. A 
muscle specific enhancer located in the first intron (Schultz 
et al., 1991; Gremke et al., 1993) is also deleted in TmI  cw. 
Therefore,  TmI  cw is a null mutation of  the Drosophila 
T m l  gene. 

We sequenced exons 2 and 3, common to the Scm-TmI 
and Ifm-TmI isoforms, in TmI  Js, TmI  L2, and TmI  s2 to 
search for mutations which must lie in this region as the 
mutants are both embryonic lethal and flightless. The re- 
sults indicated that all three mutants contained single base 
changes in exon 2 of TmI  (Fig. 3). Both TmI  Js and TmI  L2 
contained nonsense mutations, while TmI  s2 resulted in a 
missense mutation (Asn for Asp121). These base changes 

in TmI  J8, TmI  L2, and TmI  s2 were the only mutations de- 
tected in three individual clones isolated from each mutant  
allele. All three mutations are located in the second exon; 
consequently, each affects both the IFM-specific and -embry- 
onic isoforms of  TmI, consistent with the flightless and lethal 
phenotypes of the mutants. 

Myofibrillar S tructure  o f  Tropomyosin M u t a n t  I F M  

To determine the effect of  reduced Ifm-TmI and TnH-33/ 
34 accumulation on IFM assembly and ultrastructure, we 
compared electron micrographs of  intact IFM from the 
tropomyosin mutants and wild-type flies. The ultrastruc- 
ture of the four single TmI  mutants, TmI  cw, TmI  Js, TmI  L2, 
and TmI  s2 were indistinguishable from each other; there- 
fore, only representative micrographs are shown from this 
group. 

Cross-sections showed the myofibrillar lattice of TmI  
single heterozygotes (e.g., TmlCW/+) was well preserved 
at the core, but was disrupted around the fibril periphery 
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Figure 2. Southern analysis 
showed the Troll coding 
region is deleted in 
Df(3R) ea 5°22. Odd num- 
bered lanes are wild-type 
control DNA (+/TM3, e Sb); 
even numbered lanes are 
Df(3R)eaS°22/TM3, e Sb 
DNA. DNA in lanes 1 and 2 
was digested with EcoRI (E); 
lanes 3 and 4 with BamHI 
(B); lanes 5 and 6 with Hind- 
III (H). A partial restriction 
map of the region is dia- 
grammed below the autoradi- 
ogram. The 11.0-kb EcoRI 
fragment from TML47 
(shaded box) hybridized to 
unique fragments in the 
Df(3R)ea 5°22 lanes. Further 
analysis indicated only the 
6.5-kb EcoRI fragment of 
TML47 hybridized to the 
junction fragments (data not 
shown). Therefore, the left 
deletion breakpoint lies 5' of 
the EcoRI site marked with 
an asterisk (*). This restric- 
tion site corresponds to an 
EcoRI site in the 5' UTR of 
the TmH gene (Hanke and 
Storti, 1988). 

(Fig. 4 e). The cylindrical shape was distorted compared to 
wild type as peripheral filaments detached from the main 
core. The number  of thick filaments across the mid-line of 
a wild-type myofibril was 36 --- 1.0 (Fig. 4 a); however, the 
diameter of the TrnI mutant  myofibrils was reduced to 
~25-27-thick filaments. Longitudinal sections of the mu- 
tant heterozygotes also showed alterations when com- 
pared to wild type. Wild-type myofibrils were straight and 
of  constant width, with sarcomeres that were 3.3 _ 0.2 p,m 
long and evenly spaced by Z bands (Fig. 4 b). The average 
length of  the TmI mutant  sarcomeres was similar to wild- 
type (3.2 + 0.2 Ixm); however strands of thin and thick fila- 
ments splayed off from the fibril periphery giving it a 
frayed appearance (Fig. 4, f and h). Myofibrillar structure 
of rescued Tml mutants (e.g., P[TmI+];TmlCl°/+) was sim- 
ilar to wild type in both longitudinal and cross-sections 
(data not shown, but see Table II). 

The peripheral disruptions of  myofibrils from TmI/TmH 
double heterozygotes (Df[3R]eaS°22/+) appeared similar 
to the four TmI single mutants in longitudinal and cross- 
sections, including the presence of  detached filaments, but 
the hexagonal lattice core was consistently smaller, re- 
duced to 21 ___ 3.0-thick filaments (Fig. 4 g). Myofibrils 
from TmlI  single heterozygotes (P[TmI+];Df(3R)eaS°22/+) 
(Fig. 4 c) also have fibrils with a smaller fibril diameter (31 
___ 1.0 thick filaments) compared with wild type; however, 

peripheral filaments are neatly arranged in these mutant  
fibrils. To confirm that the smaller fibril diameter in 
P[TrnI+];Df(3R)ea5°22/+ IFM was due solely to mutation 
of TmH and not to reduced or weak expression of the 
transformed TmI + gene, we analyzed IFM ultrastructure 
from Df(3R)ea 5°22 flies with two copies of TrnI ÷. Fibrils 
from P[TmI+]/P[Tml+];Df(3R)eaS°22/+ flies were similar 
(32 - 1.0 thick filaments) to those from P[TmI+]; 
Df(3R)eaS°22/+ flies. In addition, deletion of one copy of 
the TmH gene resulted in a corresponding reduction in the 
level of  TnH protein in the IFM. We measured the relative 
level of TnH in wild type and P[TmI+];Df(3R)eaS°22/+ het- 
erozygotes using one-dimensional S D S - P A G E  and gel 
scanning and quantitation (see Materials and Methods). 
The results indicated TnH protein levels were reduced 
,-~40-50% in P[TmI+];Df(3R)ea5°22/+ heterozygotes com- 
pared to wild type (data not shown), confirming that dele- 
tion of one copy of  the TmH gene reduced IFM TnH pro- 
tein levels and is likely the cause of the reduction in 
diameter of  myofibrils in the TmH mutant  IFM. 

To assess the effect in more extreme tropomyosin mu- 
tants, we analyzed the IFM ultrastructure of  the mutants 
transheterozygous with the hypomorph Ifm(3)3 (TmlCl°/ 
Ifrn[3]3, TmI~S/Ifm[3]3, TmlL2/Ifrn[3]3, TmlS2/Ifm[3]3, and 
Df[3R]eaS°22/Ifm[313). Compared to the mutant  heterozy- 
gotes, the most apparent  structural effect was the drasti- 
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Table L Rescue of Flightless Behavior and Lethality by P[Tml +] 

Allele Flight index Wing beat frequency (Hz)* Viability index § 

Canton-S 6.5 +-- 1.0 226.0 +- 13.0 - -  

TmlCl°/+ 1.3 ± 2.0 141.3 --- 6.0 0.0 

P[Tml+];TmlCt°/+ 5.1 --- 2.4 206.0 --- 7.0 100.0 

TmlJS/+ 2.4 +-- 2.3 153.3 --- 6.0 0.0 

P[Tml÷];TmlSS/+ 6.3 +- 1.8 232.0 - 4.0 76.0 

TmlL2/+ 1.2 ----- 1.7 138.3 ± 7.0 0.0 

P[TmI+]; TmlZ2/+ 6.2 ± 1.7 223.0 +- 12.0 100.0 

Trois2~+ 0.4 --- 1.1 137.0 - 9.0 0.0 

P[TmI+]; TmlS2/+ 5.5 +-- 2.3 235.0 +-- 11.0 100.0 

Df(3R)eaS°22/+ 0.3 + 1.1 "-~0.(~ I ND 

PITmI+]; Df(3R)eaS°22/+ 5.4 --- 2.1 179.5 + 5.0 ND 

* Flight indices were determined by taking the mean (-+ SEM) of the individual scores of ~ 100 flies from each genotype using the flight test cylinder. 
*Wing beat frequencies were measured as described in the Materials and Methods. Approximately 5-10 flies from each genotype were tested. 
§The percentage of expected lransheterozygotes recovered from lethal rescue crosses described in Materials and Methods was determined. Approximately 100 progeny were 
scored for each cross. 
IIDfl3R)ea s°22 flies do not generate sustained wing beats. 
ND, not determined. 

cally reduced core size and increased severity of the pe- 
ripheral disruptions (compare Fig. 4 e and Fig. 5, a and c). 
The diameter of the lattice core of the TmI transheterozy- 
gote fibrils was approximately one-half that of wild type, 
reduced to 16 ± 2.0 thick filaments. Abundant unattached 
thick filaments were scattered around the periphery of the 
fibrils, but fewer unattached thin filaments were seen. In 
longitudinal sections, fibrils tended to be thin and wavy 
compared to wild type, and the sarcomere lengths were 
shorter on average (e,g, 2.6 ± 0.2 Ixm for TmlCl°/Ifm[3]3, 
Fig. 5 b). Fibrils from Df(3R)eaS°22/Ifrn(3)3 transheterozy- 
gotes were structurally similar, but again, deletion of the 
TmH gene on the Df(3R)ea s°22 chromosome augmented 

1710 

Ifm-ql~mI 

Scm-TmI 

Tml Allele Mutation 

CIO Deletion 
J8 Gin28 > STOP 
/ 2  Gin92 > STOP 
$2 Aspl21  > Asn 

Figure 3. Tml c1° is a TmI deletion and TmF 8, TmI L2, and Tml s2 
are TmI point mutants. The exon-intron arrangement of the TmI 
gene is diagrammed showing the relative locations of the Tml 
mutations. The arrows above represent locations of oligonucle- 
otides used to amplify TmlC~°/Df(3R)ea 5°22 embryo DNA using 
PCR, and the barbed arrowheads represent oligonucleotides 
used to amplify Tml Js, Tml L2, and TmlS2/Df(3R)ea 5°22 DNA. 
Tml c1° deletes exons 2, 3, and 4 of TmI (black bar). Tml Is, TmI L2, 
and Trnl s2, denoted by asterisks, are all G>A transitions result- 
ing in either nonsense mutations (Tml ys, TmI L2) or a missense 
mutation ( TrnlS2). 

the disruption by reducing the core diameter to 13 ± 1.0 
thick filaments (Fig. 5 c). Occasionally, fibrils from trans- 
heterozygotes contained sarcomeres with multiple, tan- 
demly arrayed Z bands that often did not span the entire 
width of the fibril (see Fig. 5 d). Multiple Z bands have 
been reported for other Drosophila myofibrillar protein gene 
mutants (Reedy et al., 1989; Fyrberg et al., 1990; Sparrow 
et al., 1992), including the TmI hypomorph Ifm(3)3 (Miller 
et al., 1993). 

Mechanical Analysis o f  Skinned Single Fibers 

To determine the extent to which the reduced or absent 
wing beat frequency conferred by the tropomyosin mutants 
was associated with reduced or altered contractile proper- 
ties of the flight muscles, we measured isometric tension, 
dynamic stiffness, and power output of Ca 2+- and stretch- 
activated skinned fibers, comparing responses from TrnlCl°/+ 
and Df(3R)eaS°22/ + and TmlCi°/lfm(3)3 and Df(3R)eaS°Z2/ 
Ifm(3)3 with those from wild type and P[TmI+];TmlCl°/+ 
and P[TmI+];Df(3R)eaS°2Z/+ heterozygotes. 

In skinned fibers from wild-type, elevating [Ca 2+] pro- 
duced a sigmoidal increase in isometric tension, from pCa 
(= - l o g  [Ca2+]) ,'-,7 to a saturating maximum at pCa ~ 5  
(12°C). The pCa for half maximum tension was ~6.3, the 
slope of the relationship at half maximum (the Hill coeffi- 
cient: Warmke et al., 1992) was ~1.3, and the maximum 
isometric tension was 1.13 ___ 1.0 kN/m 2 (pCa 5). Maximum 
isometric tension of fibers from P[Tml+];TmlCl°/+ (1.10 
+ 1.1 kN/m2), P[Tml+]Df(3R)eaS°2e/+ (0.90 ___ 0.6 kN/m2), 
and TrnlCt°/+ (0.84 ± 0.7 kN/m z) heterozygotes were on 
average lower than that of wild type, but the differences 
were not significant (P > 0.05). Maximum isometric ten- 
sion of fibers from Df(3R)ea5°2e/+ (0.26 ___ 0.1 kN/m 2) was 
significantly less than wild type (P < 0.05), as were those 
of TmlCl°/Ifm(3)3 (0.31 _ 0.4 kN/m 2) and Df(3R)eaS°22/ 
Ifm(3)3 (0.05 ± 0.1 kN/m2). 

Changes in muscle force produced by the fibers in re- 
sponse to length pertubations were measured using rapid 
sinusoidal oscillations (Kawai and Brandt, 1980). Fibers 
were oscillated at different frequencies (including that for 
optimal power generation in Ca2+-activated fibers) under 
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Figure 4. Electron micrographs of TmL Tmll, and Tml/TmH heterozygotes. Transmission electron micrographs of adult Canton-S (a 
and b); P[Trnl+];Df(3R)eaS°22/TM3 (c and d); TmlCl°/TM3 (e and J0; and Df(3R)ea5°22/TM3 (g and h) indirect flight muscles. The left- 
hand panels of myofiber transverse sections show an ordered myofilament lattice of myofibrils, 35-36 thick filaments across in wild-type 
(a), that is maintained in a TmH mutant myofibril (c), although decreased in diameter to 31-32 filaments. In contrast, Tml (e) and Tml/ 
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Table II. Summary of In Vivo and In Vitro Mechanical and Ultrastructural Data from TM- Mutant Strains 

In vivo 

Tml 
Copy TmH copy Hight Fraction 

Fiber genotype No. No. index* Wbff of CS 

In vitro single IFM 

Square 
Thick Fraction Elastic Dynamic root Power 

filament of CS modulusll stiffness I Fraction fraction output** Fraction 
No. § area (N m -2) (N m -2) of CS of CS (Wm -3) of CS 

ftz 

1 Canton-S 2 2 6.5 + 1.0 226 ± 13 1.00 

2 P[Tml];Tml c1° 2 2 5.13 --- 2.4 206 ± 7 0.91 

3 TmlCt°/TM3 1 2 1.25 ± 2.0 141 ± 6 0.62 

4 TmlCt°/Ifm(3)3 "-~0 2 NO 0 0 
5P[Tml];Dfl3R)ea 5°22 2 1 5.4 -+ 2.1 180 -+ 5 0.80 

6 Df(3R)ea5°e2/TM3 1 1 0.33 ± 1.1 0 0 

7 Df(3R)eaS°Z2/Ifm(3)3 ~ 0  1 NO 0 0 

35.5-+ 1.0 1.00 634 - - -70  6 8 9 - + 7 6  1.00 1.00 1 1 7 - 2 3  1.00 

35.5 + 0.5 1.00 546-+ 121 568 - 121 0.82 0.91 60--+ 20 0.60 

25.3 -+ 2.2 0.51 338 +-- 70 346 - 73 0.50 0.71 38 ~ 14 0.32 

16.0 -+ 2.0 0.20 79 + 30 79 -+ 30 0.11 0.34 - 1  +-- 1 <0.01 

32.3 -+ 1.4 0.83 5 3 0 - -  83 554 ± 90 0.80 0.90 85--+ 25 0.73 

21.5 "4- 2.6 0.37 391 + 25 394 -- 26 0.57 0.76 26 -+ 4 0.22 

13.0 +- 1.0 0.13 91 - 18 92 ± 18 0.13 0.37 - I  ± 1 <0.01 

Values are means and S.E.M; *N = 65-100; *N = 5-10; aN = 10-23; III**N = 4-7 flies. Copy No. refers to whether the strain is haploid or diploid with respect to the Tml or TmH 
gene. Hight index and wing beat frequency (WbJ) values, at 22°C, are taken from Table I. Fraction of CS refers to the fractional value with respect to that of wild type (Canton S.) 
Thick filament No. refers to the number of thick filament in the organized lattice across the diameter of a representative myofibril. Area refers to the cross-sectional area of the or- 
ganized myofibriUar lattice, which is proportional to the thick filament number. IlElastic modulus refer to the 1FM in-phase stiffness modulus at the frequency of peak power output 
(f~x, in s-i), at pCa 5. IDynamic stiffness refers to the vector sum of the elastic and viscous moduli at f,,~x at pCa 5. **Power output (in watts m -3 fiber volume) refers to maxi- 
mum power output at pCa 5:2 "rrfm~ Ev ([AL/L]~s) 2, where E v is the viscous modulus (kN/m2), AL/L is half the peak-to-peak amplitude of the sinusoidal length perturbation AL 
divided by the length of the muscle L, and rms is the root-mean-square of the perturbation amplitude. In the present experiments, ([AL/L]~) 2 = 0.5 (0.00125) 2. All single fiber 
mechanical measurements were conducted at 12°C. Pairwise comparison of values were conducted for the following combinations of strains: 2 vs. 1, 3 vs. 2, 4 vs. 3, 5 vs. 2, 5 vs. 
3, 6 vs. 5, and 7 vs. 6. Significant differences (P < 0.05) were noted for the following combinations: *6 vs. 5. *3 or 5 vs. 2; 5 vs. 3.111"'3,4,6, or 7 vs. 1; 4, 6, or 7 vs. 2, 4 vs. 3; 4 
vs. !; 7 vs. 6; all other combinations tested were not significantly different (P > 0.05). 

conditions of relaxation, Ca 2÷ activation and rigor. Results 
were analyzed graphically as Nyquist plots (Figs. 6 and 7). 
Data obtained from the plots are summarized in Table II. 

In the relaxed and rigor states, the amplitude of the dy- 
namic modulus (the vector sum of the elastic and viscous 
moduli) increased as a function of frequency, but the 
phase remained roughly constant. This yielded a Nyquist 
plot that was roughly linear over the range of applied fre- 
quencies (0.5-1,000 Hz). In the active state, the Nyquist 
plot was looped, with pronounced phase shifts at interme- 
diate frequencies that result from negative-going values of 
the viscous modulus. Negative-going values are due to ac- 
tomyosin interactions that, in response to stretch, perform 
mechanical work on the apparatus. In the living fly this os- 
cillatory work powers flight (Thorson and White, 1969). 

The amount of work performed during each oscillation 
(and during each wing stroke) is proportional to the ampli- 
tude of the Nyquist loop, which varied considerably in 
size, being largest in wild type (not shown), P[TmI+]; 
TmlCl°/+, and P[TmI+]Df(3R)eaS°22/+ (Figs. 6 and 7, A), 
less in TmlCl°/+ and Df(3R)ea5°22/+ (Figs. 6 and 7, B), and 
almost absent in TmlCl°/Ifrn(3)3 and Df(3R)eaS°22/Ifm(3)3 
(Figs. 6 and 7, C). Power output was graded correspond- 
ingly (Table II). IFM net power output of P[TmI+]; 
TmlCl°/+ and P[TmI+]Df(3R)eaS°22/+ fibers was 60 and 
73%, respectively (wild type = 100%). Power output 
dropped to 32% for TmlCl°/+, 22% for Df(3R)eaS°22/+ 
and < 0.01% for TmlCl°/Ifm(3)3 and Df(3R)ea5°22/lfm(3)3 
IFM fibers. Together with the flight behavior and wing 
beat frequencies of the mutants, these results suggested a 
power output of ~60% that of wild type (e.g., the power 

output of P[TmI+];TmlCl°/+) may be near the minimum 
required for flight, consistent with the results of others 
(Laurie-Alberg et al., 1985; Tohtong et al., 1995). There 
also appears to be a threshold of power production below 
which a wingbeat is impossible. The results indicated that 
32% power output was enough for a moderate wingbeat 
(~141 Hz) in TmlCl°/+ , but 22% power was not enough 
to even flap the wings in Df(3R)ea5°22/+ flies. We observed 
in Df(3R)eaS°22/+ (and in the transheterozygotes) that 
IFM fibers teased away from the thoracic cuticle more eas- 
ily than in the other Tm mutants, suggesting that IFM at- 
tachment sites to the thorax are weak in Df(3R)ea5°22/+ 
and in the transheterozygotes. Therefore, the absence of 
wingbeats in these mutants may be the combined result of 
reduced or negligible power production from the IFM and 
weak attachment sites which do not transmit power from 
the IFM to the cuticle. 

The active dynamic stiffness moduli of the mutant fibers 
(i.e., a rough measure of the number of crossbridges at- 
tached) at the frequency of maximum power (for Canton-S, 
78 + 12 s -1 at 12°C or 215 s -1 at 22°C, assuming a Q10 of 
2.8 (Maughan D.W., unpublished results)) was reduced 
roughly in proportion to the extent to which the myofibril 
was disrupted (Table II; compare dynamic stiffness "frac- 
tion of CS" with myofibrillar fractional area disrupted). 
This suggested that the stiffness of the fibers resulted from 
actomyosin cross-bridges forming between filaments con- 
tained in the well-ordered cores of the mutant fibers, but 
not between disorganized filaments in the fibril periphery. 
Additionally, wing beat frequency correlated with the 
square root of dynamic stiffness. This result is consistent 

TmH (g) mutant myofibrils are deformed as peripheral thick and thin filaments detach from the fibrils, leaving smaller cores with ,'-~26 
(Tml) and ~23 (Tml/TmlI) thick filaments across. The longitudinal sections in the right panels show that sarcomere spacing in the mu- 
tant fibrils is similar to that in wild-type ("-~3.3 Ixm). Fibrils in TmI and Tml/TmlI fibrils appear ragged as thick and thin filaments splay 
off and Z bands become wavy and out-of-register. Bars: (a, c, e, and g) 0.5 txm; (b, d,f, and h) 2.0 Ixm. 
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Figure 5. Electron micrographs of TmlCWllfm(3)3 and Df(3R)eaS°22/Ifm(3)3 transheterozygotes. Transmission electron micrographs of 
adult TmlCl°/Ifm(3)3 (a and b) and Df(3R)ea5°ee/Ifrn(3)3 (c and d) indirect flight muscles. The transverse sections show the ordered myo- 
filament lattice has decreased to 16--17 thick filaments across in TmlCW/Ifm(3)3 and 12-13 across in Df(3R)eaS°e2/Ifm(3)3 with many un- 
attached thick filaments scattered in the fibril periphery. The longitudinal sections (b and d) show fibrils with short sarcomeres (~2.7- 
2.9 p~m) bound by irregular Z disks which are sometimes split or tandemly arranged. Filaments often splay off from the fibril periphery 
in the transheterozygotes. Bars: (a and c) 0.5 ~m; (b and d) 2.0 txm. 

with other reports (Molloy et al., 1992; Tohtong et al., 
1995) that suggest dynamic stiffness of the flight system re- 
sides primarily in the myofilaments and, as such, is a major 
determinant of wing beat frequency. 

Discussion 

Tropomyosin is a thin filament linked protein which has 
both a structural role in myofilament assembly and a regu- 
latory role in muscle contraction. The fruit fly D. melano- 
gaster provides a well-defined system to study the struc- 
tural and regulatory roles of tropomyosin in the IFM. The 
three Drosophila tropomyosin isoforms expressed in the 
IFM, the Ifm-TmI isoform encoded by the TmI gene and 
the two IFM-specific TnH-33 and 34 isoforms encoded by 

TmlI, are structurally similar except that the TnH iso- 
forms contain an additional ~200 amino acid COOH-ter-  
minal domain. Previously, our mechanical analysis of the 
stretch activation properties of fibers from the hypomor- 
phic TrnI mutant, Ifm(3)3, showed that in muscle deficient 
in Ifm-TmI, crossbridges were not able to bind and ac- 
tively cycle (Molloy et al., 1992). However, no TmH muta- 
tion which affects TnH function has been described; there- 
fore, the role(s) of the TnH isoforms in the IFM was not 
clear. Here, using the first reported null mutants of the 
two Drosophila tropomyosin genes TmI and TmlI, we set 
out to characterize further the individual and comparative 
roles of Ifm-TmI and TnH-33 and 34, focusing specifically 
on the structural roles of the Ifm-TmI and TnH-33 and 34 
in the IFM and the stretch activation properties of muscle 
deficient in these tropomyosin isoforms. 
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Figure 6. Nyquist plots of 
elastic modulus (abscissa) 
versus viscous modulus (or- 
dinate) of skinned IFM fibers 
from TmI mutant lines. Ex- 
perimental points, corrected 
for the characteristics of the 
apparatus, are plotted at 47 
frequencies between 0.5 Hz 
and I kHz (left to right). Left 
panels represent data ob- 
tained from active fibers 
(pCa 5, circles). The solid 
curves are least squares fits 
to the data using a three-ele- 
ment viscoelastic model 
(Maughan, D.W., C. Hyatt, 
unpublished). Right panels 
represent the relaxed (pCa 8, 
squares) and rigor (triangles) 
data obtained from the same 
fibers. The active curves in 
the left panels are replotted 
for comparison. Note the 
progressive reduction in both 
viscous and elastic moduli 
and active loop size as the 
Trnl gene copy number de- 
creases from two (P[TmI+]; 
TrnlCW/+) to one (TmlCl°/ 
+), to essentially zero 
(TmlCW/Ifm[3]3). Plots from 
wildtype flies were similar in 
appearance to that of 
P[Tml+];TmlCW/+. Also 
note the X axes vary in the 
figure parts. 

Myofibrillar Assembly in IFM Reduced for Tropomyosin 

Loss of function mutations in genes encoding many IFM- 
specific contractile proteins, such as myosin, actin, tropo- 
nin, myosin light chain-2, and a-actinin have been identi- 
fied based on their dominant flightless phenotype, and 
most often result in severe myofibriUar defects (reviewed 
in Bernstein et al., 1993). The TmI gene encodes the only 
standard tropomyosin isoform (Ifm-TmI) present in the 
IFM (Mogami et al., 1982); therefore, it was not surprising 
that mutations which affected this isoform, including the 
TmI alleles described in this report, resulted in severe 
fibrillar disruptions in the IFM (Karlik et al., 1985; Tansey 
et al., 1987; Miller et al., 1993; Figs. 4 and 5). 

Ultrastructural analysis of myofibrillar assembly of wild- 
type IFMs, characterized in Drosophila by Shafiq (1963) 
and most recently by Reedy and Beall (1993), indicate the 
number of sarcomeres in an IFM myofibril is determined 
early in development and the growth of each fibril occurs 
by the addition of thin and thick filaments around the 
fibril periphery. This suggests the filaments at the core of 
the fibrils are laid down first and outer filaments are as- 
sembled later. Based on studies that showed thin filaments 
assembled without tropomyosin were destabilized in vitro 
(Hitchcock-Degregori et al., 1988; Broschat, 1990; Weigt 
et al., 1990;) and in vivo (Liu and Bretscher, 1989), Miller 

et al. (1993) proposed that a decrease in Ifm-TmI leads to 
fewer, or less stable, thin filaments available for myofibril- 
lar assembly, resulting in myofibrils with normal lattice 
cores but unassembled thick filaments in the fibril periph- 
ery. One prediction of this hypothesis is that as the level of 
Ifm-TmI decreases, the size of the assembled lattice core 
shrinks as fewer thin filaments are available for incorpora- 
tion. Our results from the IFM of the TmI heterozygotes 
and transheterozygotes supported this prediction. How- 
ever, it was also evident that a reduction of Ifm-TmI to 
very low levels (3--4% that of wildtype is estimated in 
TmlCl°/Ifm(3)3, based on Ifm-TmI levels in Ifm(3)3/ 
Ifm(3)3 reported by Miller et al., 1993), did not have as se- 
vere an effect on the size of the lattice fibrillar core as that 
expected (cores reduced to only ' , '20% that of wild type). 
It is possible that the low level of Ifm-TmI in the transhet- 
erozygotes is sufficient to initiate thin filament assembly in 
the small fibril cores, but it does not appear that Ifm-TmI 
is absolutely required for the structural integrity of myofibrils. 

There are other myofibrillar proteins which likely con- 
tribute to the stability and/or assembly of thin filaments in 
vivo, and which could maintain fibrillar structure by sub- 
stituting for or replacing Ifm-TmI. One possibility is TnH- 
33 and 34, which have tropomyosin domains with actin 
binding .sites, could bind actin and thereby stabilize thin 
filaments in the absence of Ifm-TmI. The fact that TnH-33 
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Figure 7. Nyquist plots of 
elastic modulus (abscissa) 
versus viscous modulus (or- 
dinate) of skinned IFM fibers 
from TmlI and TmI/TmlI 
mutant lines. Data is plotted 
the same way as in Fig. 6. 
Again, note the progressive 
reduction in both viscous and 
elastic moduli and active 
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TM3) to essentially one 
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and 34 have tropomyosin domains similar to Ifm-TmI sug- 
gest that all three tropomyosin isoforms may co-assemble 
onto thin filaments in wild-type IFM. Therefore, it may be 
possible for TnH-33 and 34 to occupy some of the Ifm- 
TmI binding sites which are vacant in the transheterozy- 
gous IFM. Supporting this view, TnH-33 and 34 protein 
levels in the IFM are normal in an Ifm(3)3/Ifm(3)3 mutant 
background (Mogami and Hotta, 1981), indicating that a 
reduction in Ifm-TmI does not affect the accumulation of 
TnH-33 and -34. Further, it has been shown that end-to-end 
interactions between tropomyosin molecules (something 
which may not be possible between adjacent TnH mole- 
cules because of their hydrophobic COOH-terminal do- 
mains), is not required for the stabilization of thin fila- 
ments during assembly (Butters et al., 1993). Therefore, it 
is possible that the TnH isoforms may substitute for or 
combine with residual Ifm-TmI in the transheterozygotes 
to form small but organized fibrillar cores. 

The structural pertubations in the IFM caused by reduc- 
ing the TnH isoforms by half were not as severe as the dis- 
ordered filament lattice caused by reducing Ifm-TmI by 
half. A T m H  heterozygote had neatly assembled fibrils 
which were ~80% the size of wild type fibrils, whereas a 
TrnI heterozygote had disrupted myofibrils which were 
~50% that of wild type. These differences in myofibrillar 
structure in fibers with reduced levels of either Ifm-TmI or 
TnH-33 and -34 may reflect the different structural roles 
of the TmI  and T m H  encoded tropomyosin isoforms 

which may, in turn, reflect different protein stoichiome- 
tries of Ifm-TmI vs. TnH-33 and -34 in the IFM. It is possi- 
ble that the molar ratio of the TnH isoforms is low com- 
pared to Ifm-TmI and that myofibers can tolerate an 
~50% reduction in TnH, but not Ifm-TmI, with no severe 
structural effects. Our results show the TnH isoforms do 
contribute to the complete lattice structure of myofibrils 
because reduction of TnH by mutation reduced the size of 
the ordered fibrillar cores. These data indicate that TnH- 
33 and -34 are structural proteins required for normal 
fibrillar assembly in the IFM, although compared with 
Ifm-TmI, their structural role(s) appear to be minor. 

The similarity in the ultrastructural disruptions ob- 
served between the null TmI  c1° and the TmI  nonsense mu- 
tants, TrnI J8 and TmI  L2, suggests that the nonsense mu- 
tants may be null mutants as well, possibly because they 
produce truncated or unstable Ifm-TmI proteins which 
cannot assemble onto thin filaments. It was surprising, 
however, that the missense mutant T m I  s2, which caused a 
charge change, also resulted in a null-like phenotype. One 
explanation is that the single amino acid change produces 
an unstable Ifm-TmI protein which is then degraded. A 
second possibility, however, is that the negative charge at 
Aspl21, absent in the TrnI s2 mutant, is important for the 
function and/or structure of muscle tropomyosins. An Asp 
at residue 121 is conserved through evolution, including 
tropomyosins of human skeletal muscle (a isoform), rabbit 
skeletal muscle, chicken skeletal and smooth muscle, 

T h e  Journa l  o f  Cel l  B io logy ,  V o l u m e  135, 1996 6 8 4  



equine platelet, and all muscle isoforms of the Drosophila 
TmI and TmlI genes (see Basi and Storti, 1986; Hanke and 
Storti, 1988). Interestingly, a Asp175>Asn mutation 
(D175N) at another conserved, charged residue in human 
skeletal a-tropomyosin causes familial hypertrophic cardio- 
myopathy (Thierfelder et al., 1994). Recently, An et al. 
(1996. Biophys. J. 70:A39) reported that human D175N 
tx-tropomyosin has a twofold weaker affinity for actin in 
vitro than does human wild-type a-tropomyosin, suggest- 
ing that the D175N mutation affects tropomyosin's ability 
to bind actin in vivo. The conservation of charged residues 
in tropomyosin may be critical for intra- or intermolecular 
protein/protein interactions depending on the location of 
the residue in the a-helix. According to the heptapeptide 
repeat unit described by McLachlan and Stewart (1975), 
Asp121 of Drosophila TmI, like the D175N residue in hu- 
man a-tropomyosin, lies on the outer surface of the Tm 
helix and may be involved in binding tropomyosin to an- 
other myofibrillar protein such as actin. 

Mechanics of Tm- Fibers 

The mechanical parameters of the Tm mutant skinned fi- 
bers including isometric tension, dynamic stiffness, and 
power production, indicated a decrease in muscle perfor- 
mance as the organized fibrillar cores were reduced in di- 
ameter by the loss of Ifm-TmI and/or TnH-33 and 34. In 
our previous analysis of the TmI hypomorph Ifm(3)3, we 
observed that dynamic stiffness of the Ca2+-activated IFM 
was reduced in proportion to the filament lattice disrup- 
tion, resulting in a concomitant drop in wing beat fre- 
quency (Molloy et al., 1992). Since the resonant frequency 
of the flight muscle is proportional to the square root of 
the stiffness of the wing mount (cuticle and muscles) (Prin- 
gle, 1957), the results implied that most of the mounting 
stiffness was in the flight muscle. The results described 
here, comparing wing beat frequency, lattice disruption 
and dynamic stiffness of Ifm-TmI and TnH-33 and -34 mu- 
tant fibers are consistent with this view. That is, the de- 
crease in dynamic stiffness of the mutant fibers paralleled 
the decrease in the diameter of the organized fibrillar 
cores, and the square root of the dynamic stiffness 
dropped proportionately with the wing beat frequency. 

Ifm-TmI Tropomyosin Deficiency Caused Relaxed 
Fiber Responses 

The relaxed responses from the transheterozygous fibers 
severely deficient in Ifm-TmI tropomyosin suggested that 
some myofibrillar defect caused by the reduction of sarco- 
meric tropomyosin restricts, inhibits or abolishes the for- 
mation of strong, force-generating cross-bridges. These re- 
sults were similar to the results obtained for Ifm(3)3/ 
Ifm(3)3 fibers (Molloy et al., 1992). In both studies, fibers 
that were severely deficient in Ifm-TmI tropomyosin did 
not generate significant isometric force in activating condi- 
tions, nor were they able to produce any appreciable 
power despite organized fibrillar cores measuring ~20% 
that of wildtype (electron micrographs of skinned fibers 
showed that fibrillar cores of the transheterozygotes re- 
mained intact after detergent treatment; data not shown). 
The approximate fourfold increase in dynamic stiffness of 
the transheterozygous fibers after ATP depletion (i.e., 

rigor) indicated that actomyosin cross-bridges can form in 
these mutant muscles and argues that thick and thin fila- 
ments in the organized core of the mutant fibrils are spa- 
tially oriented to allow cross-bridge interactions to occur. 
We consider four possible explanations which singly or in 
combination may account for the relaxed dynamic re- 
sponses of the mutant fibers. 

(a) Hill et al. (1980) suggested that two forms of actin, 
inactive and active, exist in equilibrium with each other 
until the rise of Ca 2+ and the cooperative binding of strong 
myosin cross-bridges shifts the equilibrium in favor of the 
active state of actin. Weak myosin cross-bridges bound to 
"inactive" actin must be formed first and are a prerequi- 
site for the formation of strong myosin cross-bridges (Cha- 
lovich et al., 1991). According to the allosteric model (re- 
viewed in Chalovich, 1993) Ifm-TmI associated with the 
thin filament may be needed to position actin in an "active" 
conformational state for the formation of active, force- 
generating cross-bridges. Thus, the relaxed responses we 
observed in fibers deficient in Ifm-TmI may result from 
some actin remaining in an inactive state even in the pres- 
ence of Ca 2+. 

(b) Direct measurement of actin stiffness in isolated thin 
filaments (Kojima et al., 1993) indicated thin filament 
compliance is nearly twofold greater in the absence of tro- 
pomyosin than in its presence. The comparatively high 
compliance of Ifm-TmI deficient thin filaments may be 
due to loss of actin rigidity, and thus, the ability to transmit 
active force during length perturbations may be compro- 
mised in the transheterozygous fibers. 

(c) Granzier and Wang (1993) proposed a passive 
stretch sensor, the connecting filament (likely to be projec- 
tin, i.e., Drosophila titin) links the Z bands to the thick fil- 
aments. Upon muscle stretch, projectin transmits a strain 
to the thick filament which promotes the formation of 
strong myosin crossbridges. The shortened sarcomeres 
and the tandem array of Z bands in the transheterozygous 
fibers suggest the continuity along the length of the myo- 
fibrils is perturbed and this may impact on the function of 
projectin. Therefore, the relaxed response of the transhet- 
erozygous fibers might be partially the result of disrupted 
connecting filaments which are unable to transmit suffi- 
cient strain to the thick filaments to induce strong myosin 
cross-bridge formation. 

(d) There may be redundancies in the function of the 
tropomyosin isoforms, such that TnH-33 and -34 substitute 
for the standard tropomyosin in the mutants, as these iso- 
forms may also bind actin through their tropomyosin do- 
main. In this scenario, the proline-rich COOH-terminal 
domain of TnH which lies adjacent to the rear cross-bridge 
in Lethocerus thin filaments may sterically block or inter- 
fere with actomyosin interactions (Reedy et at., 1994a); al- 
ternatively, it is also possible that the tropomyosin domain 
of TnH may block the binding site on actin for strong, 
force generating crossbridges. The expectation from this 
idea is that reducing TnH isoforms in a fiber severely de- 
pleted for Ifm-TmI should increase the dynamic stiffness. 
We did see a trend in this direction but the change was not 
significant (Table II, 79 -+ 30 N m -2 with TnH [TmlCl°/ 
Ifm(3)3] vs. 92 _+ 18 N m -2 with reduced TnH [Df(3R) 
eaS°22/Ifm(3)3)]. An expanded study measuring the dy- 
namic stiffness of more fibers may confirm this trend. 
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Stretch Activation of the IFM Is Not Affected in a 
TnH Heterozygote 

The overall effect on flight ability and flight muscle struc- 
ture and power output caused by reducing the TnH iso- 
forms by ,~50% was unexpectedly mild, particularly when 
compared with the structure and power output of fibers 
with ,'-~50% Ifm-TmI. As noted above, reducing the levels of 
TnH-33 and -34 tropomyosin (as in P[TmI+]Df(3R)eaS°22/ 
+ ,  Fig. 4, c and d) only reduced the diameter of myofibrils 
but did not cause the substantial filament splaying and ac- 
companying structural disruptions observed in the TmI 
heterozygote (TmICl°/+, Fig. 4, e and f). There was no dif- 
ference in maximal isometric tension in the TmI vs. TmII 
deficient fibers (0.84 _+ 0.7 kN/m 2 for TmICt°/+ vs. 0.90 _+ 
0.6 kN/m 2 for P[TmI+]Df(3R)ea5°22/+); however, the force 
levels in all Tm mutants analyzed here are very low and 
differences would be difficult to resolve. In contrast, dif- 
ferences in maximal power output were reasonably well 
resolved in the mutants and our results showed TmII mu- 
tants were much less affected than TmI mutants (73% of 
wild type in TmH heterozygote vs. 32% of wild type in 
Tml heterozygote, see Table II). The 27% power reduc- 
tion in the TmII mutants was not severe enough to prevent 
flight (Table II). These results show the IFM can tolerate a 
significant reduction in TnH with little effect on function. 

This finding does not appear to support the postulated 
role of  TnH in the so called "stretch sensor" which may 
form a link between the thick and thin filaments and be 
important for the response to stretch (Reedy et al., 1994a; 
Tohtong et al., 1995). One would have predicted a more 
dramatic effect in a fiber with a 50% reduction in a stretch 
sensor component. However, it will be necessary to ana- 
lyze IFM which completely lacks the TnH isoforms to crit- 
ically test the role of TnH in stretch activation. The mild 
effect on power output we observed in the TmH heterozy- 
gote may be a consequence of the involvement of multiple 
proteins in the response to stretch. This seems likely since 
TnH is also found in muscle which is not stretch activated 
(Peckham et al., 1992). Likely candidates for additional 
stretch sensor components include the IFM-specific iso- 
forms of troponin subunit I (Barbas et al., 1991; Beall and 
Fyrberg, 1991) and arthrin (ubiquitinated actin) (Ball et 
al., 1987). Another interesting possibility is that a link be- 
tween the Drosophila myosin regulatory light chain (MLC-2) 
and actin or arthrin exists as suggested by recent NMR 
studies (Trayer, I., J. Moore, D. Timson, and D.W. Maughan, 
unpublished results). 

Activation of muscle contraction in insect flight muscle 
is a coordinated series of  events that relies not only on the 
Ca2÷-sensitive interaction of myosin and actin, but also on 
the coordinated response of a number of proteins to me- 
chanical stretch. In a recent review of tropomyosin func- 
tion, Reedy et al. (1994b) suggested that tropomyosin's 
role in thin filament regulation may be expanded to that of  
both a steric blocking protein and an allosteric effector of 
actin conformation change. One possibility for the IFM is 
that this dual role is divided between the two types of tro- 
pomyosin, such that Ifm-TmI effects a conformational 
change in actin and the TnH isoforms sterically block acto- 
myosin interactions. 
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