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inTRODUCTiOn

Mechanical forces are powerful regulators of biology and disease. In the vasculature, the expres-
sion of particular cellular phenotypes appears to depend not only on a combination of intrinsic 
genetically programed biology but also on local hemodynamic environmental factors induced by 
blood flow (Nerem and Girard, 1990). A major component in the spectrum of forces experienced 
by cardiovascular tissue is the friction force exerted by the blood flow on the endothelium. Through 
multiple dedicated receptors, endothelial cells are able to sense the magnitude and directionality 
of this force and of the resulting wall shear stress (WSS), and to transduce this mechanical signal 
into biochemical signals, altering in turn cellular function. Interestingly, while physiologic WSS 
maintains vascular homeostasis (Figure 1A), WSS abnormalities often correlate with disease states 
(Figure 1B). While hemodynamic pathways have been identified in some cardiovascular pathologies 
such as calcific aortic valve disease (CAVD) (Butcher et al., 2008), aneurysms (Humphrey et al., 
2015), atherosclerosis (Cunningham and Gotlieb, 2005), and intimal hyperplasia (IH) (Haruguchi 
and Teraoka, 2003), the clinical management of these disorders remains focused on addressing their 
symptoms via aggressive modalities rather than blocking the flow-induced pathological cascade. As 
a result, current treatments are often palliative and ignore the driving biological processes. In this 
context, the elucidation of the cause-and-effect relationships between cardiovascular biology and 
hemodynamics has the potential to advance the understanding of disease progression and to enable 
new diagnosis and treatments.

MECHAnOBiOLOGY: A pLATFORM FOR EFFECTiVE DiSEASE 
MAnAGEMEnT STRATEGiES

Knowledge gained from mechanobiology could contribute to the development of more effective 
treatment modalities articulated around two basic strategies.

identification of Target Molecular pathways for non-invasive 
Disease Management
Principle
The effectiveness of a pharmacological treatment depends on the ability to identify potential target 
molecules involved in the early stage of the disease before the pathology attains a point of no return. 
Unfortunately, the current state of the science on many cardiovascular disorders still does not permit 
to support a particular pharmacological target. As it is the case with many cardiovascular patholo-
gies, the sensing of flow abnormalities and their transduction into downstream pathological cascades 
are the initial triggering events of disease development. The identification of key flow-sensitive 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2016.00079&domain=pdf&date_stamp=2016-10-10
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://dx.doi.org/10.3389/fbioe.2016.00079
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:philippe.sucosky@wright.edu
http://dx.doi.org/10.3389/fbioe.2016.00079
http://www.frontiersin.org/Journal/10.3389/fbioe.2016.00079/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2016.00079/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2016.00079/abstract
http://loop.frontiersin.org/people/381920/overview
http://loop.frontiersin.org/people/381902/overview
http://loop.frontiersin.org/people/322034/overview


FiGURE 1 | Cardiovascular mechanobiology and potential mechanobiology-based therapies for cardiovascular disease: maintenance of tissue 
homeostasis under normal hemodynamics (A), hemodynamic pathway of disease development under perturbed flow conditions (B), targeted cell 
therapy aimed at blocking the flow-induced disease pathway (C), and flow normalization aimed at preventing the activation of the flow-induced 
disease pathway (D).
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molecules responsible for transducing alterations in the sur-
rounding mechanical environment into the initial inflammation 
and remodeling biological responses would enable the develop-
ment of targeted, non-invasive pharmacological cellular therapies 
aimed at blocking the mechanobiological cascade (Figure 1C).

Example: Calcific Aortic Valve Disease
While the formation of calcific nodules on the aortic surface of 
the valve leaflets has been described historically as an age-related 
degenerative disorder, recent progress in valvular mechanobiol-
ogy has shed new light on the potential role played by blood flow 
abnormalities in the early inflammatory precursor events to calci-
fication (Balachandran et al., 2011). The identification of TGF-β1 
and BMP-4 as key flow-sensitive molecules and key drivers of 

valvular inflammation (Sucosky et  al., 2009) and the ability of 
their inhibitors (SB-431542 and noggin, respectively) to reduce 
or completely block the downstream flow-induced inflamma-
tory response (Hoehn et al., 2010; Sun and Sucosky, 2015) have 
suggested the use of such inhibitors in targeted pharmacological 
modalities aimed at preventing the onset or slowing the progres-
sion of CAVD.

Hemodynamic normalization
Principle
Another potential strategy is to address directly the flow abnor-
malities responsible for the downstream biological cascade and 
to reverse the local hemodynamics to its physiologic baseline 
level. The identification of the specific hemodynamic factors 
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TABLE 1 | Clinical translation of mechanobiology: research needs, enabling technologies and methodologies, and challenges.

Research needs Hemodynamic characterization Mechanobiological response elucidation Clinical translation

Enabling 
methodologies and 
technologies

•	 Computational modeling (CFD, 
FSI)

•	 In vitro measurements (LDV, PIV)
•	 In vivo measurements (4D MRI)

•	 Bioreactor technology (shear stress bioreactors, 
organ culture systems, microfluidic devices)

•	 Tissue/cell cultures
•	 Biological assessment (RT-PCR, immunoblotting, 

immunostaining, zymography)

•	 Biostatistics
•	 Molecular inhibitors identification 

(in vitro and in vivo studies)
•	 Flow normalization device design and 

development

Challenges •	 Patient-specific anatomies and 
boundary conditions

•	 Spatial and temporal resolutions
•	 Cost

•	 Maintenance of sterility
•	 Bioreactor level of sophistication
•	 Multi-scale biological characterization  

(cell/tissue-level)

•	 Drug safety
•	 Device thrombogenicity, biocompatibility
•	 FDA approval
•	 Cost
•	 Effectiveness

CFD, computational fluid dynamics; FSI, fluid–structure interaction; LDV, laser Doppler velocimetry; PIV, particle image velocimetry; MRI, magnetic resonance imaging; RT-PCR, 
real-time polymerase chain reaction.
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(e.g., WSS magnitude/directionality, pressure) responsible for the 
pathological response and their normalization could potentially 
slow down the disease process and limit or completely block its 
development (Figure 1D).

Example: Intimal Hyperplasia in Vascular Access
The main mode of failure of hemodialysis vascular access is 
the progressive occlusion of the vein through which arterial 
flow is shunted. The initial event leading to stenosis is IH, a 
disorder causing the thickening of the innermost layer of the 
vein wall and whose etiology has been associated with the 
flow disturbances caused by the redirection of the arterial flow 
through the vein (Glagov, 1994). Strategies aimed at preserving 
the shunt while limiting the remodeling response of the vein 
via flow normalization have been recently developed and are 
currently being tested. One such effort consists of implant-
ing a valve device at the anastomosis in order to isolate the 
arteriovenous shunt from the rest of the circulation (thus 
normalizing venous flow) between hemodialysis sessions and 
to allow the passage of blood through the graft (thus achieving 
normal vascular access) during hemodialysis sessions (McNally 
et  al., 2014). Rather than blocking the remodeling pathway 
leading to stenosis pharmacologically, this strategy relies on the 
normalization of the flow to block the downstream biological 
cascade.

CHALLEnGES, KnOWLEDGE GAp,  
AnD nEEDS

The success of the strategies outlined above relies on the ability to 
resolve the mechanobiological processes involved in disease and 
to translate the knowledge gained into a clinical solution. These 
points are discussed below and summarized in Table 1.

Hemodynamic Characterization
The first requirement in mechanobiological studies is the defi-
nition of the normal (i.e., baseline) hemodynamic stress state 
and of the hemodynamic alterations triggering a pathological 
state. The characterization of blood flow is challenging due to 
its three-dimensionality, unsteadiness, turbulence, and strong 

coupling with the surrounding compliant vasculature (Dasi 
et  al., 2009). Nevertheless, the emergence of state-of-the-art 
imaging techniques and flow measurement and modeling tools 
has provided new opportunities to carry out this characteriza-
tion. In the clinic, magnetic resonance imaging has been used to 
visualize and quantify blood flow in individual patients (Markl 
et al., 2016). While this approach is effective in capturing global 
patient-specific flow characteristics, most equipment provides 
relatively low spatial resolution, which restricts its implementa-
tion to large anatomies and prevents the precise quantification 
of velocity gradients and hemodynamic stresses. In the labora-
tory, standard flow measurements techniques, such as laser 
Doppler velocimetry and particle image velocimetry, can be 
used to characterize the flow at higher temporal and spatial 
resolutions (Sengupta et al., 2012; Seaman et al., 2014, 2015). 
However, such techniques often require complex setups and 
flow loops aimed at mimicking the native flow and anatomy and 
only provide flow information at discrete points or discrete sec-
tions within the anatomy. Lastly, computational fluid–structure 
interaction models have been developed to capture blood flow at 
high resolutions in compliant anatomies (Peskin and McQueen, 
1992; Borazjani et al., 2013; Cao and Sucosky, 2015, 2016; Cao 
et  al., 2015). However, the current computational capabilities 
still prevent the integration of realistic anisotropic and non-
linear material models, complex patient-specific anatomies, 
and flow boundary conditions. The continuous increase in 
computational power and the increasing number of commercial 
fluid–structure interaction solvers are expected to lift most of 
those limitations in the near future.

Tissue and Cell Exposure 
to Mechanical Forces
The characterization of the biological response following tissue 
or cell exposure to a particular mechanical signal is another 
important component of mechanobiology. Typically, cells and 
tissue specimens have been conditioned mechanically using com-
mercial and in-house bioreactors. While early devices (e.g., paral-
lel flow chamber, pressure chamber) were able to generate only 
basic mechanical stimuli (e.g., unidirectional steady WSS, steady 
pressure), current bioreactors are able to mimic more closely the 
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complexity of the native hemodynamic environment. Examples 
of such devices are single and double cone-and-plate bioreactors 
to expose vascular tissue to single-sided or double-sided pulsatile 
WSS (Sucosky et al., 2008; Sun et al., 2011), stretch bioreactors 
to subject cells or tissue to desired cyclic stretch waveforms 
(Balachandran et al., 2006), and stretch-and-pressure bioreactors 
to selectively apply either cyclic pressure, cyclic stretch, or both 
on tissue samples (Thayer et  al., 2011). Following mechanical 
conditioning, the biological characterization is typically carried 
out using standard biological assays and protein quantification 
methods (e.g., immunoblotting, immunohistochemistry, zymog-
raphy, RT-PCR). The implementation of such devices has shed 
new lights on the mechano-etiology of CAVD (Balachandran 
et al., 2009, 2010; Sun et al., 2012, 2013), aortic dilation (Atkins 
and Sucosky, 2014; Atkins et al., 2014, 2016), and atherosclerosis 
(Dai et al., 2004).

Clinical Translation
While mechanobiological studies have already contributed 
immensely to the understanding of cardiovascular patholo-
gies, only few have been translated into clinical solutions. 
Major challenges include the complexity of interpretation of 
biological data, the assessment of the isolated and synergistic 
roles of mechanosensitive molecules in the disease process, the 
identification of effective, but safe, molecular inhibitors aimed 
at blocking the mechanobiological cascade, and the design of 
effective procedures and devices to normalize blood flow. While 
those complex issues are still current, the recent realization 
of the potential use of mechanobiology as a discovery tool 
for novel treatments and diagnosis modalities has motivated 
some collaborative efforts between the clinical and engineering 
fields. Those synergies are necessary to complement the basic 
science of mechanobiology and to elevate it to effective clinical 
solutions.

COnCLUSiOn

With the continuous progress in flow characterization techniques, 
bioreactor technologies and biological assessment methodolo-
gies, mechanobiology has emerged as a potential tool to deliver 
the next generation of therapies in cardiovascular disease. The 
characterization of mechanical cues promoting cardiovascular 
pathogenesis, the identification and modeling of key mechano-
sensitive molecules and molecular pathways involved in the early 
stage of disease, and the integration of this knowledge into patient-
specific flow models could provide new therapeutic modalities 
and predictive capabilities that will transform clinical decision-
making and personalized care in cardiovascular medicine.
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