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Abstract

Background: Glucocorticoid (GC) treatment has variable effect in sepsis. This may be
explained by decreased expression or function of the glucocorticoid receptor (GR).
The aim of this study was to determine GR expression and binding capacity in
patients during and after sepsis.

Methods: In this prospective, non-interventional clinical study, peripheral blood and
clinical data were collected from 20 adult patients at five timepoints during sepsis
and 5–13 months after recovery. GR expression and binding capacity were assessed
by flow cytometry.

Results: GR expression was higher in T lymphocytes from patients with septic shock
compared to healthy subjects (p = 0.01). While there was no difference in GR
expression between GC-treated and non-treated patients, GR binding capacity was
lower in GC-treated patients at admission compared to healthy subjects (p ≤ 0.03).
After the acute inflammation inflammatory phase, GR binding capacity was still lower
in neutrophils of GC-treated patients, compared to healthy subjects (p = 0.01). On
admission, GR binding capacity in T lymphocytes and neutrophils was inversely
correlated with noradrenaline dose and lactate (p ≤ 0.03).

Conclusions: Our data suggest that GR expression is increased in T lymphocytes
during septic shock regardless of GC treatment, while GR binding capacity is
decreased in neutrophils in GC-treated patients. As neutrophils are the predominant
circulating leucocyte in septic shock, their decreased GR binding capacity may
impede the response to exogenous or endogenous glucocorticoids.

Keywords: Septic shock; Glucocorticoid receptor; Dexamethasone; Hydrocortisone;
Cortisol; Human
Background
Steroid treatment for septic shock remains controversial due to contradictory results

from clinical trials [1]. The main effects of endogenous and exogenous glucocorticoids

(GC) are exerted through their binding to the intracellular glucocorticoid receptor

(GR) present in all cells [2]. During early human sepsis, cortisol concentrations grad-

ually rise with higher levels being inversely related to the chance of survival [3]. It is

generally inferred that increased circulating cortisol during critical illness is a conse-

quence of increased HPA axis activity and increased levels of ACTH, although ACTH

levels have been found at similar levels or even below those of healthy controls [4–6].
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These findings suggest that rather than an increased production of cortisol, elevated

cortisol levels are a consequence of a dysfunctional cortisol clearance from circulation

which results in the supranormal cortisol levels found in the critically ill patients. In-

deed, the expression and activity of A-ring reductases (the principal route of cortisol

breakdown in humans) and 11β-HSD type 2 (converting cortisol to cortisone, inert to

cells) were found reduced in the liver but not in the adipose tissue [6]. This raises the

question whether the glucocorticoid receptor also has a decreased expression or func-

tion during critical illness. The importance of GR was recently illustrated by increased

mortality, hemodynamic instability, and pro-inflammatory cytokine production found

in mice, specifically lacking endothelial GR, subjected to endotoxic shock [7]. Our

group recently showed that GR binding capacity was decreased in neutrophils during

endotoxic shock in mice [8]. Previous quantitative studies of GR in critical illness inves-

tigated mRNA expression levels [9, 10], which precludes conclusions about the protein

expression and subsequent receptor function. To the best of our knowledge, the effect

of human sepsis on GR protein expression and GR binding capacity has not been inves-

tigated previously. The aim of this explorative, observational study was thus to describe

GR expression and binding capacity in circulating T lymphocytes and neutrophils, sam-

pled from peripheral blood of adults during septic shock and after recovery.
Methods
Patients and methods

This multicenter study was approved by the Ethical Committee for Human Research in

Uppsala, Sweden.
Patients and healthy subjects

Twenty patients were recruited between February 2012 and May 2013 in the general

intensive care units (ICU) of the Sahlgrenska University Hospital and the Kungälv

Hospital. During this period, 146 patients with septic shock were treated in the two

ICUs, where hydrocortisone is used according to the Surviving Sepsis Campaign guide-

lines [11] at the discretion of the clinician. The selection of patients was influenced in a

non-systematic way over time by the availability of laboratory resources. Inclusion cri-

teria were (i) age over 18, (ii) sepsis according to the American-European consensus

criteria [12], and (iii) treatment with at least one vasopressor. Exclusion criteria were (i)

known infection with human immunodeficiency virus or hepatitis B or C, (ii) chronic

treatment with GCs, (iii) participation in any investigational drug study within 4 weeks

preceding the study period, and (iv) survival expected to be shorter than 3 days. In-

formed consent was initially obtained via next of kin and later directly from survivors.

Consenting healthy subjects were recruited among non-smoking laboratory and hos-

pital staff without any chronic or acute illness and with no medication.

Blood and clinical data were collected three times during septic shock, at T0

within 24 h of ICU admission, T1 24 h after T0, and T2 48–120 h after T0 de-

pending on logistics. Then, the blood was sampled when the acute inflammatory

phase was considered to be over, and the patient was stable without support to

vital functions at T3, 4–19 days after ICU admission. Finally, the blood was sam-

pled after recovery at T4, 5–13 months after the patient had been discharged from
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the ICU. Survival was defined as alive 180 days after ICU admission. GR data from

one patient at T0–T2 were lost due to technical reasons; one patient was lost to

sampling at T3 and one to follow up at T4. One patient was excluded from sam-

pling at T4 due to chronic GC treatment at that time. Clinical variables relevant

for the degree of septic shock and organ dysfunction (blood pressure, heart rate,

lactate, ScvO2, temperature, a-pH, base excess, serum creatinine, serum bilirubin,

Glasgow Coma Scale (GCS) score, Simplified Acute Physiology Score (SAPS) III

score, type and dose of vasoactive/inotropic agent) were registered for all time-

points where applicable. Blood gas values and clinical laboratory data (CRP, leuco-

cyte and platelet counts, and microbiological cultures) were obtained from

laboratory records. For plasma and serum, blood samples were centrifuged at

1500g for 15 min and plasma was stored in −70 °C until analysis.
Cell preparation

Whole blood aliquots were centrifuged with phosphate-buffered saline (PBS) at 1500g

and 4 °C for 10 min and subjected to erythrocyte lysis using BD FACS Lysing Solution

(BD Biosciences, San José, CA, USA) for 15 min at room temperature. Leucocytes were

then washed again twice with PBS and kept on ice until the total number of leucocytes

was determined using an automated cell counter (Sysmex KX-21N, Kobe, Japan). For

flow cytometry, a total of 5 × 105 cells were added to each well on a polypropylene con-

ical 96-well plate (Thermo Fisher Scientific, Rochester, NY, USA) and stained with

fluorochrome-conjugated antibodies binding to cell surface markers after Fc-blockage

(Beriglobin®, CSL Behring, Denmark), anti-CD4 v450 (RPA-T4, BD Horizon™, BD Bio-

sciences), anti-CD19 PerCP (4G7), anti-CD3 PerCP (SK7, BD Biosciences), anti-CD56

PE (B159), anti-CD16 Alexa Fluor® 647 (3G8), anti-CD8 APC (RPA-T8), and anti-CD14

PE (M5E2 BD Pharmingen™). Surface staining was performed at +4 °C in the dark for

20 min, followed by washing twice in FACS buffer (PBS supplemented with 100 mM

EDTA, 1 % fetal calf serum, and 0.1 % NaN3).

Cells were fixed and permeabilized for intracellular staining using a Fixation/

Permeabilization kit (eBioscience, San Diego, CA, USA) at +4 °C for 30 min. After wash-

ing twice in permeabilization buffer, Fc-blockage was performed in permeabilization buffer

at +4 °C in the dark for 10 min. GR was labeled using anti-GR mAb (5E4, AbD Serotec,

Dusseldorf, Germany) in permeabilization buffer at +4 °C in the dark for 30 min, followed

by two washes with permeabilization buffer. Fluorescein isothiocyanate (FITC)-labeled

mouse IgG1 isotype control (G18-145, BD Pharmingen™) was used as a negative control.

For analysis, the cell pellets were resuspended in FACS buffer.

A separate set of samples for analysis of GR binding capacity was surface stained as de-

scribed above but not permeabilized. Instead, cell pellets were resuspended in 10 μL FACS

buffer containing 20 nM FITC-conjugated dexamethasone (FITC-Dex) (Molecular Probes,

Invitrogen, Carlsbad, CA, USA) [13]. Negative control samples were resuspended in 10 μL

FACS buffer containing 20 nM dexamethasone (Merck, Darmstadt, Germany). After incu-

bation at +37 °C in the dark for 30 min, cells were washed twice in FACS buffer and fixed

with 4 % paraformaldehyde at room temperature for 15 min, then resuspended in FACS

buffer and analyzed by flow cytometry. In an initial competitive experiment to exclude

non-specific binding by FITC-Dex, cells were incubated with non-conjugated
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dexamethasone first, followed by a second incubation with FITC-Dex, which revealed a

non-specific binding of less than 7 % (data not shown).
GR analysis

GR expression and binding capacity in different leucocyte subsets were assessed using a

FACS CantoII (BD Biosciences) equipped with Diva software (BD Biosciences). For

each sample, at least 10,000 events were collected in the lymphocyte gate. Fluorescence

was compensated using BD Anti-mouse CompBeads (BD Biosciences). For control of

day-to-day variations of the assay, leucocytes from one healthy blood donor were in-

cluded in each analysis. This internal standard was prepared sterile at one time as fol-

lows. Peripheral blood mononuclear cells (PBMCs) were separated using Lymphoprep

(Fresenius Kabi, Oslo, Norway), washed in ice cold sterile PBS, and frozen in heat inac-

tivated fetal calf serum with 15 % DMSO at a rate of −1 °C/min using a Nalgene® Mr.

Frosty™ Freezing Container (Thermo Scientific, Waltham, MA, USA). For each analysis,

a vial of the internal standard was defrosted on ice and washed in FACS buffer followed

by surface and intracellular staining together with each patient sample. Data was fur-

ther processed using FlowJo software (Tree Star, Inc., Ashland, VA, USA).
Cytokine analysis

Cytokines, granulocyte colony-stimulating factor (G-CSF), intracellular adhesion mol-

ecule 1 (ICAM-1), interferon alpha (IFN-α), interferon gamma (IFN-γ), interleukin 1

alpha (IL-1α), interleukins (IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-17A),

interferon gamma-induced protein 10 (IP-10), latency-associated peptide (LAP),

monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 1 alpha

and beta (MIP-1α, MIP-1β), tumor necrosis factor (TNF), and E-selectin, were ana-

lyzed in plasma using the Human Inflammation 20-plex RTU FlowCytomix Kit

(eBioscience) according to manufacturer’s recommendations. In short, 25 μL of

plasma was incubated with the bead mixture and biotin-conjugate at room

temperature for 2 h, shaking at 500 rpm. After wash, the samples were incubated with

50 μL Streptavidin-PE solution at room temperature for 1 h, shaking at 500 rpm. After

final washes, the samples were analyzed in 280 μL assay buffer using a FACS CantoII

(BD Biosciences).
Cortisol analysis

For quantification of cortisol, plasma was analyzed using a commercially available EIA

kit (DetectX® Cortisol, Arbor Assays, MI, USA), according to manufacturer’s instruc-

tions. Optical density was read at 450 nm using a Spectra Max 340PC (Molecular De-

vices, Sunnyvale, CA, USA) running the SoftMax Pro 5.2 software.
Statistical analysis

Results were graphically presented with individual plots as well as group geometric

means. Grouping of patients into GC-treated and GC-non-treated was based on GC

treatment having been instituted or not at the time when samples were taken. Differ-

ences between groups were tested with the two-tailed Mann-Whitney test (GaphPad

Prism 6.0 for Windows, GraphPad Software Inc, La Jolla, CA, USA). Associations
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between clinical parameters and GR expression or binding capacity at T0 in T lympho-

cytes and neutrophils were evaluated using the Spearman correlation test. The analyses

were done using the R environment for statistical computing (version 3.1) [14] and the

coin add-on package (version 1.1) [15]. p values ≤ 0.05 were considered statistically sig-

nificant. Given the explorative nature of the study, multiple comparisons were not cor-

rected for.
Results
Patient and healthy subject characteristics

Characteristics of the patients and the healthy subjects are listed in Table 1. Clin-

ical parameters related to severity of shock are listed in Table 2. Fourteen of the

20 patients were treated with GC at some point, and six patients did not receive

GC at any time. Two patients were GC-non-treated until T2 and T3, respectively.

Of the clinical parameters, the plasma level of lactate and the dosage of nor-

adrenaline were higher in the GC-treated than in the GC-non-treated patients at

T0 (p = 0.004 and 0.01, respectively). Other shock-related parameters, however,

did not differ between these groups. Out of 14 GC-treated and 6 GC-non-treated

patients, 5 and 3 were dead after 180 days, respectively.
Glucocorticoid receptor expression is elevated in T lymphocytes

The GR expression in T lymphocytes and neutrophils showed a high intra-

interindividual variation among patients as illustrated in Fig. 1a. Compared to healthy

subjects, GR expression was higher in T lymphocytes (p = 0.01) but not in neutrophils

of patients during the shock phase (T2). After recovery (T4), GR expression in T
Table 1 Demographics of patients and healthy subjects

Parameter GC (n = 14) No GC (n = 6) Healthy subjects (n = 16)

Men/women 7/7a 3/3 3/12b

Age, mean (SD) years 62.2 (12.3) 62.3 (19.1) 45.4 (11.1)

Source of sepsisc

Lungs 9 1

Abdomen 2 2

Wound 1 2

Urinary tract 2 1

Unknown 0 1

SAPS III, mean (SD) 67.6 (17.2) 65.9 (15.1)

Alive/all at

T0 12/12 8/8

T1 12/12 8/8

T2 13/13 7/7

T3 12/14 6/6

T4 9/14 3/6

GC patients treated with glucocorticoids, No GC patients not treated with glucocorticoids at any time
aTwo patients were GC-non-treated until T2 and T3, respectively
bGender and age were not registered from one healthy subject
cOne patient had sepsis from two suspected sources



Table 2 Clinical data related to shock

Parameter GC No GC

T0 T1 T2 T0 T1 T2

Noradrenaline dose [μg/kg/min] 0.45 (0.12, 0.87)a 0.55 (0, 1.46)a 0.18 (0, 1.1) 0.15 (0.09, 0.25) 0.10 (0, 0.32) 0.05 (0, 0.23)

Mean blood pressure [mmHg] 71 (60, 88) 68 (55, 90) 83 (66, 112) 69 (34, 90) 75 (62, 90) 86 (70, 100)

Heart rate [bpm] 105 (75, 138) 106 (35, 125) 92 (69, 120) 92 (66, 146) 96 (55, 140) 78 (65, 96)

ScvO2 [%] 74 (57, 89) 73 (48, 89) 76 (47, 91) 79 (69, 85) 75 (70, 87) 72 (63, 76)

Temperature [°C] 37.3 (35.4, 38.3) 37.6 (36.3, 38.8) 37.0 (35.7, 38.7) 37.3 (33.0, 38.9) 36.5 (33.3, 38.4) 36.6 (34.9, 37.9)

a-pH 7.29 (7.18, 7.43) 7.31 (7.13, 7.49) 7.34 (7.22, 7.45) 7.35 (7.26, 7.42) 7.35 (7.26, 7.47) 7.37 (7.30, 7.41)

Base excess −5.8 (−10, 1.3) −3.9 (−15, 4.3) 0.4 (−5.4, 8.0) −3.1 (−6.8, 0.8) −1.6 (−10, 6.6) 0.2 (−2.8, 3.4)

Lactate 5.5 (1.3, 14)a 3.3 (1.1, 8.6) 1.8 (0.8, 3.8) 2.3 (1.3, 3.3) 1.9 (1.0, 3.2) 1.3 (0.6, 2.2)

LPK 8.3 (1.3, 30) 11 (1.3, 23) 12 (1.5, 22) 14 (1.3, 28) 11 (3.3, 24) 9.4 (3.9, 18)

TPK 192 (52, 366) 125 (34, 277) 67 (9.4, 148) 192 (29, 473) 157 (28, 343) 133 (30, 239)

CRP 167 (49, 290) 215 (52, 410) 154 (46, 330) 213 (140, 336) 247 (92, 328) 151 (46, 315)

Numbers are given as median (range)
aDifference between patients treated with glucocorticoids (GC) and patients not treated with glucocorticoids (No GC), p < 0.05
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Fig. 1 Glucocorticoid receptor (GR) expression in T lymphocytes and neutrophils from peripheral blood
sampled during the initial phase of sepsis (T0–T2), after the acute inflammatory phase (T3), after recovery
(T4), and from healthy subjects (HS). GR expression was determined by flow cytometry as mean fluorescence
intensity (MFI) and normalized to an internal standard. a Plots represent group means (black) and
individual patients (gray). b Patients divided into groups as glucocorticoid (GC)-treated and non-treated.
Two patients were GC-non-treated until T2 and T3, respectively. c Patients divided into groups as survivors and
non-survivors at 180 days. Difference between patients and healthy subjects (HS) was tested using the two-tailed
Mann-Whitney test. *p< 0.05
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lymphocytes had retroceded to the level seen in healthy subjects. There was no differ-

ence in GR expression between GC-treated and GC-non-treated patients or be-

tween survivors and non-survivors at the different timepoints (Fig. 1b, c). However,

the relative increase during septic shock (T0–T2) was higher in CD4+ T lympho-

cytes of survivors compared to non-survivors (p = 0.03). At T0, GR expression in T

lymphocytes did not correlate with any of the clinical parameters, but in neutro-

phils, it was inversely correlated with a-pH (p = 0.03) and base excess (p = 0.02).



Bergquist et al. Intensive Care Medicine Experimental  (2015) 3:23 Page 8 of 15
Glucocorticoid receptor binding capacity is reduced in neutrophils

The GR binding capacity in all patients is illustrated in Fig. 2a. During septic shock, it

did not differ from the GR binding capacity found in healthy subjects. However, when

the acute inflammation had ceased (T3), GR binding capacity was lower in neutrophils

of GC-treated patients compared to healthy subjects (p = 0.01). At the first measure-

ment after admission (T0), GR binding capacity was lower in T lymphocytes (p = 0.008)

and neutrophils (p = 0.03) of GC-treated patients compared to GC-non-treated patients

(Fig. 2b). Non-survivors and survivors differed (p = 0.04) in evolution of GR binding
Fig. 2 Glucocorticoid receptor (GR) binding capacity in T lymphocytes and neutrophils from peripheral blood
sampled during the initial phase of sepsis (T0–T2), after the acute inflammatory phase (T3), after recovery (T4), and
from healthy subjects (HS). GR binding capacity (DEX) was determined by flow cytometry as mean fluorescence
intensity (MFI) of fluorescence-labeled dexamethasone and normalized to an internal standard. a Plots represent
group means (black) and individual patients (gray). b Patients divided into groups as glucocorticoid (GC)-treated
and non-treated. Two patients were GC-non-treated until T2 and T3, respectively. c. Patients divided into groups
as survivors and non-survivors at 180 days. Difference between patients and healthy subjects (HS) was tested using
the two-tailed Mann-Whitney test. *p< 0.05. Difference between GC-treated and non-treated patients was tested
using the two-tailed Mann-Whitney test. †p< 0.01
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capacity in neutrophils as non-survivors showed a relative increase while survivors

showed a relative decrease between septic shock (T0) and their stabilized condition

(T3). At T0, GR binding capacity in T lymphocytes was inversely correlated with IL-6,

noradrenaline dose, and lactate (p ≤ 0.02), and in neutrophils, it was inversely correlated

with noradrenaline dose and lactate (p ≤ 0.03) (Fig. 3).
T lymphocyte numbers remain low after recovery

The numbers of leucocytes on admission (T0) and after sepsis recovery (T4) are pre-

sented in Table 3. T lymphocytes were decreased, and neutrophils were increased after

admission in septic shock (T0). After recovery (T4), patients treated with GC during

sepsis still showed lower numbers of T and B lymphocytes compared to healthy sub-

jects while neutrophil numbers were similar to the healthy subjects in both groups.
Cortisol and cytokine response

Shortly after ICU admission (T0), there were high levels of cortisol present in GC-

treated patients as compared to healthy subjects (p = 0.01), reflecting both endogenous

cortisol and hydrocortisone (Fig. 4). Most of the 20 cytokines analyzed displayed the

highest concentration at T0, followed by a decline to levels similar to those of healthy

subjects (Fig. 5). There were no significant differences between GC-treated and GC-

non-treated patients although IL-6, IL-8, MCP-1, G-CSF, IL-17A, and IL-10 appeared

higher in GC-treated patients, whereas TNF and IL-12p70 appeared higher in GC-non-

treated patients at T0.
Discussion
The main findings of this study are that GR expression is upregulated in T lymphocytes

during septic shock regardless of steroid treatment and that GR binding capacity is
Fig. 3 Scatter plots representing inverse correlations between plasma IL-6 (pg/mL), lactate and noradrenaline dose
and GR binding capacity (DEX) in T lymphocytes (p ≤ 0.02) and noradrenaline dose and lactate in
neutrophils (p ≤ 0.03) in all patients at admission (T0). Associations between clinical parameters and GR
binding capacity were evaluated using the Spearman correlation test



Table 3 Numbers of leucocytes per mL of peripheral blood

Patients Healthy subjects

On admission (T0) After recovery (T4)

No GC GC No GC GC

CD3+ T lymphocytes 2.3 (2.6)*** 3.6 (4.9)*** 11 (4.6) 9.4 (6.7)* 18 (7.9)

CD4+ T lymphocytes 1.1 (1.1)*** 2.3 (4.3)*** 5.1 (1.4) 4.3 (3.9)* 10 (4.4)

CD8+ T Lymphocytes 1.0 (1.1)*** 1.3 (1.8)*** 4.1 (2.7) 4.4 (5.6) 6.5 (3.2)

B lymphocytes 1.6 (2.7) 1.0 (1.7) 1.9 (2.0) 0.6 (0.7)* 2.0 (1.3)

NK cells 0.8 (1.4) 0.8 (0.7) 3.6 (2.3) 0.8 (0.8) 2.1 (2.0)

Monocytes 5.7 (3.5) 1.9 (1.8)***a 3.0 (2.1) 3.8 (2.5) 5.3 (2.5)

Neutrophils 145 (63)*** 76 (66)a 28 (8.3) 41 (29) 51 (23)

Eosinophils 0.9 (1.2) 0.8 (2.2)* 1.8 (0.4) 2.0 (1.4) 2.9 (2.6)

Numbers are ×105, given as mean (SD)
aDifference between patients treated with glucocorticoids (GC) and patients not treated with glucocorticoids at any time
(No GC), p ≤ 0.05
*Difference between patients and healthy subjects (HS), p ≤ 0.05, ***p < 0.001
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decreased in neutrophils after the inflammatory phase in patients who have been

treated with steroids.

An upregulation of GR expression seems plausible as part of an adaptive re-

sponse to dampen an aggressive inflammation in the presence of invading patho-

gens. Indeed, we previously have found increased GR protein expression in

circulating leucocytes and splenocytes in experimental endotoxic shock in mice [8].

However, in earlier studies of GR mRNA, sepsis and septic shock were associated

with decreased GR expression. According to Ledderose et al., using T lymphocytes

from adult sepsis patients found a lower, however, not statistically significant, ex-

pression of GR-α than in healthy subjects [9]. van den Akker et al. studied neutro-

phils sampled from children within 24 h after admitted to a pediatric ICU for

sepsis and septic shock and found that GR-α expression was slightly depressed but

not statistically different from healthy subjects. However, GR expression increased

with recovery to significantly higher levels than were found on admission [10].
Fig. 4 Plasma cortisol during the initial phase of sepsis (T0–T2), after the acute inflammatory phase (T3),
after recovery (T4), and in healthy subjects (HS). Cortisol was analyzed by enzyme immunoassay (EIA). Plots
represent geometric means with confidence intervals. GC glucocorticoid treatment, HS healthy subjects



Fig. 5 Plasma cytokines during the initial phase of sepsis (T0–T2), after the acute inflammatory phase (T3),
after recovery (T4), and in healthy subjects (HS). Cytokines were analyzed by flow cytometry. Plots represent
geometric means with confidence intervals. GC glucocorticoid treatment, HS healthy subjects
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These opposite findings may represent inconsistency between the GR protein and

mRNA concentration as measures of GR expression. In an abnormal inflammatory

situation such as sepsis, it is plausible that the speed of GR expression at the gene

and protein levels can be restricted by a specific limiting factor. In eukaryotes,

while mRNA can be produced in two copies per hour, dozens of the corresponding

protein can be translated in the same time [16, 17]. Transcription is estimated to

be slower than translation because of several time-consuming steps, such as tran-

scription initiation, intron excision, and posttranscriptional RNA processing, which

are not required for protein translation. In addition, proteins have longer half-life

than mRNAs (46 h versus 2.6–7 h, respectively) [17].

Furthermore, we observed that survivors had a relatively higher increase of GR ex-

pression in T lymphocytes during septic shock than non-survivors. This clinical finding

is supported by experimental results from Goodwin et al. who found that GR knock-

down in endothelial cells proved to increase mortality and hemodynamic instability in

mice subjected to endotoxic shock [7]. The importance of GR expression for survival of

septic shock has been further demonstrated by Kleiman et al. who showed that GR

dimerization-deficient mice were highly susceptible to endotoxic shock, suggestively by

their inability to downregulate the pro-inflammatory cytokine IL-1β [18]. With our
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method, we did not investigate GR dimerization in itself but a high GR expression,

as found in survivors, is a prerequisite for sufficient dimerization and function of

the receptor.

The other, and perhaps most important finding in this study, was that GR binding

capacity was decreased in neutrophils of patients treated with steroids. These patients

were administered 200 mg of hydrocortisone daily in line with current guidelines [11].

Their GR binding capacity was significantly lower than in healthy subjects at admission,

but also, after septic shock was resolved. Impaired GR function has been described pre-

viously, in peripheral blood mononuclear cells in sepsis [19], lung tissue in experimen-

tal acute lung injury [20], and by our group in neutrophils in experimental endotoxic

shock [8]. One possible interpretation would be that the GC-treated patients were in a

deeper state of shock than the non-treated patients, causing decreased GR binding

capacity. However, this explanation is unlikely as the patients from both groups were

similar in most shock-related parameters and also because the difference between GC-

treated and non-treated patients still remained at T3, when the shock was resolved.

With the recent observation of substantial reduction in cortisol metabolism during

critical illness [6], it is more likely that an excessively high concentration of endogen-

ous cortisol and administered hydrocortisone caused decreased GR binding capacity.

As the effects of signaling from the activated GR-GC complex during severe inflam-

mation includes decreased capillary permeability, dampened cytokine release, and

modulated leucocyte recruitment [21, 22], impaired GR binding capacity may have

negative short-term consequences. Considering decreased binding capacity as well as

the expanding number of neutrophils in sepsis, the inability of neutrophils to respond

to endogenous or exogenous glucocorticoids may have severe ramifications for the

host. In the presence of infection, while T lymphocytes display an increased GR ex-

pression, neutrophils may become resistant to glucocorticoid-induced apoptosis

through decreased GR binding capacity. This is likely protecting the host from im-

munosuppression, which would exacerbate the present infection.

Our study also showed a severe retraction in the number of circulating T lym-

phocytes during sepsis. This is in agreement with previous studies [23] and may be

an effect of the increased predisposition of T lymphocytes to undergo apoptosis in

sepsis [24]. Neutrophils, on the other hand, were significantly increased in numbers

during sepsis. Other studies have suggested that neutrophils are less sensitive to

glucocorticoids than other leucocytes [25, 26]. Indeed, GR binding capacity in neu-

trophils was decreased by sepsis in our study. Taken together, these data suggest

that T lymphocytes are the main glucocorticoid-responsive leucocytes, but may not

be able to transmit an adequate effect of endogenous or exogenous glucocorticoids

during sepsis due to their reduced number. Moreover, neutrophil activation is the

predominant source of tissue damage and the multiple organ dysfunction syndrome

(MODS) in critically ill patients [27, 28]. The acquired decreased binding capacity

of neutrophils may be detrimental in sepsis and may even be aggravated by the in-

creased circulating levels of glucocorticoids.

Interestingly, several months after recovery, survivors who received hydrocortisone

treatment during sepsis in our study still had reduced numbers of CD3+ and CD4+ T

lymphocytes and B lymphocytes well after recovery. GC-treated patients also showed

higher concentrations of some cytokines at the time of recovery compared to any
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earlier timepoint and to healthy subjects. This is, to our knowledge, a novel observa-

tion. No patient displayed any symptom or sign of inflammation when blood samples

were drawn after recovery, and it is therefore unlikely that they harbored any latent in-

fection. If a decrease in T and B lymphocytes after sepsis recovery can be confirmed,

this may explain why having survived sepsis is a strong predictor of developing subse-

quent infections [29]. Possible reasons for these findings remain speculative, and fur-

ther studies are needed to confirm and delineate possible long-term cellular effects of

glucocorticoid treatment during sepsis.

To the best of our knowledge, the expression and binding capacity has not previously

been assessed on the protein level in septic shock. The method used in this study was

partly developed by our group and is robust, offering information about both the GR

expression at the protein level as well as its functional binding capacity ex vivo. It does

not reveal information about the GR-α and GR-β isoforms. As the GR-α and GR-β iso-

forms originate from alternative splicing of the same gene, the only accurate way of

specifically quantifying the GR-β isoform is using qPCR, which precludes information

about both protein expression and function. For the present study, we chose to detect

total GR expression and function using an antibody and fluorescence-labeled dexa-

methasone, respectively. The decreased GR binding capacity, that we observed using

fluorescence-labeled dexamethasone, is unlikely to be an effect of competitive bind-

ing of hydrocortisone ex vivo. Naturally, occurring glucocorticoids (cortisol and

hydrocortisone) dissociate within 15 min from GR, and any remaining unbound

fraction would be washed away in the laboratory process. In addition, synthetic

glucocorticoids have higher affinity for the receptor [30].

One limitation of the study is the non-consecutive inclusion (depending on available

laboratory resources) of a relatively small study population, especially at the last time-

point (T4), and the demographic differences between patients and healthy subjects.

The mean age of the healthy subjects was significantly lower, and immunological com-

petence is known to decrease with age [31]. In addition, there were more women than

men among the healthy subjects. However, when dividing the healthy subjects into two

groups according to age or gender, we found no differences in GR expression or bind-

ing capacity. This does not preclude that age or gender had effects on the immune re-

sponse in the patients, but they did not seem to affect our primary measured

parameters in the healthy subjects. As this was an exploratory study, we did not make

any multiplicity adjustments. Therefore, p values should be interpreted with caution

due to the increased risk for false positives. To the best of our knowledge, the expres-

sion and binding capacity has not previously been shown in septic shock. We consider

the observations in this exploratory hypothesis-generating study interesting enough to

merit validation in a larger hypothesis driven study, testing the correlation between GR

binding capacity and outcome.

Conclusions
In summary, our data suggest that GR expression is increased in T lymphocytes during

septic shock regardless of GC treatment, while GR binding capacity is decreased in

neutrophils in GC-treated patients. As neutrophils are the predominant circulating

leucocyte in septic shock, their decreased GR binding capacity may have severe conse-

quences for the response to exogenous or endogenous glucocorticoids. Further studies
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are needed to investigate possible long-term immune traces of glucocorticoid treatment

during sepsis.
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